Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (294)

Search Parameters:
Keywords = artichokes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 895 KiB  
Article
A Phytochemical and Biological Characterization of Cynara cardunculus L. subsp. scolymus Cultivar “Carciofo di Procida”, a Traditional Italian Agri-Food Product (PAT) of the Campania Region
by Giuseppina Tommonaro, Giulia De Simone, Carmine Iodice, Marco Allarà and Adele Cutignano
Molecules 2025, 30(15), 3285; https://doi.org/10.3390/molecules30153285 - 5 Aug 2025
Abstract
The artichoke (Cynara cardunculus L. subsp. scolymus) is an endemic perennial plant of the Mediterranean area commonly consumed as food. It is known since ancient times for its beneficial properties for human health, among which its antioxidant activity due to polyphenolics [...] Read more.
The artichoke (Cynara cardunculus L. subsp. scolymus) is an endemic perennial plant of the Mediterranean area commonly consumed as food. It is known since ancient times for its beneficial properties for human health, among which its antioxidant activity due to polyphenolics stands out. In the frame of our ongoing studies aiming to highlight the biodiversity and the chemodiversity of natural resources, we investigated the phenolic and saponin content of the cultivar “Carciofo di Procida” collected at Procida, an island of the Gulf of Naples (Italy). Along with the edible part of the immature flower, we included in our analyses the stem and the external bracts, generally discarded for food consuming or industrial preparations. The LCMS quali-quantitative profiling of polyphenols (including anthocyanins) and cynarasaponins of this cultivar is reported for the first time. In addition to antioxidant properties, we observed a significant cytotoxic activity due to extracts from external bracts against human neuroblastoma SH-SY5Y cell lines with 43% of cell viability, after 24 h from the treatment (50 μg/mL), and less potent but appreciable effects also against human colorectal adenocarcinoma CaCo-2 cells. This suggests that the different metabolite composition may be responsible for the bioactivity of extracts obtained from specific parts of artichoke and foresees a possible exploitation of the discarded material as a source of beneficial compounds. Full article
(This article belongs to the Special Issue Extraction and Analysis of Natural Products in Food—3rd Edition)
Show Figures

Figure 1

18 pages, 549 KiB  
Article
Extension of Poultry Meat Shelf Life Using Cynara cardunculus L. Leaf Extracts as a Natural Preservative
by Cássia H. Barbosa, Mariana A. Andrade, Fernanda Vilarinho, Ana Sanches Silva and Ana Luísa Fernando
Foods 2025, 14(15), 2592; https://doi.org/10.3390/foods14152592 - 24 Jul 2025
Viewed by 275
Abstract
Food additives are used to prevent food spoilage and extend its shelf life. However, concerns regarding the potential health implications associated with some synthetic additives have prompted research efforts aimed at identifying natural alternatives, such as plant extracts. Cynara cardunculus L. (cardoon) is [...] Read more.
Food additives are used to prevent food spoilage and extend its shelf life. However, concerns regarding the potential health implications associated with some synthetic additives have prompted research efforts aimed at identifying natural alternatives, such as plant extracts. Cynara cardunculus L. (cardoon) is known for its antimicrobial and antioxidant properties. The aim of this study was to evaluate the capability of ethanolic food-grade extracts from cultivated cardoon and globe artichoke leaves to preserve poultry breast meat during refrigerated storage. A total of seven treatment groups were tested: one control group (no extract) and six active groups with 0.5%, 1%, and 2% (w/w) of either cultivated cardoon or globe artichoke leaf extracts. Lipid oxidation, moisture, colour, pH, acidity, and microbial growth were assessed in poultry meat samples over 15 days. Both extracts were effective in extending shelf life, up to 11 days, by delaying lipid oxidation and microbial growth. Cardoon extract (1% w/w) displayed superior antimicrobial efficacy, maintaining microbial counts below 5 Log CFU/g meat until day 15, compared to the control. Cultivated cardoon leaf extract proves promising as a natural antimicrobial and antioxidant, extending the shelf life of poultry meat. This presents an opportunity to maintain the quality of meat products, aligning with consumer preferences for natural ingredients and sustainable practices. Full article
(This article belongs to the Special Issue Preservation and Shelf Life Extension of Food Products)
Show Figures

