Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (38)

Search Parameters:
Keywords = artificial bone substitute

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4076 KB  
Article
Enhanced Osteogenesis by Combining Exogenous BMPs with Hydroxyapatite/Aragonite Bone Grafts: In Vitro and In Vivo Studies
by Hong Lu, Ines Sousa dos Santos, Emma Steijvers, Miriam Lazim, Victoria Higginbotham, Baichuan Wang, Zengwu Shao, Venkateswarlu Kanamarlapudi and Zhidao Xia
J. Funct. Biomater. 2025, 16(10), 361; https://doi.org/10.3390/jfb16100361 - 26 Sep 2025
Cited by 1 | Viewed by 1104
Abstract
Synthetic biomaterials are widely used as bone graft substitutes, but their osteogenic capacity is limited as they lack osteogenic growth factors. This study aimed to enhance the osteogenesis of a novel hydroxyapatite/aragonite (HAA) biomaterial by incorporating decellularized bone matrix and bone morphogenetic protein [...] Read more.
Synthetic biomaterials are widely used as bone graft substitutes, but their osteogenic capacity is limited as they lack osteogenic growth factors. This study aimed to enhance the osteogenesis of a novel hydroxyapatite/aragonite (HAA) biomaterial by incorporating decellularized bone matrix and bone morphogenetic protein (BMP)-2 and BMP-7 (BMP-2/7). Human umbilical mesenchymal stem cells (MSCs) were able to proliferate and differentiate on HAA. HEK-293T cells exogenously expressing BMP-2/7 successfully secreted BMP-2/7, which was assessed by enzyme-linked immunosorbent assay. By establishing a co-culture of MSCs with HEK-293T cells expressing BMP-2/7, we successfully created an artificial allograft that integrates both synthetic biomaterials and functional organic components, offering the potential to enhance osteogenesis. The decellularized (by freeze/thawing) functional HAA was implanted between the tibia and anterior tibialis muscle in murine models and assessed the induced bone formation via micro-computer tomography, histology, and osteogenic markers mRNA expression by a reverse transcription-quantitative polymerase chain reaction. A significant increase in new bone formation was seen in the functional HAA implanted group. In conclusion, this study revealed that bone formation following the HAA implantation can be enhanced by a functional decellularized matrix, comprising BMP-2/7, via in vitro tissue engineering using MSCs and HEK-293T cells expressing BMP-2/7. Full article
(This article belongs to the Section Bone Biomaterials)
Show Figures

Figure 1

15 pages, 3215 KB  
Article
The Effect of Collagen Membrane Fixation with Pins on Buccal Bone Regeneration in Immediate Dental Implant Sites: A Preclinical Study in Dogs
by Yuma Hazama, Takahisa Iida, Niklaus P. Lang, Fernando M. Muñoz Guzon, Giovanna Iezzi, Daniele Botticelli and Shunsuke Baba
J. Funct. Biomater. 2025, 16(8), 281; https://doi.org/10.3390/jfb16080281 - 31 Jul 2025
Cited by 1 | Viewed by 1538
Abstract
Background: The role of collagen membrane fixation during guided bone regeneration (GBR) remains debatable, particularly in post-extraction sockets with buccal defects and concomitant immediate implant placement. This study evaluated whether or not fixation with titanium pins improved regenerative outcomes. Methods: Six adult Beagle [...] Read more.
Background: The role of collagen membrane fixation during guided bone regeneration (GBR) remains debatable, particularly in post-extraction sockets with buccal defects and concomitant immediate implant placement. This study evaluated whether or not fixation with titanium pins improved regenerative outcomes. Methods: Six adult Beagle dogs received bilateral extractions of the fourth mandibular premolars. An implant was immediately placed in both the distal alveoli, and standardized buccal bone defects (5 mm height, 3–2 mm width) were prepared. All defects were filled with a slowly resorbing equine xenograft and covered by a resorbable pericardium membrane. At the test sites, the membrane was apically fixed with pins, while no fixation was applied to the control sites. After 3 months of healing, histomorphometric analyses were performed. Results: The vertical bone gain of the buccal crest was 3.2 mm in the test sites (pin group) and 2.9 mm in the control sites (no-pin) (p > 0.754). No significant difference was found in terms of bone-to-implant contact (BIC). However, residual graft particles were located significantly more coronally in the pin group compared to the no-pin group (p = 0.021). Morphometric analyses revealed similar new bone formation within the groups, but with higher amounts of residual xenograft and soft tissue in the pin group. Conclusions: Membrane fixation did not significantly enhance vertical bone gain, and although the slightly higher regeneration in the pin group (3.2 mm vs. 2.9 mm) may hold clinical relevance in esthetically sensitive areas and osseointegration, it appeared to limit apical migration of the grafting material. Full article
(This article belongs to the Special Issue Biomaterials in Dentistry: Current Status and Advances)
Show Figures

