Enhanced Osteogenesis by Combining Exogenous BMPs with Hydroxyapatite/Aragonite Bone Grafts: In Vitro and In Vivo Studies
Abstract
1. Introduction
2. Materials and Methods
2.1. Human Umbilical Cord Mesenchymal Stem Cell (MSC) Isolation
2.2. HAA Particle Preparation
2.3. AlamarBlue Assay
2.4. CCK-8 Assay
2.5. Scanning Electron Microscopy
2.6. Transfection of HEK-293T Cells
2.7. Preparation of a HAA + MSC + HEK Bone Graft for Implantation
2.7.1. Co-Culturing of HEK-293T/MSCs on HAA
2.7.2. Decellularization of HAA Scaffolds Co-Cultured with MSC-HEK Cells
2.7.3. Estimating BMP-2/7 Levels in Decellularized HAA Scaffolds
2.7.4. Fabrication of Implanting Material
2.7.5. In Vivo Model Preparation
2.7.6. Implantation
2.7.7. Sample Harvesting
2.7.8. Micro-CT Analysis
2.7.9. RT-qPCR Analysis
2.7.10. Histology of Undecalcified Samples
2.8. Statistical Analysis
3. Results
3.1. Scaffold Production and Biocompatibility
3.2. Expression of BMP-2/7 in HEK-293T Cells
3.3. Characterization of the HAA + MSC + HEK Bone Graft by Confocal Microscopy
3.4. The Surface Morphology and BMP-2/7 Levels in the Decellularized HAA Scaffold
3.5. Analysis of Micro-CT of the Implanted HAA + MSC + HEK Bone Graft
3.6. Histological Observations
3.7. Expression of Osteogenic Markers: BMP-2 and BMP-7
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Betz Randal, R. Limitations of Autograft and Allograft: New Synthetic Solutions. Orthopedics 2002, 25, S561–S570. [Google Scholar] [CrossRef]
- Lomas, R.; Chandrasekar, A.; Board, T.N. Bone allograft in the U.K.: Perceptions and realities. HIP Int. 2013, 23, 427–433. [Google Scholar] [CrossRef]
- Baldwin, P.; Li, D.J.; Auston, D.A.; Mir, H.S.; Yoon, R.S.; Koval, K.J. Autograft, Allograft, and Bone Graft Substitutes: Clinical Evidence and Indications for Use in the Setting of Orthopaedic Trauma Surgery. J. Orthop. Trauma. 2019, 33, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Buser, Z.; Brodke, D.S.; Youssef, J.A.; Meisel, H.J.; Myhre, S.L.; Hashimoto, R.; Park, J.B.; Tim Yoon, S.; Wang, J.C. Synthetic bone graft versus autograft or allograft for spinal fusion: A systematic review. J. Neurosurg. Spine 2016, 25, 509–516. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; He, R.; Deng, X.; Shao, Z.; Deganello, D.; Yan, C.; Xia, Z. Three-dimensional biofabrication of an aragonite-enriched self-hardening bone graft substitute and assessment of its osteogenicity in vitro and in vivo. Biomater. Transl. 2020, 1, 69–81. [Google Scholar] [CrossRef]
- Ielo, I.; Calabrese, G.; De Luca, G.; Conoci, S. Recent Advances in Hydroxyapatite-Based Biocomposites for Bone Tissue Regeneration in Orthopedics. Int. J. Mol. Sci. 2022, 23, 9721. [Google Scholar] [CrossRef]
- Gao, C.; Peng, S.; Feng, P.; Shuai, C. Bone biomaterials and interactions with stem cells. Bone Res. 2017, 5, 17059. [Google Scholar] [CrossRef]
- Kobayashi, M.; Nihonmatsu, S.; Okawara, T.; Onuki, H.; Sakagami, H.; Nakajima, H.; Takeishi, H.; Shimada, J. Adhesion and Proliferation of Osteoblastic Cells on Hydroxyapatite-dispersed Ti-based Composite Plate. In Vivo 2019, 33, 1067–1079. [Google Scholar] [CrossRef]