Figure 1

16 pages, 1103 KiB  
Article
Effect of Artichoke Outer Bract Powder Addition on the Nutritional Profile of Gluten-Free Rusks
by Valentina Melini, Francesca Melini, Alessandro Salvati, Francesca Luziatelli and Maurizio Ruzzi
Foods 2025, 14(13), 2395; https://doi.org/10.3390/foods14132395 - 7 Jul 2025
Viewed by 388
Abstract
This study investigates the effect of incorporating outer bract powder on the bioactive compound content of gluten-free (GF) rusks, in terms of undigestible carbohydrates and phenolic compound content. The production of the artichoke powder as a functional ingredient was optimized by evaluating two [...] Read more.
This study investigates the effect of incorporating outer bract powder on the bioactive compound content of gluten-free (GF) rusks, in terms of undigestible carbohydrates and phenolic compound content. The production of the artichoke powder as a functional ingredient was optimized by evaluating two key processing variables: drying time and pre-treatment of artichoke bracts with food-grade citric acid. Two distinct composite GF flour blends were used to formulate the GF rusks, and the nutritional quality thereof was systematically assessed. Results demonstrated that pre-treating the artichoke outer bracts with citric acid, followed by drying at 40 °C for 20 h, allowed for the production of a powder characterized by a lighter and reddish appearance, low fat content, and high dietary fiber level. The formulated rusks were rich in dietary fiber, whose intake is generally a deficiency in the diet of coeliac subjects. Furthermore, the enrichment with artichoke powder contributed to the production of a low-fat snack, in contrast with the GF snacks available on the market. The artichoke powder also showed a high content of free phenolic compounds, suggesting an enhanced dietary intake of antioxidants for consumers. Full article
(This article belongs to the Section Grain)
Show Figures

Figure 1

25 pages, 845 KiB  
Review
Edible Tubers as a Source of Bioactive Compounds in Baked Goods: Benefits and Drawbacks
by Rafał Wiśniewski, Ewa Pejcz and Joanna Harasym
Molecules 2025, 30(13), 2838; https://doi.org/10.3390/molecules30132838 - 2 Jul 2025
Viewed by 474
Abstract
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their [...] Read more.
Root and tuber vegetables—such as beetroot (Beta vulgaris), carrot (Daucus carota), cassava (Manihot esculenta), potato (Solanum tuberosum), taro (Colocasia esculenta), and Jerusalem artichoke (Helianthus tuberosus)—are increasingly recognized not only for their nutritional value but also for their richness in bioactive compounds, including polyphenols, dietary fiber, resistant starch, and prebiotic carbohydrates that exhibit varying levels of antioxidant, anti-inflammatory, and glycemic-regulating properties. Incorporating these vegetables into baked goods offers both functional and technological benefits, such as improved moisture retention, reduced acrylamide formation, and suitability for gluten-free formulations. The processing conditions can significantly influence the stability and bioavailability of these bioactive components, while the presence of antinutritional factors—such as phytates, cyanogenic glycosides, and FODMAPs (fermentable oligo-, di-, monosaccharides, and polyols)—needs careful optimization. The structured narrative literature review approach allowed collecting studies that examine both the beneficial and potential drawbacks of tuber-based ingredients. This review provides a comprehensive overview of the chemical composition, health-promoting effects, and technological roles of edible tubers in bakery applications, also addressing current challenges related to processing, formulation, and consumer acceptance. Special emphasis is placed on the valorization of tuber by-products, enhancement of functional properties, and the promotion of sustainable food systems using zero-waste strategies. Full article
(This article belongs to the Special Issue Food Bioactive Components in Functional Foods and Nutraceuticals)
Show Figures