Figure 1

13 pages, 1243 KB  
Article
Three-Dimensional Assessment of the Biological Periacetabular Defect Reconstruction in an Ovine Animal Model: A µ-CT Analysis
by Frank Sebastian Fröschen, Thomas Martin Randau, El-Mustapha Haddouti, Jacques Dominik Müller-Broich, Frank Alexander Schildberg, Werner Götz, Dominik John, Susanne Reimann, Dieter Christian Wirtz and Sascha Gravius
Bioengineering 2025, 12(7), 729; https://doi.org/10.3390/bioengineering12070729 - 3 Jul 2025
Viewed by 723
Abstract
The increasing number of acetabular revision total hip arthroplasties requires the evaluation of alternative materials in addition to established standards using a defined animal experimental defect that replicates the human acetabular revision situation as closely as possible. Defined bone defects in the load-bearing [...] Read more.
The increasing number of acetabular revision total hip arthroplasties requires the evaluation of alternative materials in addition to established standards using a defined animal experimental defect that replicates the human acetabular revision situation as closely as possible. Defined bone defects in the load-bearing area of the acetabulum were augmented with various materials in an ovine periacetabular defect model (Group 1: NanoBone® (artificial hydroxyapatite-silicate composite; Artoss GmbH, Germany); Group 2: autologous sheep cancellous bone; Group 3: Tutoplast® (processed allogeneic sheep cancellous bone; Tutogen Medical GmbH, Germany)) and bridged with an acetabular reinforcement ring of the Ganz type. Eight months after implantation, a μ-CT examination (n = 8 animals per group) was performed. A μ-CT analysis of the contralateral acetabula (n = 8, randomly selected from all three groups) served as the control group. In a defined volume of interest (VOI), bone volume (BV), mineral volume (MV), and bone substitute volume (BSV), as well as the bone surface (BS) relative to the total volume (TV) and the surface-to-volume ratio (BS/BV), were determined. To assess the bony microarchitecture, trabecular thickness (Tb.Th), trabecular separation (Tb.Sp), and trabecular number (Tb.N), as well as connectivity density (Conn.D), the degree of anisotropy (DA), and the structure model index (SMI), were evaluated. The highest BV was observed for NanoBone® (Group 1), which also showed the highest proportion of residual bone substitute material in the defect. This resulted in a significant increase in BV/TV with a significant decrease in BS/BV. The assessment of the microstructure for Groups 2 and 3 compared to Group 1 showed a clear approximation of Tb.Th, Tb.Sp, Tb.N, and Conn.D to the microstructure of the control group. The SMI showed a significant decrease in Group 1. All materials demonstrated their suitability by supporting biological defect reconstruction. NanoBone® showed the highest rate of new bone formation; however, the microarchitecture indicated more advanced bone remodeling and an approximate restoration of the trabecular structure for both autologous and allogeneic Tutoplast® cancellous bone when using the impaction bone grafting technique. Full article
Show Figures

Figure 1

32 pages, 11077 KB  
Article
Gelatin/Cerium-Doped Bioactive Glass Composites for Enhancing Cellular Functions of Human Mesenchymal Stem Cells (hBMSCs)
by Andrey Iodchik, Gigliola Lusvardi, Alfonso Zambon, Poh Soo Lee, Hans-Peter Wiesmann, Anne Bernhardt and Vera Hintze
Gels 2025, 11(6), 425; https://doi.org/10.3390/gels11060425 - 1 Jun 2025
Cited by 1 | Viewed by 15748
Abstract
Delayed or non-healing of bone defects in an aging, multi-morbid population is still a medical challenge. Current replacement materials, like autografts, are limited. Thus, artificial substitutes from biodegradable polymers and bioactive glasses (BGs) are promising alternatives. Here, novel cerium-doped mesoporous BG microparticles (Ce-MBGs) [...] Read more.
Delayed or non-healing of bone defects in an aging, multi-morbid population is still a medical challenge. Current replacement materials, like autografts, are limited. Thus, artificial substitutes from biodegradable polymers and bioactive glasses (BGs) are promising alternatives. Here, novel cerium-doped mesoporous BG microparticles (Ce-MBGs) with different cerium content were included in photocrosslinkable, methacrylated gelatin (GelMA) for promoting cellular functions of human mesenchymal stem cells (hBMSCs). The composites were studied for intrinsic morphology and Ce-MBGs distribution by scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDX). They were gravimetrically analyzed for swelling and stability, compressive modulus via Microsquisher® and bioactivity by Fluitest® calcium assay and inductively coupled plasma-optical emission spectrometry (ICP-OES), also determining silicon and cerium ion release. Finally, seeding, proliferation, and differentiation of hBMSCs was investigated. Ce-MBGs were evenly distributed within composites. The latter displayed a concentration-dependent but cerium-independent decrease in swelling, while mechanical properties were comparable. A MBG type-dependent bioactivity was shown, while an enhanced osteogenic differentiation of hBMSCs was achieved for Ce-MBG-composites and related to different ion release profiles. These findings show their strong potential in promoting bone regeneration. Still, future work is required, e.g., analyzing the expression of osteogenic genes, providing further evidence for the composites’ osteogenic effect. Full article
(This article belongs to the Special Issue Synthesis, Characterization and Applications of Collagen-Based Gels)
Show Figures