- Zhong, Q.; Li, W.; Su, X.; Li, G.; Zhou, Y.; Kundu, S.C.; Yao, J.; Cai, Y. Degradation pattern of porous CaCO3 and hydroxyapatite microspheres in vitro and in vivo for potential application in bone tissue engineering. Colloids Surf. B Biointerfaces 2016, 143, 56–63. [Google Scholar] [CrossRef]
- Suarez, C.E.; McElwain, T.F. Transfection systems for Babesia bovis: A review of methods for the transient and stable expression of exogenous genes. Vet. Parasitol. 2010, 167, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Chen, D.; Ji, X.; Harris, M.A.; Feng, J.Q.; Karsenty, G.; Celeste, A.J.; Rosen, V.; Mundy, G.R.; Harris, S.E. Differential Roles for Bone Morphogenetic Protein (BMP) Receptor Type IB and IA in Differentiation and Specification of Mesenchymal Precursor Cells to Osteoblast and Adipocyte Lineages. J. Cell Biol. 1998, 142, 295–305. [Google Scholar] [CrossRef] [PubMed]
- Tzameli, I.; Fang, H.; Ollero, M.; Shi, H.; Hamm, J.K.; Kievit, P.; Hollenberg, A.N.; Flier, J.S. Regulated Production of a Peroxisome Proliferator-activated Receptor-γ Ligand during an Early Phase of Adipocyte Differentiation in 3T3-L1 Adipocytes*. J. Biol. Chem. 2004, 279, 36093–36102. [Google Scholar] [CrossRef]
- Nishimura, R.; Hata, K.; Matsubara, T.; Wakabayashi, M.; Yoneda, T. Regulation of bone and cartilage development by network between BMP signalling and transcription factors. J. Biochem. 2012, 151, 247–254. [Google Scholar] [CrossRef]
- McDonald, N.M.; Woodell-May, J.E.; Pietrzak, W.S. Bone morphogenetic protein concentration in human demineralized bone matrix. In Proceedings of the 51st Annual Meeting of the Orthopaedic Research Society, Washington, DC, USA, 20–23 February 2005; Available online: https://www.google.com.hk/url?sa=t&source=web&rct=j&opi=89978449&url=https://www.ors.org/transactions/51/1659.pdf&ved=2ahUKEwi7xojD1s-PAxV-yDgGHZ15HvcQFnoECCAQAQ&usg=AOvVaw2lJwV8LUqICs23Sq-S9py4 (accessed on 10 July 2025).
- Steijvers, E.; Ghei, A.; Xia, Z. Manufacturing artificial bone allografts: A perspective. Biomater. Transl. 2022, 3, 65–80. [Google Scholar] [CrossRef]
- Cahill, K.S.; McCormick, P.C.; Levi, A.D. A comprehensive assessment of the risk of bone morphogenetic protein use in spinal fusion surgery and postoperative cancer diagnosis. J. Neurosurg. Spine 2015, 23, 86–93. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Li, B.; Chen, L. Controlled dual delivery of low doses of BMP-2 and VEGF in a silk fibroin–nanohydroxyapatite scaffold for vascularized bone regeneration. J. Mater. Chem. B 2017, 5, 6963–6972. [Google Scholar] [CrossRef] [PubMed]
- Bez, M.; Pelled, G.; Gazit, D. BMP gene delivery for skeletal tissue regeneration. Bone 2020, 137, 115449. [Google Scholar] [CrossRef]
