Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = artesunate

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 527 KB  
Review
Multifaceted Attack Networks of Artemisinin in Reversing Chemoresistance in Colorectal Cancer
by Mingfei Liu, Yueling Yan, Shirong Li, Rongrong Wang, Kewu Zeng and Jingchun Yao
Molecules 2026, 31(2), 244; https://doi.org/10.3390/molecules31020244 - 11 Jan 2026
Viewed by 28
Abstract
Chemotherapy resistance in colorectal cancer (CRC) represents a critical clinical challenge leading to treatment failure and poor patient prognosis. Artemisinin is a natural product isolated from Artemisia annua, and its clinically relevant derivatives include dihydroartemisinin (DHA) and artesunate. Beyond their established antimalarial efficacy, [...] Read more.
Chemotherapy resistance in colorectal cancer (CRC) represents a critical clinical challenge leading to treatment failure and poor patient prognosis. Artemisinin is a natural product isolated from Artemisia annua, and its clinically relevant derivatives include dihydroartemisinin (DHA) and artesunate. Beyond their established antimalarial efficacy, both artemisinin and its derivatives—collectively referred to as artemisinin-derived compounds (ADs)—have been increasingly recognized for their unique potential to reverse multidrug resistance in cancer. Unlike previous reviews focusing on isolated mechanisms, this review systematically constructs a multidimensional, synergistic attack network centered on ADs to elucidate their integrated actions against chemotherapy-resistant CRC. Mechanistically, ADs suppress cancer stem cell (CSC)-associated resistance phenotypes while concurrently reshaping the tumor immune microenvironment, highlighting a functional coupling between stemness inhibition and immune remodeling. In parallel, this review presents apoptosis reactivation and ferroptosis induction as complementary, dual-track cell death strategies that collectively circumvent apoptosis resistance. Moreover, ADs exert “one-strike–multiple-effects” through coordinated regulation of pro-survival signaling networks and immune-related pathways, including the induction of immunogenic cell death (ICD) and the modulation of immunosuppressive macrophage subsets. Beyond mechanistic insights, this review integrates emerging translational considerations, including clinical pharmacokinetics, safety and tolerability, formulation and delivery strategies, and rational combination therapy paradigms in CRC. Collectively, these findings position ADs as multi-dimensional modulators rather than a single-agent cytotoxic, providing a coherent mechanistic and translational rationale for their further development in chemotherapy-resistant CRC. Full article
Show Figures

Figure 1

30 pages, 1307 KB  
Review
Ferroptosis in Oral Cancer: Mechanistic Insights and Clinical Prospects
by Jaewang Lee and Jong-Lyel Roh
Cells 2025, 14(21), 1685; https://doi.org/10.3390/cells14211685 - 27 Oct 2025
Viewed by 1706
Abstract
Ferroptosis, an iron-dependent form of regulated cell death characterized by lipid peroxidation, has emerged as a pivotal vulnerability in oral squamous cell carcinoma (OSCC). This review provides an overview of ferroptosis mechanisms and their implications for OSCC pathobiology and therapy. OSCC cells exhibit [...] Read more.
Ferroptosis, an iron-dependent form of regulated cell death characterized by lipid peroxidation, has emerged as a pivotal vulnerability in oral squamous cell carcinoma (OSCC). This review provides an overview of ferroptosis mechanisms and their implications for OSCC pathobiology and therapy. OSCC cells exhibit heightened reliance on anti-ferroptotic defenses such as GPX4, SLC7A11, FSP1, and Nrf2, and disrupting these pathways suppresses tumor growth and restores sensitivity to chemotherapy, radiotherapy, and immunotherapy. Genetic and epigenetic regulators, including p53, PER1, circ_0000140, and STARD4-AS1, critically modulate ferroptotic sensitivity, while metabolic enzymes such as ACSL4, LPCAT3, and TPI1 link ferroptosis to cellular plasticity and resistance. Preclinical studies highlight the promise of small-molecule inhibitors, repurposed agents (e.g., sorafenib, artesunate, trifluoperazine), natural compounds (e.g., piperlongumine, Evodia lepta, quercetin), and nanomedicine platforms for targeted ferroptosis induction. We further address ferroptosis within the tumor microenvironment, highlighting its immunogenic and context-dependent dual roles, and summarize genomic and transcriptomic evidence linking ferroptosis-related genes to patient prognosis. Beyond cancer, ferroptosis also contributes to non-malignant oral diseases, including pulpitis, periodontitis, and infection-associated inflammation, where inhibitors may protect tissues. Despite these advances, clinical translation is constrained by the lack of safe ferroptosis inducers and validated biomarkers. Future research should focus on developing pharmacologically viable GPX4 inhibitors, refining biomarker-driven patient stratification, and designing multimodal regimens that combine ferroptosis induction with standard therapies while preserving immune and tissue integrity. Ferroptosis therefore represents both a mechanistic framework and a translational opportunity to reshape oral oncology and broader oral disease management. Full article
Show Figures