Graphical abstract

20 pages, 5459 KB  
Article
Potential Molecular Interactions and In Vitro Hyperthermia, Thermal, and Magnetic Studies of Bioactive Nickel-Doped Hydroxyapatite Thin Films
by Muhammad Sohail Asghar, Uzma Ghazanfar, Muhammad Rizwan, Muhammad Qasim Manan, Athar Baig, Muhammad Adnan Qaiser, Zeenat Haq, Lei Wang and Liviu Duta
Int. J. Mol. Sci. 2025, 26(3), 1095; https://doi.org/10.3390/ijms26031095 - 27 Jan 2025
Cited by 4 | Viewed by 1973
Abstract
The treatment of bone cancer often necessitates the surgical removal of affected tissues, with artificial implants playing a critical role in replacing lost bone structure. Functionalized implants represent an innovative approach to improve bio-integration and the long-term effectiveness of surgery in treating cancer-damaged [...] Read more.
The treatment of bone cancer often necessitates the surgical removal of affected tissues, with artificial implants playing a critical role in replacing lost bone structure. Functionalized implants represent an innovative approach to improve bio-integration and the long-term effectiveness of surgery in treating cancer-damaged bones. In this study, nickel-substituted hydroxyapatite (Ni:HAp) nanoparticles were deposited as thin films using laser pulses in the range of 30,000–60,000. Comprehensive structural, infrared, optical, morphological, surface, and magnetic evaluations were conducted on the synthesized Ni:HAp thin films. The magnetic hysteresis (M-H) loop demonstrated an increase in the saturation magnetization of the films with a higher number of laser pulses. A minimum squareness ratio of 0.7 was observed at 45,000 laser pulses, and the M-H characteristics indicated a shift toward ferromagnetic behavior, achieving the desired thermal response through an alternating magnetic field application within 80 s. Thermogravimetric analysis revealed distinct thermal stability, with the material structure exhibiting 46% degradation at 800 °C. The incorporation of bioactive magnetic nanoparticles in the thin film holds significant promise for magnetic hyperthermia treatment. Using HDOCK simulations, the interactions between ligand molecules and proteins were also explored. Strong binding affinities with a docking score of −67.73 were thus observed. The presence of Ca2+ ions enhances electrostatic interactions, providing valuable insights into the biochemical roles of the ligand in therapeutic applications. Intravenous administration of magnetic nanoparticles, which subsequently aggregate within the tumor tissue, combined with an applied alternating magnetic field, enable targeted heating of the tumor to 45 °C. This focused heating approach selectively targets cancer cells while preserving the surrounding healthy tissue, thereby potentially enhancing the effectiveness of hyperthermia therapy in cancer treatment. Full article
(This article belongs to the Special Issue Biofunctional Coatings for Medical Applications)
Show Figures