- Steijvers, E.; Shi, Y.; Lu, H.; Zhang, W.; Zhang, Y.; Zhao, F.; Wang, B.; Hughes, L.; Barralet, J.E.; Degli-Alessandrini, G.; et al. Rapid assessment of the osteogenic capacity of hydroxyapatite/aragonite using a murine tibial periosteal ossification model. Bioact. Mater. 2025, 45, 257–273. [Google Scholar] [CrossRef]
- Jannoo, R.; Xia, Z.; Row, P.E.; Kanamarlapudi, V. Targeting of the Interleukin-13 Receptor (IL-13R)alpha2 Expressing Prostate Cancer by a Novel Hybrid Lytic Peptide. Biomolecules 2023, 13, 356. [Google Scholar] [CrossRef]
- Nonaka, P.N.; Campillo, N.; Uriarte, J.J.; Garreta, E.; Melo, E.; de Oliveira, L.V.; Navajas, D.; Farre, R. Effects of freezing/thawing on the mechanical properties of decellularized lungs. J. Biomed. Mater. Res. A 2014, 102, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Xing, Q.; Yates, K.; Tahtinen, M.; Shearier, E.; Qian, Z.; Zhao, F. Decellularization of fibroblast cell sheets for natural extracellular matrix scaffold preparation. Tissue Eng. Part. C Methods 2015, 21, 77–87. [Google Scholar] [CrossRef]
- Liu, B.; Zhou, X. Freeze-Drying of Proteins. Methods Mol. Biol. 2021, 2180, 683–702. [Google Scholar] [CrossRef]
- Lu, H. Enhanced Osteogenesis by Combining Exogenous BMPs with Hydroxyapatite/Calcium Carbonate Bone Grafts: In Vitro and In Vivo Study. M.D. Thesis, Swansea University, Swansea, Wales, UK, 2024. [Google Scholar]
- Kanamarlapudi, V.; Tamaddon-Jahromi, S.; Murphy, K. ADP-ribosylation factor 6 expression increase in oesophageal adenocarcinoma suggests a potential biomarker role for it. PLoS ONE 2022, 17, e0263845. [Google Scholar] [CrossRef]
- Gruber, H.E.; Ingram, J.A. Basic Staining and Histochemical Techniques and Immunohistochemical Localizations Using Bone Sections. In Handbook of Histology Methods for Bone and Cartilage; An, Y.H., Martin, K.L., Eds.; Humana Press: Totowa, NJ, USA, 2003; pp. 281–286. [Google Scholar] [CrossRef]
- Chitty, D.W.; Tremblay, R.G.; Ribecco-Lutkiewicz, M.; Haukenfrers, J.; Zurakowski, B.; Massie, B.; Sikorska, M.; Bani-Yaghoub, M. Development of BMP7-producing human cells, using a third generation lentiviral gene delivery system. J. Neurosci. Methods 2012, 205, 17–27. [Google Scholar] [CrossRef] [PubMed]
- Bustos-Valenzuela, J.C.; Halcsik, E.; Bassi, E.J.; Demasi, M.A.; Granjeiro, J.M.; Sogayar, M.C. Expression, purification, bioactivity, and partial characterization of a recombinant human bone morphogenetic protein-7 produced in human 293T cells. Mol. Biotechnol. 2010, 46, 118–126. [Google Scholar] [CrossRef]
- Blokhuis, T.J.; Lindner, T. Allograft and bone morphogenetic proteins: An overview. Injury 2008, 39 (Suppl. 2), S33–S36. [Google Scholar] [CrossRef] [PubMed]
- Regauer, M.; Jurgens, I.; Kotsianos, D.; Stutzle, H.; Mutschler, W.; Schieker, M. New-bone formation by osteogenic protein-1 and autogenic bone marrow in a critical tibial defect model in sheep. Zentralbl. Chir. 2005, 130, 338–345. [Google Scholar] [CrossRef] [PubMed]
- Okubo, Y.; Bessho, K.; Fujimura, K.; Iizuka, T.; Miyatake, S.I. In vitro and in vivo studies of a bone morphogenetic protein-2 expressing adenoviral vector. J. Bone Jt. Surg. Am. 2001, 83-A (Suppl. 1), S99–S104. [Google Scholar] [CrossRef]