Figure 1

11 pages, 1052 KB  
Article
Effects of Artesunate on the Growth and Chlorophyll Fluorescence of the Cyanobacterium Microcystis aeruginosa
by Huan Wang, Wenyu Ning, Wenxia Wang, Yue Hu and Aoao Yang
Phycology 2025, 5(4), 63; https://doi.org/10.3390/phycology5040063 - 20 Oct 2025
Viewed by 492
Abstract
Microcystis aeruginosa, a kind of cyanobacterium, can lead to water blooms under specific conditions and it is harmful to human and ecological security due to the toxins produced by certain strains. Artemisinin, which is derived from Artemisia annua Linn, has a strong [...] Read more.
Microcystis aeruginosa, a kind of cyanobacterium, can lead to water blooms under specific conditions and it is harmful to human and ecological security due to the toxins produced by certain strains. Artemisinin, which is derived from Artemisia annua Linn, has a strong allelopathic effect on algae. Artesunate is a water-soluble derivative of artemisinin. We investigated the effect of artesunate on M. aeruginosa, including growth and key photosynthetic parameters (Fv/Fm, φPSII). Our findings demonstrate that artesunate inhibits the growth of M. aeruginosa by damaging the photosynthetic center of photosystem II (PS II), and this inhibitory effect is enhanced with increasing concentration. At the concentration of 200 mol/L, the maximum inhibition rate was 41.62% for FACHB-315 and 43.19% for FACHB-927 after 96 h. After 24 h of exposure, the φPSII of the two strains decreased significantly (p < 0.01). These results could inform further studies on the use of artesunate to control cyanobacterial growth in water bodies and provide theoretical support for the application of artemisinin derivatives in treating water blooms. Full article
(This article belongs to the Collection Harmful Microalgae)
Show Figures

Figure 1

19 pages, 2022 KB  
Article
Hydrogen Peroxide and Neutrophil Chemotaxis in a Mouse Model of Bacterial Infection
by Hassan O. J. Morad, Larissa Garcia-Pinto, Georgia Clayton, Foad Davoodbeglou, Arturo Monzon and Peter A. McNaughton
Immuno 2025, 5(4), 47; https://doi.org/10.3390/immuno5040047 - 8 Oct 2025
Viewed by 1463
Abstract
Neutrophils are an essential protective component of the innate immune system. However, in severe bacterial infections, neutrophils are known to mis-localise from the primary site of infection to other organs, where excessive release of cytokines, chemokines, and neutrophil extracellular traps (NETs) can induce [...] Read more.
Neutrophils are an essential protective component of the innate immune system. However, in severe bacterial infections, neutrophils are known to mis-localise from the primary site of infection to other organs, where excessive release of cytokines, chemokines, and neutrophil extracellular traps (NETs) can induce organ damage and death. In this study, we use an animal model of bacterial infection originating in the peritoneum to show that hydrogen peroxide (H2O2, a potent neutrophil chemoattractant) is initially released in high concentrations both in the peritoneum and in multiple ‘off-target’ organs (lungs, liver and kidneys). The initial high H2O2 release inhibits neutrophil chemotaxis, but after 24 h concentrations of H2O2 reduce and can promote neutrophil migration to organs, where they release pro-inflammatory cytokines and chemokines along with NETs. The antimalarial compound artesunate potently inhibits neutrophil migration to off-target organs. It also abolishes cytokine, chemokine, and NET production, suggesting that artesunate may be a valuable novel therapy for preventing off-target organ inflammation associated with severe bacterial infections. Finally, the potency of H2O2 as a chemoattractant is shown by in vitro experiments in which, faced with competing gradients of H2O2 and other chemoattractants, neutrophils preferentially migrate towards H2O2. Full article
(This article belongs to the Section Innate Immunity and Inflammation)
Show Figures