Figure 1

22 pages, 4023 KB  
Article
Osteoblastic Differentiation and Mitigation of the Inflammatory Response in Titanium Alloys Decorated with Oligopeptides
by Aroa Álvarez-López, Raquel Tabraue-Rubio, Rafael Daza, Luis Colchero, Gustavo V. Guinea, Martine Cohen-Solal, José Pérez-Rigueiro and Daniel González-Nieto
Biomimetics 2025, 10(1), 58; https://doi.org/10.3390/biomimetics10010058 - 16 Jan 2025
Cited by 2 | Viewed by 1454
Abstract
Under benign conditions, bone tissue can regenerate itself without external intervention. However, this regenerative capacity can be compromised by various factors, most importantly related with the extent of the injury. Critical-sized defects, exceeding the body’s natural healing ability, demand the use of temporary [...] Read more.
Under benign conditions, bone tissue can regenerate itself without external intervention. However, this regenerative capacity can be compromised by various factors, most importantly related with the extent of the injury. Critical-sized defects, exceeding the body’s natural healing ability, demand the use of temporary or permanent devices like artificial joints or bone substitutes. While titanium is a widely used material for bone replacement, its integration into the body remains limited. This often leads to the progressive loosening of the implant and the need for revision surgeries, which are technically challenging, are commonly associated with high complication rates, and impose a significant economic burden. To enhance implant osseointegration, numerous studies have focused on the development of surface functionalization techniques to improve the response of the body to the implant. Yet, the challenge of achieving reliable and long-lasting prostheses persists. In this work, we address this challenge by applying a robust and versatile biofunctionalization process followed by the decoration of the material with oligopeptides. We immobilize four different peptides (RGD, CS-1, IKVAV, PHSRN) on R-THAB® functionalized surfaces and find them to be highly stable in the long term. We also find that RGD is the best-performing peptide in in vitro cell cultures, enhancing adhesion, proliferation, and osteogenic differentiation of mesenchymal stem cells. To assess the in vivo effect of RGD-decorated Ti-6Al-4V implants, we develop a calvarial model in murine hosts. We find that the RGD-decoration remains stable for 1 week after the surgical procedure and reduces post-implantation macrophage-related inflammation. These results highlight the potential of peptide decoration on R-THAB® functionalized surfaces to expedite the development of novel metallic biomaterials with enhanced biocompatibility properties, thereby advancing the field of regenerative medicine. Full article
Show Figures

Figure 1

20 pages, 7573 KB  
Review
A Critical Review of Natural and Synthetic Polymer-Based Biological Apatite Composites for Bone Tissue Engineering
by Wasan Alkaron, Alaa Almansoori, Csaba Balázsi and Katalin Balázsi
J. Compos. Sci. 2024, 8(12), 523; https://doi.org/10.3390/jcs8120523 (registering DOI) - 12 Dec 2024
Cited by 7 | Viewed by 3843
Abstract
During the past decade, there has been a continued increase in the demand for bone defect repair and replacement resulting from long-term illnesses or traumatic incidents. To address these challenges, tissue engineering research has focused on biomedical applications. This field concentrated on the [...] Read more.
During the past decade, there has been a continued increase in the demand for bone defect repair and replacement resulting from long-term illnesses or traumatic incidents. To address these challenges, tissue engineering research has focused on biomedical applications. This field concentrated on the development of suitable materials to enhance biological functionality and bone integration. Toward this aim, it is necessary to develop a proper material that provides good osseointegration and mechanical behavior by combining biopolymers with ceramics, which increase their mechanical stability and mineralization process. Hydroxyapatite (HAp) is synthesized from natural resources owing to its unique properties; for example, it can mimic the composition of bones and teeth of humans and animals. Biopolymers, including chitosan and alginate, combined with HAp, offer good chemical stability and strength required for tissue engineering. Composite biomaterials containing hydroxyapatite could be a potential substitute for artificial synthetic bone grafts. Utilizing various polymers and fabrication methodologies would efficiently customize physicochemical properties and suitable mechanical properties in synergy with biodegradation, thus enhancing their potential in bone regeneration. This review summarizes the commonly used polymers in tissue engineering, emphasizing their advantages and limitations. This paper also highlights recent advances in the production and investigation of HAp-based polymer composites used in biomedical applications. Full article
(This article belongs to the Special Issue Biopolymeric Matrices Reinforced with Natural Fibers and Nanofillers)
Show Figures

Figure 1

13 pages, 7096 KB  
Article
Microstructure and Biocompatibility of Graphene Oxide/BCZT Composite Ceramics via Fast Hot-Pressed Sintering
by Bingqing Zhao, Qibin Liu, Geng Tang and Dunying Wang
Coatings 2024, 14(6), 689; https://doi.org/10.3390/coatings14060689 - 1 Jun 2024
Cited by 3 | Viewed by 2088
Abstract
Improving fracture toughness, electrical conductivity, and biocompatibility has consistently presented challenges in the development of artificial bone replacement materials. This paper presents a new strategy for creating high-performance, multifunctional composite ceramic materials by doping graphene oxide (GO), which is known to induce osteoblast [...] Read more.
Improving fracture toughness, electrical conductivity, and biocompatibility has consistently presented challenges in the development of artificial bone replacement materials. This paper presents a new strategy for creating high-performance, multifunctional composite ceramic materials by doping graphene oxide (GO), which is known to induce osteoblast differentiation and enhance cell adhesion and proliferation into barium calcium zirconate titanate (BCZT) ceramics that already exhibit good mechanical properties, piezoelectric effects, and low cytotoxicity. Using fast hot-pressed sintering under vacuum conditions, (1 − x)(Ba0.85Ca0.15Zr0.1Ti0.9)O3−xGO (0.2 mol% ≤ x ≤ 0.5 mol%) composite piezoelectric ceramics were successfully synthesized. Experimental results revealed that these composite ceramics exhibited high piezoelectric properties (d33 = 18 pC/N, kp = 62%) and microhardness (173.76 HV0.5), meeting the standards for artificial bone substitutes. Furthermore, the incorporation of graphene oxide significantly reduced the water contact angle and enhanced their wettability. Cell viability tests using Cell Counting Kit-8, alkaline phosphatase staining, and DAPI staining demonstrated that the GO/BCZT composite ceramics were non-cytotoxic and effectively promoted cell proliferation and growth, indicating excellent biocompatibility. Consequently, with their superior mechanical properties, piezoelectric performance, and biocompatibility, GO/BCZT composite ceramics show extensive potential for application in bone defect repair. Full article
(This article belongs to the Special Issue Advances of Ceramic and Alloy Coatings, 2nd Edition)
Show Figures