- Christoffers, S.; Seiler, L.; Wiebe, E.; Blume, C. Possibilities and efficiency of MSC co-transfection for gene therapy. Stem Cell Res. Ther. 2024, 15, 150. [Google Scholar] [CrossRef]
- Hamann, A.; Nguyen, A.; Pannier, A.K. Nucleic acid delivery to mesenchymal stem cells: A review of nonviral methods and applications. J. Biol. Eng. 2019, 13, 7. [Google Scholar] [CrossRef]
- Zhang, H.; Tang, X.; Wang, C.; Sun, L. AB0063 High-efficiency transduction of mesenchymal stem cells by aav2/dj vector for their potential use in autoimmune diseases. Ann. Rheum. Dis. 2018, 77 (Suppl. 2), 1230. [Google Scholar] [CrossRef]
- Stender, S.; Murphy, M.; O’Brien, T.; Stengaard, C.; Ulrich-Vinther, M.; Søballe, K.; Barry, F. Adeno-associated viral vector transduction of human mesenchymal stem cells. Eur. Cell Mater. 2007, 13, 93–99; Discussion 99. [Google Scholar] [CrossRef] [PubMed]
- Gill, K.P.; Denham, M. Optimized Transgene Delivery Using Third-Generation Lentiviruses. Curr. Protoc. Mol. Biol. 2020, 133, e125. [Google Scholar] [CrossRef]
- Tan, E.; Chin, C.S.H.; Lim, Z.F.S.; Ng, S.K. HEK293 Cell Line as a Platform to Produce Recombinant Proteins and Viral Vectors. Front. Bioeng. Biotechnol. 2021, 9, 796991. [Google Scholar] [CrossRef]
- Pulix, M.; Lukashchuk, V.; Smith, D.C.; Dickson, A.J. Molecular characterization of HEK293 cells as emerging versatile cell factories. Curr. Opin. Biotechnol. 2021, 71, 18–24. [Google Scholar] [CrossRef]
- Cheng, I.; Oshtory, R.; Wildstein, M.S. The Role of Osteobiologics in Spinal Deformity. Neurosurg. Clin. North. Am. 2007, 18, 393–401. [Google Scholar] [CrossRef]
- Viola, A.; Appiah, J.; Donnally, C.J.; Kim, Y.H.; Shenoy, K. Bone Graft Options in Spinal Fusion: A Review of Current Options and the Use of Mesenchymal Cellular Bone Matrices. World Neurosurg. 2022, 158, 182–188. [Google Scholar] [CrossRef] [PubMed]
- Carlisle, E.R.; Fischgrund, J.S. CHAPTER 27—Bone Graft and Fusion Enhancement. In Surgical Management of Spinal Deformities; Errico, T.J., Lonner, B.S., Moulton, A.W., Eds.; W.B. Saunders: Philadelphia, PA, USA, 2009; pp. 433–448. [Google Scholar] [CrossRef]
- Lao, T.; Avalos, I.; Rodríguez, E.M.; Zamora, Y.; Rodriguez, A.; Ramón, A.; Alvarez, Y.; Cabrales, A.; Andújar, I.; González, L.J.; et al. Production and characterization of a chimeric antigen, based on nucleocapsid of SARS-CoV-2 fused to the extracellular domain of human CD154 in HEK-293 cells as a vaccine candidate against COVID-19. PLoS ONE 2023, 18, e0288006. [Google Scholar] [CrossRef] [PubMed]
- Kauffmann, F.; Van Damme, P.; Leroux-Roels, G.; Vandermeulen, C.; Berthels, N.; Beuneu, C.; Mali, S. Clinical trials with GMO-containing vaccines in Europe: Status and regulatory framework. Vaccine 2019, 37, 6144–6153. [Google Scholar] [CrossRef]
- Von Euw, S.; Wang, Y.; Laurent, G.; Drouet, C.; Babonneau, F.; Nassif, N.; Azaïs, T. Bone mineral: New insights into its chemical composition. Sci. Rep. 2019, 9, 8456. [Google Scholar] [CrossRef]