Figure 1

22 pages, 4188 KB  
Article
Synergistic Neuroprotection of Artesunate and Tetramethylpyrazine in Ischemic Stroke, Mechanisms of Blood–Brain Barrier Preservation
by Yan Liang, Shuoqiu Deng, Yu Li, Shuiqing Qu, Chengcheng Liu, Luqi Wang, Lina Chen, Tuo Liu and Yujie Li
Int. J. Mol. Sci. 2025, 26(16), 7979; https://doi.org/10.3390/ijms26167979 - 18 Aug 2025
Cited by 1 | Viewed by 1679
Abstract
Artesunate (AS) and tetramethylpyrazine (TMP) have been proven to have therapeutic potential in ischemic stroke. Nevertheless, their synergistic treatment mechanisms and effectiveness remain unclear. A rat MCAO model was induced, and AS, combined with TMP, was administered intranasally to rats once a day [...] Read more.
Artesunate (AS) and tetramethylpyrazine (TMP) have been proven to have therapeutic potential in ischemic stroke. Nevertheless, their synergistic treatment mechanisms and effectiveness remain unclear. A rat MCAO model was induced, and AS, combined with TMP, was administered intranasally to rats once a day for 3 days. The neurological severity scores, TTC staining, and H&E staining were implemented to analyze tissue injuries. Evans blue staining and immunohistochemistry of ZO-1, occludin, MMP-9, and TIMP-1 were implemented to evaluate the integrity of the blood–brain barrier (BBB). ELISA was used to detect the expression levels of inflammatory factors TNF-α and IL-10. TUNEL staining and the protein expression of Bax and Bcl-2 were used to evaluate the apoptosis of brain tissue cells. The core targets were predicted by network pharmacology and verified by the OGD/R cell model and siRNA in vitro. Results showed that nasal administration of AS and TMP significantly ameliorated ischemic-stroke-induced neurological dysfunction, BBB disruption, and cortical neuronal apoptosis. The protective mechanisms mainly included adjusting the expression and ratio of tight junction proteins TIMP-1 and MMP-9 in brain tissue, regulating the HIF-1α-VEGF pathway, and anti-inflammatory effects. This study provides experimental support for the further development and application of AS and TMP nasal combinations and provides the foundation for expanding the practical-application value of artemisinin and its derivatives. Full article
(This article belongs to the Section Bioactives and Nutraceuticals)
Show Figures