Figure 1

27 pages, 27014 KB  
Article
In Vivo Evaluation of Bone Regenerative Capacity of the Novel Nanobiomaterial: β-Tricalcium Phosphate Polylactic Acid-co-Glycolide (β-TCP/PLLA/PGA) for Use in Maxillofacial Bone Defects
by Mrunalini Ramanathan, Ankhtsetseg Shijirbold, Tatsuo Okui, Hiroto Tatsumi, Tatsuhito Kotani, Yukiho Shimamura, Reon Morioka, Kentaro Ayasaka and Takahiro Kanno
Nanomaterials 2024, 14(1), 91; https://doi.org/10.3390/nano14010091 - 28 Dec 2023
Cited by 6 | Viewed by 2773
Abstract
Maxillofacial bone defects are treated by autografting or filling with synthetic materials in various forms and shapes. Electrospun nanobiomaterials are becoming popular due to their easy placement and handling; combining ideal biomaterials extrapolates better outcomes. We used a novel electrospun cotton-like fiber made [...] Read more.
Maxillofacial bone defects are treated by autografting or filling with synthetic materials in various forms and shapes. Electrospun nanobiomaterials are becoming popular due to their easy placement and handling; combining ideal biomaterials extrapolates better outcomes. We used a novel electrospun cotton-like fiber made from two time-tested bioresorbable materials, β-TCP and PLLA/PGA, to check the feasibility of its application to maxillofacial bone defects through an in vivo rat mandibular bone defect model. Novel β-TCP/PLLA/PGA and pure β-TCP blocks were evaluated for new bone regeneration through assessment of bone volume, inner defect diameter reduction, and bone mineral density. Bioactive/osteoconductivity was checked by scoring the levels of Runt-related transcription factor x, Leptin Receptor, Osteocalcin, and Periostin biomarkers. Bone regeneration in both β-TCP/PLLA/PGA and β-TCP was comparable at initial timepoints. Osteogenic cell accumulation was greater in β-TCP/PLLA/PGA than in β-TCP at initial as well as late phases. Periostin expression was more marked in β-TCP/PLLA/PGA. This study demonstrated comparable results between β-TCP/PLLA/PGA and β-TCP in terms of bone regeneration and bioactivity, even with a small material volume of β-TCP/PLLA/PGA and a decreased percentage of β-TCP. Electrospun β-TCP/PLLA/PGA is an ideal nanobiomaterial for inducing bone regeneration through osteoconductivity and bioresorbability in bony defects of the maxillofacial region. Full article
(This article belongs to the Special Issue Functional Biocompatible Nanomaterials)
Show Figures

Figure 1

16 pages, 34899 KB  
Article
Bone Regeneration Potential of Periodontal Ligament Stem Cells in Combination with Cold Atmospheric Plasma-Pretreated Beta-Tricalcium Phosphate: An In Vivo Assessment
by Maja Miletić, Nevena Puač, Nikola Škoro, Božidar Brković, Miroslav Andrić, Bogomir Bolka Prokić, Vesna Danilović, Sanja Milutinović-Smiljanić, Olivera Mitrović-Ajtić and Slavko Mojsilović
Appl. Sci. 2024, 14(1), 16; https://doi.org/10.3390/app14010016 - 19 Dec 2023
Cited by 3 | Viewed by 2272
Abstract
In regenerative bone tissue medicine, combining artificial bone substitutes with progenitor cells is a prospective approach. Surface modification via cold atmospheric plasma (CAP) enhances biomaterial–cell interactions, which are crucial for successful bone regeneration. Using a rabbit calvarial critical-size defect model, we assessed the [...] Read more.
In regenerative bone tissue medicine, combining artificial bone substitutes with progenitor cells is a prospective approach. Surface modification via cold atmospheric plasma (CAP) enhances biomaterial–cell interactions, which are crucial for successful bone regeneration. Using a rabbit calvarial critical-size defect model, we assessed the use of CAP-pretreated beta-tricalcium phosphate (β-TCP), alone or with periodontal ligament stem cells (PDLSCs), for bone regeneration. Histological and histomorphometric analyses at two and four weeks revealed significantly improved bone regeneration and reduced inflammation in the CAP-treated β-TCP with PDLSCs compared to β-TCP alone. Immunohistochemical analysis also showed an increase in the bone healing markers, including bone morphogenic proteins 2 and 4, runt-related transcription factor 2, collagen-1, and osteonectin, after two and four weeks in the CAP-treated β-TCP implants with PDLSC. This in vivo study demonstrates for the first time the superior bone regenerative capacity of CAP-pretreated β-TCP seeded with PDLSCs, highlighting the therapeutic potential of this combined approach in osteoregeneration. Full article
Show Figures