Graphical abstract

18 pages, 1097 KiB  
Article
Phytochemical Profiling of Residual Leaves from an Alpine Landrace of Globe Artichoke (Cynara scolymus L.)
by Marco Zuccolo, Angela Bassoli, Annamaria Giorgi, Luca Giupponi, Stefania Mazzini and Gigliola Borgonovo
Molecules 2025, 30(12), 2649; https://doi.org/10.3390/molecules30122649 - 19 Jun 2025
Viewed by 428
Abstract
The globe artichoke (Cynara cardunculus L. var. scolymus) is a Mediterranean crop valued for its edible capitula and bioactive compounds. Post-harvest residual leaves are among the main by-products of artichoke cultivation and remain largely underutilized. This study reports a comprehensive characterization [...] Read more.
The globe artichoke (Cynara cardunculus L. var. scolymus) is a Mediterranean crop valued for its edible capitula and bioactive compounds. Post-harvest residual leaves are among the main by-products of artichoke cultivation and remain largely underutilized. This study reports a comprehensive characterization of the residual leaves of Carciofo di Malegno, an Alpine artichoke landrace. Comparative analysis was conducted against leaves from two commercial cultivars and a commercial herbal tea product. HPLC analysis revealed that Carciofo di Malegno exhibited the lowest levels of secondary metabolites. Cynaropicrin content was 0.52 ± 0.03 mg/g, lower than in the commercial samples, while the phenolic compounds were below the quantification limit. Proximate analysis indicated a distinctive nutritional profile, with significantly higher ash (8.01 ± 0.04%) and crude fiber (35.75 ± 0.29%) contents compared to all reference samples. These findings highlight the potential of Carciofo di Malegno residual leaves as a sustainable source of nutrients for functional food and nutraceutical applications. Their low content of bitter sesquiterpene lactones may enhance palatability, supporting their valorisation within circular economy frameworks. Moreover, their use may contribute to the in situ conservation of this landrace, reinforcing the link between agrobiodiversity preservation and the sustainable exploitation of agricultural by-products. Full article
(This article belongs to the Section Natural Products Chemistry)
Show Figures

Graphical abstract

16 pages, 1998 KiB  
Article
Antifungal Action of Edible Coating Comprising Artichoke-Mediated Nanosilver and Chitosan Nanoparticles for Biocontrol of Citrus Blue Mold
by Mousa Abdullah Alghuthaymi
Polymers 2025, 17(12), 1671; https://doi.org/10.3390/polym17121671 - 16 Jun 2025
Viewed by 457
Abstract
Citrus fruits are major economic and nutritional crops that are sometimes subjected to serious attacks by many fungal phytopathogens after harvesting. In this study, we focus on the structures of potential antifungal nanocomposites from artichoke leaf extract (Art), Art-mediated nanosilver (AgNPs), and their [...] Read more.
Citrus fruits are major economic and nutritional crops that are sometimes subjected to serious attacks by many fungal phytopathogens after harvesting. In this study, we focus on the structures of potential antifungal nanocomposites from artichoke leaf extract (Art), Art-mediated nanosilver (AgNPs), and their nanoconjugates with chitosan nanoparticles (Cht) to eradicate the blue mold fungus (Penicillium italicum) and preserve oranges during storage via nanocomposite-based edible coatings (ECs). The biosynthesis and conjugation of nanomaterials were verified using UV and infrared (FTIR) spectroscopy, electron microscopy (TEM and SEM) analysis, and DLS assessments. Art could effectually biosynthesize/cap AgNPs with a mean size of 10.35 nm, whereas the average size of Cht was 148.67 nm, and the particles of their nanocomposites had average diameters of 203.22 nm. All nanomaterials/composites exhibited potent antifungal action toward P. italicum isolates; the Cht/Art/AgNP nanocomposite was the most effectual, with an inhibition zone of 31.1 mm and a fungicidal concentration of 17.5 mg/mL, significantly exceeding the activity of other compounds and the fungicide Enilconazole (24.8 mm and 25.0 mg/mL, respectively). The microscopic imaging of P. italicum mycelia treated with Cht/Art/AgNP nanocomposites emphasized their action for the complete destruction of mycelia within 24 h. The orange (Citrus sinensis) fruit coatings, with nanomaterial-based ECs, were highly effectual for preventing blue mold development and preserved fruits for >14 days without any infestation signs; when the control infected fruits were fully covered with blue mold, the infestation remarks covered 12.4%, 5.2%, and 0% of the orange coated with Cht Art/AgNPs and Cht/Art/AgNPs. The constructed Cht/Art/AgNP nanocomposites have potential as effectual biomaterials for protecting citrus fruits from fungal deterioration and preserving their quality. Full article
(This article belongs to the Special Issue Polymeric Materials for Food Packaging: Fundamentals and Applications)
Show Figures