Figure 1

22 pages, 11171 KB  
Article
Artesunate Ameliorates SLE Atherosclerosis Through PPARγ-Driven Cholesterol Efflux Restoration and Disruption of Lipid Raft-Organized TLR9/MyD88 Signaling Pathway
by Miao Zhang, Xinyu Pan, Yuanfang He, Kairong Sun, Zhiyu Wang, Weiyu Tian, Haonan Qiu, Yiqi Wang, Chengping Wen and Juan Chen
Biomolecules 2025, 15(8), 1078; https://doi.org/10.3390/biom15081078 - 25 Jul 2025
Viewed by 1260
Abstract
Systemic lupus erythematosus (SLE) is characterized by autoimmune dysregulation, elevated autoantibody production, and persistent inflammation, predisposing patients to atherosclerosis (AS). Atherogenesis is dependent on lipid homeostasis and inflammatory processes, with the formation of lipid-laden, macrophage-derived foam cells (MDFC) essential for atherosclerotic lesion progression. [...] Read more.
Systemic lupus erythematosus (SLE) is characterized by autoimmune dysregulation, elevated autoantibody production, and persistent inflammation, predisposing patients to atherosclerosis (AS). Atherogenesis is dependent on lipid homeostasis and inflammatory processes, with the formation of lipid-laden, macrophage-derived foam cells (MDFC) essential for atherosclerotic lesion progression. Elevated cholesterol levels within lipid rafts trigger heightened pro-inflammatory responses in macrophages via Toll-like receptor 9 (TLR9). Artesunate (ART), an artemisinin derivative sourced from Artemisia annua, exhibits therapeutic potential in modulating inflammation and autoimmune conditions. Nonetheless, its impact and mechanisms in SLE-associated AS (SLE-AS) remain largely unexplored. Our investigation demonstrated that ART could effectively ameliorate lupus-like symptoms and atherosclerotic plaque development in SLE-AS mice. Moreover, ART enhanced cholesterol efflux from MDFC by upregulating ABCA1, ABCG1, and SR-B1 both in vivo and in vitro. Moreover, ART reduced cholesterol accumulation in bone marrow-derived macrophages (BMDMs), thereby diminishing TLR9 recruitment to lipid rafts. ART also suppressed TLR9 expression and its downstream effectors in the kidney and aorta of SLE-AS mice, attenuating the TLR9-mediated inflammatory cascade in CPG2395 (ODN2395)-stimulated macrophages. Through bioinformatics analysis and experimental validation, PPARγ was identified as a pivotal downstream mediator of ART in macrophages. Depleting PPARγ levels reduced the expression of ABCA1, ABCG1, and SR-B1 in macrophages, consequently impeding cholesterol efflux. In conclusion, these findings suggest that ART ameliorates SLE-AS by restoring cholesterol homeostasis through the PPARγ-ABCA1/ABCG1/SR-B1 pathway and suppressing lipid raft-driven TLR9/MyD88 inflammation. Full article
(This article belongs to the Section Lipids)
Show Figures

Graphical abstract

15 pages, 2374 KB  
Article
Preclinical Evaluation of Repurposed Antimalarial Artemisinins for the Treatment of Malignant Peripheral Nerve Sheath Tumors
by Heather M. Duensing, Jalen M. Dixon, Owen R. Hunter, Nicolina C. Graves, Nickalus C. Smith, Andersen J. Tomes and Cale D. Fahrenholtz
Int. J. Mol. Sci. 2025, 26(14), 6628; https://doi.org/10.3390/ijms26146628 - 10 Jul 2025
Viewed by 1674
Abstract
Malignant peripheral nerve sheath tumors (MPNSTs) are a rare type of soft tissue sarcoma associated with poor prognoses. The standard of care for non-resectable tumors consists of surgical excision followed by radiation and chemotherapy. MPNSTs are most common in patients with neurofibromatosis type [...] Read more.
Malignant peripheral nerve sheath tumors (MPNSTs) are a rare type of soft tissue sarcoma associated with poor prognoses. The standard of care for non-resectable tumors consists of surgical excision followed by radiation and chemotherapy. MPNSTs are most common in patients with neurofibromatosis type 1 but can also occur sporadically. Regardless of origin, MPNSTs most often rely on signaling pathways that increase basal oxidative stress. This provides the basis for developing therapeutics with mechanisms that can potentiate oxidative stress to selectively eradicate tumor cells at doses that are tolerable for normal cells. Artemisinin derivatives are a mainstay of malaria therapy worldwide, with a well-established safety profile. Artemisinin’s antimalarial effects are due to an endoperoxide bridge in its chemical structure that induces oxidative stress. We found that artesunate (ARS) and metabolite dihydroartemisinin (DHA) are selectively cytotoxic to MPNST cells relative to normal Schwann cells with the endoperoxide bridge required for activity. Mechanistically, DHA induced oxidative stress, lipid peroxidation, and DHA-mediated cytotoxicity could be prevented with co-administration of the antioxidant N-acetyl-cysteine. Furthermore, we found that DHA was able to selectively remove MPNST from co-culture with normal Schwann cells. These data supports the further development of artemisinins for the clinical management of MPNST. Full article
(This article belongs to the Special Issue Molecular Research in Bone and Soft Tissue Tumors)
Show Figures