Figure 1

12 pages, 2553 KB  
Article
Use of Autologous Bone Graft with Bioactive Glass as a Bone Substitute in the Treatment of Large-Sized Bone Defects of the Femur and Tibia
by Sebastian Findeisen, Niklas Gräfe, Melanie Schwilk, Thomas Ferbert, Lars Helbig, Patrick Haubruck, Gerhard Schmidmaier and Michael Tanner
J. Pers. Med. 2023, 13(12), 1644; https://doi.org/10.3390/jpm13121644 - 24 Nov 2023
Cited by 7 | Viewed by 2624
Abstract
Background: Managing bone defects in non-union surgery remains challenging, especially in cases of large defects exceeding 5 cm in size. Historically, amputation and compound osteosynthesis with a remaining PMMA spacer have been viable and commonly used options. The risk of non-union after fractures [...] Read more.
Background: Managing bone defects in non-union surgery remains challenging, especially in cases of large defects exceeding 5 cm in size. Historically, amputation and compound osteosynthesis with a remaining PMMA spacer have been viable and commonly used options. The risk of non-union after fractures varies between 2% and 30% and is dependent on various factors. Autologous bone grafts from the iliac crest are still considered the gold standard but are limited in availability, prompting consideration of artificial grafts. Objectives: The aims and objectives of the study are as follows: 1. To evaluate the radiological outcome of e.g., the consolidation and thus the stability of the bone (three out of four consolidated cortices/Lane-Sandhu-score of at least 3) by using S53P4-type bioactive glass (BaG) as a substitute material for large-sized bone defects in combination with autologous bone using the RIA technique. 2. To determine noticeable data-points as a base for future studies. Methods: In our clinic, 13 patients received bioactive glass (BaG) as a substitute in non-union therapy to promote osteoconductive aspects. BaG is a synthetic material composed of sodium, silicate, calcium, and phosphate. The primary endpoint of our study was to evaluate the radiological consolidation of bone after one and two years. To assess bone stabilization, we used a modified Lane-Sandhu score, considering only radiological criteria. A bone was considered stabilized if it achieved a minimum score of 3. For full consolidation (all four cortices consolidated), a minimum score of 4 was required. Each bone defect exceeded 5 cm in length, with an average size of 6.69 ± 1.92 cm. Results: The mean follow-up period for patients without final bone consolidation was 34.25 months, with a standard deviation of 14.57 months, a median of 32.00 months and a range of 33 months. In contrast, patients with a fully consolidated non-union had an average follow-up of 20.11 ± 15.69 months and a range of 45 months. Overall, the mean time from non-union surgery to consolidation for patients who achieved final union was 14.91 ± 6.70 months. After one year, six patients (46.2%) achieved complete bone consolidation according to the Lane-Sandhu score. Three patients (23.1%) displayed evident callus formation with expected stability, while three patients (23.1%) did not develop any callus, and one patient only formed a minimal callus with no expected stability. After two years, 9 out of 13 patients (69.2%) had a score of 4. The remaining four patients (30.8%) without expected stability either did not heal within two years or required a revision during that time. Conclusions: Bioactive glass (BaG) in combination with autologous bone (RIA) appears to be a suitable filler material for treating extensive non-unions of the femur and tibia. This approach seems to show non-inferiority to treatment with Tricalcium Phosphate (TCP). To ensure the success of this treatment, it is crucial to validate the procedure through a randomized controlled trial (RCT) with a control group using TCP, which would provide higher statistical power and more reliable results. Full article
(This article belongs to the Special Issue New Concepts in Musculoskeletal Medicine)
Show Figures