Graphical abstract

22 pages, 874 KiB  
Article
Functional Fruit Snacks Enriched with Natural Sources of Fructooligosaccharides: Composition, Bioactive Compounds, Biological Activity, and Consumer Acceptance
by Paulina Nowicka, Michalina Marcińczak, Martyna Szydłowska and Aneta Wojdyło
Molecules 2025, 30(12), 2507; https://doi.org/10.3390/molecules30122507 - 7 Jun 2025
Viewed by 503
Abstract
This study aimed to develop innovative fruit leather with programmed health-promoting properties, enriched with fructooligosaccharides (FOS) from chicory and Jerusalem artichoke. Their physicochemical properties were assessed, including the profile of polyphenolic compounds, pro-health effects, and sensory characteristics. The products contained various fruits (including [...] Read more.
This study aimed to develop innovative fruit leather with programmed health-promoting properties, enriched with fructooligosaccharides (FOS) from chicory and Jerusalem artichoke. Their physicochemical properties were assessed, including the profile of polyphenolic compounds, pro-health effects, and sensory characteristics. The products contained various fruits (including pear, red currant, peach, and haskap berry) and 10% FOS powders. It was shown that the addition of FOS reduced acidity and total sugar content while increasing fiber content—especially fructans—and selected minerals (K, Mg, Zn). The addition of FOS also modulated the profile of polyphenolic compounds, whereas fruit leather without FOS was characterized by a higher concentration of these compounds. It was shown that the addition of chicory significantly modulates the ability to inhibit α-glucosidase. At the same time, in the case of the Jerusalem artichoke, the inhibition efficiency depends on the type of fruit matrix. Sensory-wise, the highest scores were given to recipes without FOS additives, with Jerusalem artichoke being better accepted than chicory. The results indicate the potential of using FOS as a functional additive, but their effects on taste and texture require further optimization. Full article
(This article belongs to the Special Issue Functional Foods Enriched with Natural Bioactive Compounds)
Show Figures

Figure 1

19 pages, 2165 KiB  
Article
Phytochemical Profile and Antioxidant Properties of Invasive Plants Ailanthus altissima (Mill.) Swingle and Helianthus tuberosus L. in Istria Region, Croatia
by Mirela Uzelac Božac, Danijela Poljuha, Slavica Dudaš, Josipa Bilić, Ivana Šola, Maja Mikulič-Petkovšek and Barbara Sladonja
Antioxidants 2025, 14(6), 677; https://doi.org/10.3390/antiox14060677 - 3 Jun 2025
Viewed by 671
Abstract
Invasive alien plant species, while ecologically and economically problematic, represent an underutilized source of bioactive phytochemicals with promising phytopharmaceutical applications. This study investigates the LC-DAD-MS phenolic profiles of 70% ethanol and 80% methanol leaf and flower extracts of Ailanthus altissima (Mill.) Swingle and [...] Read more.
Invasive alien plant species, while ecologically and economically problematic, represent an underutilized source of bioactive phytochemicals with promising phytopharmaceutical applications. This study investigates the LC-DAD-MS phenolic profiles of 70% ethanol and 80% methanol leaf and flower extracts of Ailanthus altissima (Mill.) Swingle and Helianthus tuberosus L., collected in the Istria region of Croatia, alongside their antioxidant capacities using ABTS, DPPH, and FRAP assays. Both species exhibited high levels of flavonoids and phenolic acids, with consistently higher concentrations in leaf versus flower tissues and in ethanolic versus methanolic extracts. Strong correlations (r > 0.9) between total phenolics and antioxidant activity confirmed the functional significance of these compounds. With a targeted metabolomics approach, in A. altissima, 51 phenolics were identified in leaves and 47 in flowers, with ellagitannins predominating; vescalagin isomers reached 94 mg/g DW in leaves and 82 mg/g DW in flowers. H. tuberosus extracts contained 34 phenolics in leaves and 33 in flowers, with hydroxycinnamic acids and flavonols dominating; 5-caffeoylquinic acid was the principal compound (25 mg/g DW in leaves, 2 mg/g DW in flowers). The identified phytochemicals are known for their potent antioxidant, anti-inflammatory, anticancer, antimicrobial, and metabolic-regulating properties. Additionally, four leaf-specific compounds were identified in each species, indicating potential for targeted extraction. These findings advance the phytochemical characterization of invasive taxa and highlight their potential as sources of natural antioxidants for functional food and pharmaceutical development. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