- Amini, Z.; Lari, R. A systematic review of decellularized allograft and xenograft-derived scaffolds in bone tissue regeneration. Tissue Cell 2021, 69, 101494. [Google Scholar] [CrossRef]
- Cowell, K.; Statham, P.; Sagoo, G.S.; Chandler, J.H.; Herbert, A.; Rooney, P.; Wilcox, R.K.; Fermor, H.L. Cost-effectiveness of decellularised bone allograft compared with fresh-frozen bone allograft for acetabular impaction bone grafting during a revision hip arthroplasty in the UK. BMJ Open 2023, 13, e067876. [Google Scholar] [CrossRef] [PubMed]
- Blaudez, F.; Ivanovski, S.; Hamlet, S.; Vaquette, C. An overview of decellularisation techniques of native tissues and tissue engineered products for bone, ligament and tendon regeneration. Methods 2020, 171, 28–40. [Google Scholar] [CrossRef] [PubMed]
- Fisher, J.N.; Peretti, G.M.; Scotti, C. Stem Cells for Bone Regeneration: From Cell-Based Therapies to Decellularised Engineered Extracellular Matrices. Stem Cells Int. 2016, 2016, 9352598. [Google Scholar] [CrossRef] [PubMed]
- Tamayo-Angorrilla, M.; López de Andrés, J.; Jiménez, G.; Marchal, J.A. The biomimetic extracellular matrix: A therapeutic tool for breast cancer research. Transl. Res. 2022, 247, 117–136. [Google Scholar] [CrossRef]
- León-Félix, C.M.; Maranhão, A.Q.; Amorim, C.A.; Lucci, C.M. Optimizing Decellularization of Bovine Ovarian Tissue: Toward a Transplantable Artificial Ovary Scaffold with Minimized Residual Toxicity and Preserved Extracellular Matrix Morphology. Cells Tissues Organs 2024, 213, 413–423. [Google Scholar] [CrossRef]
- Marsell, R.; Einhorn, T.A. The biology of fracture healing. Injury 2011, 42, 551–555. [Google Scholar] [CrossRef]
- Berendsen, A.D.; Olsen, B.R. Bone development. Bone 2015, 80, 14–18. [Google Scholar] [CrossRef]
- Batoon, L.; Millard, S.M.; Wullschleger, M.E.; Preda, C.; Wu, A.C.; Kaur, S.; Tseng, H.W.; Hume, D.A.; Levesque, J.P.; Raggatt, L.J.; et al. CD169(+) macrophages are critical for osteoblast maintenance and promote intramembranous and endochondral ossification during bone repair. Biomaterials 2019, 196, 51–66. [Google Scholar] [CrossRef]
- Duchamp de Lageneste, O.; Julien, A.; Abou-Khalil, R.; Frangi, G.; Carvalho, C.; Cagnard, N.; Cordier, C.; Conway, S.J.; Colnot, C. Periosteum contains skeletal stem cells with high bone regenerative potential controlled by Periostin. Nat. Commun. 2018, 9, 773. [Google Scholar] [CrossRef]
- Roberts, S.J.; van Gastel, N.; Carmeliet, G.; Luyten, F.P. Uncovering the periosteum for skeletal regeneration: The stem cell that lies beneath. Bone 2015, 70, 10–18. [Google Scholar] [CrossRef] [PubMed]
- Chen, W.; Zhang, C.; Wu, Y.; Su, X. Soluble expression and purification of high-bioactivity recombinant human bone morphogenetic protein-2 by codon optimisation in Escherichia coli. Protein Eng. Des. Sel. 2019, 32, 153–157. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xie, C.; Zhang, Z.; Liu, H.; Xu, H.; Peng, Z.; Liu, C.; Li, J.; Wang, C.; Xu, T.; et al. 3D Printed Integrated Bionic Oxygenated Scaffold for Bone Regeneration. ACS Appl. Mater. Interfaces 2022, 14, 29506–29520. [Google Scholar] [CrossRef]