Figure 1

11 pages, 2417 KB  
Article
Cyclic Stability of Locking Plate Augmented with Intramedullary Polymethyl Methacrylate (PMMA) Strut Fixation for Osteoporotic Humeral Fractures: A Biomechanical Study
by Chih-Kun Hsiao, Yen-Wei Chiu, Hao-Yuan Hsiao, Yi-Jung Tsai, Cheng-Hung Lee, Cheng-Yo Yen and Yuan-Kun Tu
Life 2023, 13(11), 2110; https://doi.org/10.3390/life13112110 - 24 Oct 2023
Cited by 1 | Viewed by 2114
Abstract
The locking plate may provide improved fixation in osteoporotic bone; however, it has been reported to fail due to varus collapse or screw perforation of the articular surface, especially in osteoporotic bone with medial cortex comminution. Using bone graft as an intramedullary strut [...] Read more.
The locking plate may provide improved fixation in osteoporotic bone; however, it has been reported to fail due to varus collapse or screw perforation of the articular surface, especially in osteoporotic bone with medial cortex comminution. Using bone graft as an intramedullary strut together with plate fixation may result in a stronger construct. However, the drawbacks of bone grafts include limited supply, high cost, and infection risk. PMMA (so-called bone cement) has been widely used for implant fixation due to its good mechanical properties, fabricability, and biocompatibility. The risk of donor-site infection and the drawbacks of allografting may be overcome by considering PMMA struts as alternatives to fibular grafts for humeral intramedullary grafting surgeries. However, the potential effects of intramedullary PMMA strut on the dynamic behaviour of osteoporotic humerus fractures remain unclear. This study aimed to investigate the influence of an intramedullary PMMA strut on the stability of unstable proximal humeral fractures in an osteoporotic synthetic model. Two fixation techniques, a locking plate alone (non-strut group) and the same fixation augmented with an intramedullary PMMA strut (with-strut group), were cyclically tested in 20 artificial humeral models. Axially cyclic testing was performed to 450 N for 10,000 cycles, intercyclic motion, cumulated fragment migration, and residual deformation of the constructs were determined at periodic cyclic intervals, and the groups were compared. Results showed that adding an intramedullary PMMA strut could decrease 1.6 times intercyclic motion, 2 times cumulated fracture gap migration, and 1.8 times residual deformation from non-strut fixation. During cycling, neither screw pull-out, cut-through, nor implant failure was observed in the strut-augmented group. We concluded that the plate-strut mechanism could enhance the cyclic stability of the fixation and minimize the residual displacement of the fragment in treating osteoporotic proximal humeral unstable fractures. The PMMA strut has the potential to substitute donor bone and serve as an intramedullary support when used in combination with locking plate fixation. The intramedullary support with bone cement can be considered a solution in the treatment of osteoporotic proximal humeral fractures, especially when there is medial comminution. Full article
(This article belongs to the Special Issue Orthopaedics and Traumatology: Surgery and Research)
Show Figures

Figure 1

40 pages, 1970 KB  
Review
Aerogel-Based Materials in Bone and Cartilage Tissue Engineering—A Review with Future Implications
by István Lázár, Ladislav Čelko and Melita Menelaou
Gels 2023, 9(9), 746; https://doi.org/10.3390/gels9090746 - 13 Sep 2023
Cited by 31 | Viewed by 5386
Abstract
Aerogels are fascinating solid materials known for their highly porous nanostructure and exceptional physical, chemical, and mechanical properties. They show great promise in various technological and biomedical applications, including tissue engineering, and bone and cartilage substitution. To evaluate the bioactivity of bone substitutes, [...] Read more.
Aerogels are fascinating solid materials known for their highly porous nanostructure and exceptional physical, chemical, and mechanical properties. They show great promise in various technological and biomedical applications, including tissue engineering, and bone and cartilage substitution. To evaluate the bioactivity of bone substitutes, researchers typically conduct in vitro tests using simulated body fluids and specific cell lines, while in vivo testing involves the study of materials in different animal species. In this context, our primary focus is to investigate the applications of different types of aerogels, considering their specific materials, microstructure, and porosity in the field of bone and cartilage tissue engineering. From clinically approved materials to experimental aerogels, we present a comprehensive list and summary of various aerogel building blocks and their biological activities. Additionally, we explore how the complexity of aerogel scaffolds influences their in vivo performance, ranging from simple single-component or hybrid aerogels to more intricate and organized structures. We also discuss commonly used formulation and drying methods in aerogel chemistry, including molding, freeze casting, supercritical foaming, freeze drying, subcritical, and supercritical drying techniques. These techniques play a crucial role in shaping aerogels for specific applications. Alongside the progress made, we acknowledge the challenges ahead and assess the near and far future of aerogel-based hard tissue engineering materials, as well as their potential connection with emerging healing techniques. Full article
(This article belongs to the Special Issue Aerogel Hybrids and Nanocomposites)
Show Figures