24 pages, 3507 KiB  
Article
Dynamics of Pharmaceuticals in the Soil–Plant System: A Case Study on Mycorrhizal Artichoke
by Francesco De Mastro, Gennaro Brunetti, Claudio Cocozza, Sapia Murgolo, Giuseppe Mascolo, Carlo Salerno, Claudia Ruta and Giuseppe De Mastro
Soil Syst. 2025, 9(2), 51; https://doi.org/10.3390/soilsystems9020051 - 15 May 2025
Viewed by 622
Abstract
Contaminants of emerging concern, such as pharmaceuticals (PhACs), are continuously introduced into agro-ecosystems through irrigation with treated wastewater (TWW). While this practice is increasingly common in drought regions, only limited information is available on the fate of PhACs within the soil–plant system. For [...] Read more.
Contaminants of emerging concern, such as pharmaceuticals (PhACs), are continuously introduced into agro-ecosystems through irrigation with treated wastewater (TWW). While this practice is increasingly common in drought regions, only limited information is available on the fate of PhACs within the soil–plant system. For this purpose, a two-year study was conducted by irrigating artichokes, non-inoculated and inoculated with different arbuscular mycorrhizal fungi, with water containing PhACs at different concentrations. The experiment, conducted in both open field and pot conditions, aimed to evaluate their potential accumulation in the soil and plant tissues. Results showed that PhACs concentrations varied according to the physicochemical properties of the compounds and the duration of irrigation. The study revealed minimal accumulation of contaminants in the soil and non-edible plant parts. This was observed only at the end of the second growing cycle, when the plants were irrigated with TWW containing trace PhAC levels. In contrast, during both pot cultivation cycles, PhACs accumulated in the soil were translocated into plant organs when irrigated with water enriched to 200 μg L−1 with eight PhACs. At the end of the trial, climbazole had the highest concentration in soil, while carbamazepine and fluconazole showed greater accumulation across all plant organs compared to other PhACs. In both trials, plants inoculated with Septoglomus viscosum absorbed less PhACs compared to those inoculated with Rhizophagus irregularis + Funneliformis mosseae. These results suggest that, while the long-term use of TWW containing PhACs may improve artichoke yield, it could present different degrees of risk to both environmental and human health, depending on the concentration levels of contaminants. Full article
Show Figures

Figure 1

25 pages, 4697 KiB  
Article
Assessing Functional Conservation Amongst FT- and TFL1-like Genes in Globe Artichoke
by Rick Berentsen, María José Domenech, Peter Visser, Francisco Madueño, Vicente Balanzà and Reyes Benlloch
Plants 2025, 14(9), 1364; https://doi.org/10.3390/plants14091364 - 30 Apr 2025
Viewed by 473
Abstract
Globe artichoke [Cynara cardunculus var. scolymus (L.)] is a perennial composite cultivated for its immature inflorescences. Over time, the market for growers has steadily shifted away from vegetatively propagated varieties and towards seed-propagated hybrids. Since the latter tend to produce relatively late [...] Read more.
Globe artichoke [Cynara cardunculus var. scolymus (L.)] is a perennial composite cultivated for its immature inflorescences. Over time, the market for growers has steadily shifted away from vegetatively propagated varieties and towards seed-propagated hybrids. Since the latter tend to produce relatively late in the season, advancing the moment of flowering remains a major objective for breeders, who can benefit from insight gained into the genetic architecture of this trait. In plants, the timing of flowering is strongly regulated at the genetic level to ensure reproductive success. Genetic studies in model and non-model species have identified gene families playing crucial roles in flowering time control. One of these is the phosphatidylethanolamine-binding protein (PEBP) family, a conserved group of genes that, in plants, not only regulate the vegetative-to-reproductive phase transition, but also the development of inflorescences. In this work, we identified seven PEBP family members in the globe artichoke genome, belonging to three major clades: MOTHER OF FT AND TFL1 (MFT)-like, TERMINAL FLOWER 1 (TFL1)-like, and FLOWERING LOCUS T (FT)-like. Our results further show that CcFT expression is upregulated after the floral transition and partially complements the ft-10 mutant, whilst CcTFL1 is expressed in the shoot apex and developing inflorescences and complements the tfl1-1 mutant. These results suggest that the flowering-suppressing function of CcTFL1 is conserved in globe artichoke whereas conservation of the floral promoting function of CcFT remains uncertain. Full article
Show Figures