Figure 1

15 pages, 2362 KB  
Article
Growth Inhibition and Additive Effect to Antimalarial Drugs of Brucea javanica Extracts on Asexual Blood-Stage Plasmodium falciparum
by Niwat Kangwanrangsan, Gamolthip Niramolyanun, Chonnipa Praikongkatham, Pathanin Chantree, Pongsakorn Martviset and Viriya Pankao
Pathogens 2025, 14(7), 646; https://doi.org/10.3390/pathogens14070646 - 30 Jun 2025
Cited by 1 | Viewed by 1356
Abstract
Malaria is a parasitic infectious disease that is endemic in many tropical countries. Even though several effective antimalarial agents have been implemented, treatment failure still occurs, and malaria continues to cause neurological complications and death, particularly in severe or drug-resistant cases. Hence, novel [...] Read more.
Malaria is a parasitic infectious disease that is endemic in many tropical countries. Even though several effective antimalarial agents have been implemented, treatment failure still occurs, and malaria continues to cause neurological complications and death, particularly in severe or drug-resistant cases. Hence, novel therapeutic agents with distinct mechanisms of action, as well as alternative chemical compounds that can overcome resistance, are still needed to improve malaria therapy. This study aimed to investigate the antimalarial activities of Brucea javanica, a tropical plant extracts against Plasmodium falciparum, the major species associated with severe malaria. In this study, malaria parasites were treated with plant extracts using single and co-incubation methods, along with artesunate and chloroquine, and their inhibitory effect on parasite development was determined by microscopy. The results show that all tested doses of the extracts that effectively inhibited malaria parasites did not cause hemolysis of red blood cells (RBCs). The root extract (RE) and fruit extract (FE) inhibited parasite growth at IC50 values of 0.41 ± 1.14 µg/mL and 0.26 ± 1.15 µg/mL, respectively. These plant extracts significantly interrupted malaria development at the ring stage, as presented by a reduction in the conversion rate to trophozoites and schizonts. The defective parasites treated with plant extracts were characterized by nuclear clumping, leading to pyknotic cell death. Moreover, RE and FW extracts elicited an additive effect with artesunate and chloroquine, significantly reducing IC90 levels for the inhibition of parasite development. In conclusion, B. javanica extracts inhibited the asexual blood-stage development of malaria parasites. They distinctively show the additive effects of ATS and CRQ, elucidating their potential for further studies on novel formulas of antimalarial drug regimens. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