- Ben Shabat, Y.; Fischer, A. Design of Porous Micro-Structures Using Curvature Analysis for Additive-Manufacturing. Procedia CIRP 2015, 36, 279–284. [Google Scholar] [CrossRef]
- Zhang, X.-Y.; Yan, X.-C.; Fang, G.; Liu, M. Biomechanical influence of structural variation strategies on functionally graded scaffolds constructed with triply periodic minimal surface. Addit. Manuf. 2020, 32, 101015. [Google Scholar] [CrossRef]
- Jamshidinia, M.; Wang, L.; Tong, W.; Kovacevic, R. The bio-compatible dental implant designed by using non-stochastic porosity produced by Electron Beam Melting® (EBM). J. Mater. Process. Technol. 2014, 214, 1728–1739. [Google Scholar] [CrossRef]
Groups | Control (HAA) | HAA + MSC (Decellularized MSC Matrix) | HAA + MSC + HEK (Decellularized MSC + HEK BMP2/7 Matrix) |
---|---|---|---|
Day 7 | 4 | 4 | 4 |
Day 14 | 4 | 4 | 4 |
Day 28 | 4 | 4 | 4 |
Primer Name | Sequence |
---|---|
BMP-2 | FORWARD: 5′-TGTATCGCAGGCACTCAGGTCA-3′ |
REVERSE: 5′CGGGTTGTTTTCCCACTCGT-3′ | |
BMP-7 | FORWARD: 5′-TTCGTCAACCTCGTGGAACA-3′ |
REVERSE: 5′-ACGTCTCATTGTCGAAGCGT-3′ | |
GAPDH | FORWARD: 5′-CTCATGACCACAGTCGATGCC-3′ |
REVERSE: 5′-GGGATGACCTTGCCCACAG-3′ |
Step | Temperature | Time | |
---|---|---|---|
Initial denaturation | 95 °C | 5 min | |
Denaturation | ×39 | 95 °C | 15 s |
Annealing | 60 °C | 15 s | |
Extension | 72 °C | 1 min | |
Melt curve | 95 °C | 15 s | |
58 °C | 1 min | ||
95 °C | 15 s |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lu, H.; Sousa dos Santos, I.; Steijvers, E.; Lazim, M.; Higginbotham, V.; Wang, B.; Shao, Z.; Kanamarlapudi, V.; Xia, Z. Enhanced Osteogenesis by Combining Exogenous BMPs with Hydroxyapatite/Aragonite Bone Grafts: In Vitro and In Vivo Studies. J. Funct. Biomater. 2025, 16, 361. https://doi.org/10.3390/jfb16100361
Lu H, Sousa dos Santos I, Steijvers E, Lazim M, Higginbotham V, Wang B, Shao Z, Kanamarlapudi V, Xia Z. Enhanced Osteogenesis by Combining Exogenous BMPs with Hydroxyapatite/Aragonite Bone Grafts: In Vitro and In Vivo Studies. Journal of Functional Biomaterials. 2025; 16(10):361. https://doi.org/10.3390/jfb16100361
Chicago/Turabian StyleLu, Hong, Ines Sousa dos Santos, Emma Steijvers, Miriam Lazim, Victoria Higginbotham, Baichuan Wang, Zengwu Shao, Venkateswarlu Kanamarlapudi, and Zhidao Xia. 2025. "Enhanced Osteogenesis by Combining Exogenous BMPs with Hydroxyapatite/Aragonite Bone Grafts: In Vitro and In Vivo Studies" Journal of Functional Biomaterials 16, no. 10: 361. https://doi.org/10.3390/jfb16100361
APA StyleLu, H., Sousa dos Santos, I., Steijvers, E., Lazim, M., Higginbotham, V., Wang, B., Shao, Z., Kanamarlapudi, V., & Xia, Z. (2025). Enhanced Osteogenesis by Combining Exogenous BMPs with Hydroxyapatite/Aragonite Bone Grafts: In Vitro and In Vivo Studies. Journal of Functional Biomaterials, 16(10), 361. https://doi.org/10.3390/jfb16100361