Graphical abstract

18 pages, 4220 KiB  
Article
Enhancing Micronutrient Availability Through Humic Substances and Vermicompost While Growing Artichoke Plants in Calcareous Soil: Insights from a Two-Year Field Study
by Mohamed Hafez, Zhao Zhang, Mahmoud Younis, Mahmoud A. Abdelhamid and Mohamed Rashad
Plants 2025, 14(8), 1224; https://doi.org/10.3390/plants14081224 - 16 Apr 2025
Viewed by 576
Abstract
Calcareous soil poses challenges for crop production due to the limited availability of micronutrients in insoluble forms. This study evaluated various organic and biological treatments for managing deficiencies in iron, zinc, and manganese in artichoke (Cynara scolymus L.) grown in calcareous soil [...] Read more.
Calcareous soil poses challenges for crop production due to the limited availability of micronutrients in insoluble forms. This study evaluated various organic and biological treatments for managing deficiencies in iron, zinc, and manganese in artichoke (Cynara scolymus L.) grown in calcareous soil over two seasons (2023 and 2024). A randomized complete block design (RCBD) was employed, with 24 plots (5 × 8 m2 each) receiving the following five treatments: mineral fertilizer, humic substances, ALCRI-anti chlorosis, ALCRI-vermicompost, and ALCRI-bio-help. Each treatment was replicated three times. In the 2023 season, significant increases in micronutrient levels were observed following the application of the organic and biological treatments, particularly ALCRI-vermicompost and humic substances. Compared to the control group, the iron content (Fe2+) increased by 57.1%, reaching 715.6%. Zinc (Zn2+) rose by 66.1% to 686.4%, while manganese (Mn2+) and copper (Cu2+) increased by 56.9% to 685.2% and 44.9% to 673.4%, respectively. These positive trends continued into the 2024 season, with Fe2+ showing even greater gains of 103.4%, peaking at 824.0% in the plots treated with the ALCRI-vermicompost and humic substances. Zn2+ and Mn2+ displayed more modest increases of 36.9% and 58.0%, while Cu2+ exhibited a remarkable rise of 50.7%, reaching 861.2%, particularly for the ALCRI-anti chlorosis treatments. The results indicate that the application of vermicompost fertilizer, alone or in combination with humic substances, significantly enhanced the soil structure, as confirmed by the SEM examination, which revealed increased porosity and improved aggregation. These consistent improvements over two seasons strongly support the effectiveness of organic and biological treatments in enriching soil with essential micronutrients. Full article
Show Figures