12 pages, 1031 KB  
Article
IDH1 Mutation Impacts DNA Repair Through ALKBH2 Rendering Glioblastoma Cells Sensitive to Artesunate
by Olivier Switzeny, Stefan Pusch, Markus Christmann and Bernd Kaina
Biomedicines 2025, 13(6), 1479; https://doi.org/10.3390/biomedicines13061479 - 16 Jun 2025
Cited by 1 | Viewed by 1839
Abstract
Background: Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are enzymes that catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate (α-KG), which is essential for many metabolic processes, including some steps in DNA repair. In tumors, notably in gliomas, IDH1 and IDH2 [...] Read more.
Background: Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are enzymes that catalyze the oxidative decarboxylation of isocitrate to alpha-ketoglutarate (α-KG), which is essential for many metabolic processes, including some steps in DNA repair. In tumors, notably in gliomas, IDH1 and IDH2 are frequently mutated. The mutation found in different cancers is functionally active, causing, instead of α-KG, the formation of 2-hydroxyglutarate (2-HG), which inhibits α-KG-dependent enzymes. Gliomas harboring mutated IDH1/2 show a better prognosis than IDH1 wild-type (wt) tumors of the same grade, which might result from the inhibition of DNA repair functions. A DNA repair enzyme dependent on α-KG is alkB homolog 2 (ALKBH2), which removes several lesions from DNA. These findings prompted us to investigate the response of glioma cells to artesunate (ART), a plant ingredient with genotoxic and anticancer activity currently used in several trials. Materials and Methods: We used isogenic glioblastoma cell lines that express IDH1 wild-type or, based on a TET-inducible system, the IDH1 mutant (mt) protein, and treated them with increasing doses of artesunate. We also treated glioblastoma cells with 2-HG, generated ALKBH2 knockout cells, and checked their sensitivity to the cytotoxic effects of artesunate. Results: We show that the cell-killing effect of ART is enhanced if the IDH1 mutant (R132H) is expressed in glioblastoma cells. Further, we show that 2-HG imitates the effect of IDH1mt as 2-HG ameliorates the cytotoxicity of ART. Finally, we demonstrate that the knockout of ALKBH2 causes the sensitization of glioblastoma cells to ART. Conclusions: The data indicate that ALKBH2 protects against the anticancer effect of ART, and the mutation of IDH1/2 commonly occurring in low-grade gliomas sensitizes to ART via an ALKBH2-dependent mechanism. The data support the use of ART in the therapy of IDH1/2-mutated cancers both in combination with chemotherapy and adjuvant treatment. Full article
(This article belongs to the Special Issue Glioma Therapy: Current Status and Future Prospects)
Show Figures

Figure 1

9 pages, 234 KB  
Brief Report
Ex Vivo Drug Susceptibility of Plasmodium malariae Isolates to Antimalarial Drugs in Gabon
by Yudi T. Pinilla, Anton Hoffmann, Maxim Viehweg, Nathanaël Saison, Stravensky Terence Boussougou Sambe, Ange Gatien Doumba Ndalembouly, Barclaye Ngossanga, Florence Awamu, Ayola Akim Adegnika and Steffen Borrmann
Pathogens 2025, 14(5), 453; https://doi.org/10.3390/pathogens14050453 - 6 May 2025
Viewed by 1097
Abstract
Plasmodium malariae is a neglected human malaria parasite despite its global distribution and propensity for persistent, sub-microscopic infections, which are associated with a mild but significant disease burden. Artemisinin-based therapies appear to be efficacious, but the susceptibility profiles of field isolates are largely [...] Read more.
Plasmodium malariae is a neglected human malaria parasite despite its global distribution and propensity for persistent, sub-microscopic infections, which are associated with a mild but significant disease burden. Artemisinin-based therapies appear to be efficacious, but the susceptibility profiles of field isolates are largely unknown. We performed ex vivo assays with isolates collected from asymptomatic volunteers in Gabon. The mean concentrations required to inhibit 50% of growth (IC50) with chloroquine (n = 21), artesunate (n = 20), atovaquone (n = 21), and lumefantrine (n = 14) were 7.2 nM, 2.7 nM, 3.1 nM, and 7.4 nM, respectively. Our study provides novel data on the ex vivo susceptibility of P. malariae to several key antimalarials, including the first dataset for atovaquone. Full article
(This article belongs to the Section Parasitic Pathogens)
Show Figures