Graphical abstract

13 pages, 3746 KB  
Article
Synthesis and Characterization of Nano-Hydroxyapatite Obtained from Eggshell via the Hydrothermal Process and the Precipitation Method
by Shih-Ching Wu, Hsueh-Chuan Hsu, Hsueh-Fang Wang, Shu-Ping Liou and Wen-Fu Ho
Molecules 2023, 28(13), 4926; https://doi.org/10.3390/molecules28134926 - 22 Jun 2023
Cited by 25 | Viewed by 7514
Abstract
Hydroxyapatite (HA) is a major component of the inorganic minerals in the hard tissues of humans and has been widely used as a biomedical ceramic material in orthopedic and dentistry applications. Because human bone contains several impurities, including carbonates, chlorides, fluorides, magnesium, and [...] Read more.
Hydroxyapatite (HA) is a major component of the inorganic minerals in the hard tissues of humans and has been widely used as a biomedical ceramic material in orthopedic and dentistry applications. Because human bone contains several impurities, including carbonates, chlorides, fluorides, magnesium, and strontium, human bone minerals differ from stoichiometric HA. Additionally, natural bone is composed of nano-sized HA, and the nanoscale particles exhibit a high level of biological activity. In this paper, HA is prepared via the hydrothermal process because its reaction conditions are easy to control and it has been shown to be quite feasible for large-scale production. Therefore, the hydrothermal process is an effective and convenient method for the preparation of HA. Furthermore, eggshell is adopted as a source of calcium, and mulberry leaf extract is selectively added to synthesize HA. The eggshell accounts for 11% of the total weight of a whole egg, and it consists of calcium carbonate, calcium phosphate, magnesium carbonate, and organic matter. Eggshell contains a variety of trace elements, such as magnesium and strontium, making the composition of the synthesized HA similar to that of the human skeleton. These trace elements exert considerable benefits for bone growth. Moreover, the use of eggshell as a raw material can permit the recycling of biowaste and a reduction in process costs. The purpose of this study is to prepare HA powder via the hydrothermal method and to explore the effects of hydrothermal conditions on the structure and properties of the synthesized HA. The room-temperature precipitation method is used for the control group. Furthermore, the results of an immersion test in simulated body fluid confirm that the as-prepared HA exhibits good apatite-forming bioactivity, which is an essential requirement for artificial materials to bond to living bones in the living body and promote bone regeneration. In particular, it is confirmed that the HA synthesized with the addition of the mulberry leaf extract exhibits good in vitro biocompatibility. The morphology, crystallite size, and composition of the carbonated nano-HA obtained herein are similar to those of natural bones. The carbonated nano-HA appears to be an excellent material for bioresorbable bone substitutes or drug delivery. Therefore, the nano-HA powder prepared in this study has great potential in biomedical applications. Full article
(This article belongs to the Section Materials Chemistry)
Show Figures

Figure 1

26 pages, 4564 KB  
Review
Application of Nanocellulose-Based Aerogels in Bone Tissue Engineering: Current Trends and Outlooks
by Yaoguang Zhang, Shengjun Jiang, Dongdong Xu, Zubing Li, Jie Guo, Zhi Li and Gu Cheng
Polymers 2023, 15(10), 2323; https://doi.org/10.3390/polym15102323 - 16 May 2023
Cited by 23 | Viewed by 4767
Abstract
The complex or compromised bone defects caused by osteomyelitis, malignant tumors, metastatic tumors, skeletal abnormalities, and systemic diseases are difficult to be self-repaired, leading to a non-union fracture. With the increasing demands of bone transplantation, more and more attention has been paid to [...] Read more.
The complex or compromised bone defects caused by osteomyelitis, malignant tumors, metastatic tumors, skeletal abnormalities, and systemic diseases are difficult to be self-repaired, leading to a non-union fracture. With the increasing demands of bone transplantation, more and more attention has been paid to artificial bone substitutes. As biopolymer-based aerogel materials, nanocellulose aerogels have been widely utilized in bone tissue engineering. More importantly, nanocellulose aerogels not only mimic the structure of the extracellular matrix but could also deliver drugs and bioactive molecules to promote tissue healing and growth. Here, we reviewed the most recent literature about nanocellulose-based aerogels, summarized the preparation, modification, composite fabrication, and applications of nanocellulose-based aerogels in bone tissue engineering, as well as giving special focus to the current limitations and future opportunities of nanocellulose aerogels for bone tissue engineering. Full article
(This article belongs to the Special Issue Advances in Functional Polymer Materials)
Show Figures

Figure 1

Back to TopTop