Figure 1

19 pages, 1497 KiB  
Article
Valorization of Artichoke Bracts in Pasta Enrichment: Impact on Nutritional, Technological, Antioxidant, and Sensorial Properties
by Anna Rita Bavaro, Palmira De Bellis, Vito Linsalata, Serena Rucci, Stefano Predieri, Marta Cianciabella, Rachele Tamburino and Angela Cardinali
Antioxidants 2025, 14(4), 475; https://doi.org/10.3390/antiox14040475 - 16 Apr 2025
Viewed by 706
Abstract
The incorporation of artichoke bracts, a by-product of artichoke processing, into pasta formulations represents an innovative approach to enhancing the nutritional and functional properties of this staple food while promoting environmental sustainability. This study aimed to evaluate the impact of artichoke powder (AP) [...] Read more.
The incorporation of artichoke bracts, a by-product of artichoke processing, into pasta formulations represents an innovative approach to enhancing the nutritional and functional properties of this staple food while promoting environmental sustainability. This study aimed to evaluate the impact of artichoke powder (AP) enrichment (10% w/w replacement of semolina) on the technological, nutritional, antioxidant, and sensory properties of pasta. The enriched pasta (P-AP) was compared to control pasta (P-CTR) through comprehensive physicochemical analyses, including cooking performance, polyphenol characterization, and in vitro digestion. Polyphenol analysis revealed that chlorogenic acid, dicaffeoylquinic acids, and flavonoids accounted for 87% of total identified phenolic compounds in P-AP. Despite a 42% reduction in free polyphenols due to cooking, in vitro digestion revealed a 47% increase in total identified polyphenols, attributed to the release of bound polyphenols. Antioxidant assays (DPPH, ABTS, and FRAP) confirmed a significantly higher antioxidant capacity in P-AP compared to P-CTR. Additionally, P-AP exhibited a lower predicted glycemic index (pGI = 56.67) than the control (pGI = 58.41), a beneficial feature for blood glucose regulation. Sensory analysis highlighted distinct differences between samples, with P-AP showing stronger vegetal, artichoke, and legume-like notes, as well as higher intensity in bitterness and astringency. While panelists rated P-CTR higher in overall liking, enriched pasta maintained acceptable sensory characteristics. These findings support the valorization of artichoke by-products in pasta production, demonstrating their potential to enhance nutritional quality and functional properties while contributing to a circular economy. Full article
(This article belongs to the Special Issue Antioxidant Properties and Applications of Food By-Products)
Show Figures

Figure 1

18 pages, 686 KiB  
Review
Exploring the Cardiovascular Potential of Artichoke—A Comprehensive Review
by Henrique Silva and Avina Mahendra Daia
Biology 2025, 14(4), 397; https://doi.org/10.3390/biology14040397 - 10 Apr 2025
Viewed by 1628
Abstract
Cardiovascular disease remains a leading cause of morbidity and mortality worldwide, requiring both pharmacological and lifestyle-based preventive strategies. Artichoke (Cynara cardunculus L. var. scolymus) has gained attention for its health benefits, including choleretic and lipid-lowering activities. However, its cardiovascular effects remain underdiscussed. [...] Read more.
Cardiovascular disease remains a leading cause of morbidity and mortality worldwide, requiring both pharmacological and lifestyle-based preventive strategies. Artichoke (Cynara cardunculus L. var. scolymus) has gained attention for its health benefits, including choleretic and lipid-lowering activities. However, its cardiovascular effects remain underdiscussed. This paper provides a critical review of the current literature on the cardiovascular effects of artichoke, with a focus on its underlying mechanisms of action and clinical efficacy. Experimental studies assessing artichoke’s effects on endothelial function, vascular smooth muscle relaxation, and modulation of the renin–angiotensin–aldosterone axis were assessed. Additionally, clinical studies, systematic reviews, and meta-analyses investigating its antihypertensive effects were reviewed. Artichoke and its bioactive components, particularly flavonoids and caffeoylquinic acids, enhance endothelial-dependent and -independent vasorelaxation and inhibit angiotensin-converting enzyme activity. Although clinical studies indicate improvements in flow-mediated dilation, they report only modest reductions in blood pressure, with high variability in formulations, dosages, and patient populations. While artichoke supplementation may support blood pressure regulation and endothelial health, current evidence suggests it should be considered an adjunct rather than a replacement for conventional antihypertensive therapy. Standardized formulations and well-controlled clinical studies will be required to clarify its therapeutic role. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

18 pages, 854 KiB  
Article
Green Extraction of Phenolic Compounds from Artichoke By-Products: Pilot-Scale Comparison of Ultrasound, Microwave, and Combined Methods with Pectinase Pre-Treatment
by Lidia Gil-Martínez, José Manuel de la Torre-Ramírez, Sofía Martínez-López, Luis Miguel Ayuso-García, Giovanna Dellapina, Giovanna Poli, Vito Verardo and Ana María Gómez-Caravaca
Antioxidants 2025, 14(4), 423; https://doi.org/10.3390/antiox14040423 - 31 Mar 2025
Cited by 2 | Viewed by 1018
Abstract
The revalorization of artichoke (Cynara scolymus L.) by-products is a promising strategy to obtain bioactive compounds with antioxidant properties, supporting a circular economy approach. This study compares the efficiency of an enzymatic pretreatment followed by microwave-assisted extraction (EMAE), ultrasound-assisted extraction (EUAE), and [...] Read more.
The revalorization of artichoke (Cynara scolymus L.) by-products is a promising strategy to obtain bioactive compounds with antioxidant properties, supporting a circular economy approach. This study compares the efficiency of an enzymatic pretreatment followed by microwave-assisted extraction (EMAE), ultrasound-assisted extraction (EUAE), and ultrasound-microwave-assisted extraction (EUMAE) at a pilot scale for recovering antioxidant compounds. Extracts were purified using Diaion® HP20 resin to obtain phenolic-rich fractions with enhanced antioxidant activity. The results showed that EUAE was the most effective technique, achieving a total phenolic content (TPC) of 210.76 ± 1.40 µmol GAE/g d.w. with an extraction yield of 21.38%. HPLC-MS analysis identified 14 major phenolic compounds, including chlorogenic acid isomers (60.73 mg/g d.e.), caffeic acid (34.29 mg/g d.e.), and luteolin rutinoside (103.27 mg/g d.e.), among others, which contribute to the extracts’ high bioactivity. The antioxidant potential of the extracts was assessed using Folin–Ciocalteu (F-C), ABTS, DPPH, and FRAP assays. EUAE extracts exhibited the highest antioxidant activity values, with F-C: 985.33 ± 4.46 µmol GAE/g d.e., ABTS: 80.46 ± 2.39 µmol TE/g d.e., DPPH: 87.03 ± 1.11 µmol TE/g d.e., and FRAP: 184.99 ± 2.52 µmol TE/g d.e. The purification process using Diaion® HP20 resin further enhanced TPC and antioxidant activity, with the enzyme–ultrasound-assisted extraction—purified extract (EUAE-PE) reaching a phenolic purity of 50.71% and an F-C value of 2981.35 ± 12.16 µmol GAE/g d.e. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

17 pages, 1890 KiB  
Article
Development, Characterization, and Exploitation in Food Systems of Functional Ingredients Obtained from Artichoke By-Products Phenolic Extracts
by Francesco Iervese, Arianna Paluzzi, Michela Cannas, Giulia D’Alessio, Antonio Piga and Carla Di Mattia
Molecules 2025, 30(7), 1514; https://doi.org/10.3390/molecules30071514 - 28 Mar 2025
Viewed by 422
Abstract
The study aimed to assess the technological properties of six ethanolic phenolic-rich extracts derived from artichoke bracts, stems, and leaves using different extraction methods (maceration and ultrasonic-assisted extraction—UAE) for the formulation of oil-in-water emulsions in which pea protein concentrate served as an emulsifier. [...] Read more.
The study aimed to assess the technological properties of six ethanolic phenolic-rich extracts derived from artichoke bracts, stems, and leaves using different extraction methods (maceration and ultrasonic-assisted extraction—UAE) for the formulation of oil-in-water emulsions in which pea protein concentrate served as an emulsifier. To this aim, the extracts were tested for their surface properties and their effect on the colloidal and antioxidant properties in emulsions. The extracts reduced the surface tension at the water/air interface in a dose-dependent manner, with the leaf extract obtained by UAE displaying the highest surface activity. In emulsions, the extracts increased oil droplet size and induced flocculation while being able to delay oxidation, as indicated by the induction period significantly higher compared to the control. In the last part of the work, encapsulation by spray-drying was explored on a selected leaf extract, and its release behavior in an enriched vegan mayonnaise was tested by in vitro digestion. The encapsulation influenced the release of phenolic compounds during simulated gastrointestinal digestion of the enriched vegan mayonnaise, demonstrating promising protective effects in the gastric environment and promoting a predominant release during the intestinal phase, potentially enhancing the absorption and bio-accessibility of the phenolic compounds. Full article
(This article belongs to the Special Issue Advances in Functional Foods, 2nd Edition)
Show Figures

Figure 1

Back to TopTop