Figure 1

17 pages, 2975 KB  
Article
Artesunate Inhibits Metastatic Potential in Cisplatin-Resistant Bladder Cancer Cells by Altering Integrins
by Olesya Vakhrusheva, Fuguang Zhao, Sascha Dennis Markowitsch, Kimberly Sue Slade, Maximilian Peter Brandt, Igor Tsaur, Jindrich Cinatl, Martin Michaelis, Thomas Efferth, Roman Alexander Blaheta, Axel Haferkamp and Eva Juengel
Cells 2025, 14(8), 570; https://doi.org/10.3390/cells14080570 - 10 Apr 2025
Viewed by 1295
Abstract
The survival of patients with locally advanced and metastatic bladder cancer (BCa) is persistently low. Hence, new treatment options are urgently needed. Artesunate (ART) a derivative of artemisinin, used in Traditional Chinese Medicine, shows anti-tumor activity extending over a broad spectrum of human [...] Read more.
The survival of patients with locally advanced and metastatic bladder cancer (BCa) is persistently low. Hence, new treatment options are urgently needed. Artesunate (ART) a derivative of artemisinin, used in Traditional Chinese Medicine, shows anti-tumor activity extending over a broad spectrum of human cancers. As we have previously shown, ART inhibits growth in cisplatin-sensitive (parental) and cisplatin-resistant BCa cells. However, how ART acts on the metastatic potential of BCa remained unclear. To clarify, we applied ART to parental and cisplatin-resistant RT4, RT112, T24, and TCCSup BCa cell lines. We examined tumor cell adhesion to vascular endothelium and immobilized collagen and evaluated chemotactic activity, migration, and invasive activity of the BCa cells. Adhesion receptors, integrin α and β subtypes, integrin-linked kinase (ILK), and focal adhesion kinase (FAK) were investigated. The functional relevance of integrin expression altered by ART was determined by blocking studies. ART significantly reduced tumor cell adhesion to vascular endothelium and immobilized collagen in parental as well as in cisplatin-resistant BCa cells. Depending on cell type, ART suppressed tumor cell motility and diminished integrin expression (surface and total). Functional blocking of integrins altered by ART reduced cell adhesion and invasion of the BCa cells. Thus, the metastatic potential of parental and cisplatin-resistant BCa cells was significantly inhibited by ART, making it a promising treatment option for patients with advanced or therapy-resistant BCa. Full article
Show Figures

Graphical abstract

21 pages, 653 KB  
Review
Artemisinin and Its Derivatives: Promising Therapeutic Agents for Age-Related Macular Degeneration
by Chun Liu, Xiaoqin Liu and Junguo Duan
Pharmaceuticals 2025, 18(4), 535; https://doi.org/10.3390/ph18040535 - 6 Apr 2025
Cited by 1 | Viewed by 2152
Abstract
Age-related macular degeneration (AMD) is a leading cause of visual impairment and blindness in older adults. Its pathogenesis involves multiple factors, including aging, environmental influences, genetic predisposition, oxidative stress, metabolic dysfunction, and immune dysregulation. Currently, AMD treatment focuses primarily on wet AMD, managed [...] Read more.
Age-related macular degeneration (AMD) is a leading cause of visual impairment and blindness in older adults. Its pathogenesis involves multiple factors, including aging, environmental influences, genetic predisposition, oxidative stress, metabolic dysfunction, and immune dysregulation. Currently, AMD treatment focuses primarily on wet AMD, managed through repeated intravitreal injections of anti-vascular endothelial growth factor (VEGF) therapies. While anti-VEGF agents represent a major breakthrough in wet AMD care, repeated injections may lead to incomplete responses or resistance in some patients, and carry a risk of progressive fibrosis. Artemisinin (ART) and its derivatives, originally developed as antimalarial drugs, exhibit a broad spectrum of pleiotropic activities beyond their established use, including anti-inflammatory, anti-angiogenic, antioxidant, anti-fibrotic, mitochondrial regulatory, lipid metabolic, and immunosuppressive effects. These properties position ART as a promising therapeutic candidate for AMD. A growing interest in ART-based therapies for AMD has emerged in recent years, with numerous studies demonstrating their potential benefits. However, no comprehensive review has systematically summarized the specific roles of ART and its derivatives in AMD pathogenesis and treatment. This paper aims to fill the knowledge gap by synthesizing the therapeutic efficacy and molecular mechanisms of ART and its derivatives in AMD, thereby providing a foundation for future investigations. Full article
(This article belongs to the Section Natural Products)
Show Figures

Figure 1

16 pages, 11788 KB  
Article
Plasma Metabolic Profiles of Chronic and Recurrent Uveitis Treated by Artesunate in Lewis Rats
by Xinyi Gong, Jingchuan Fan, Hui Huang, Fei Xu, Kaijiao Hu, Jianping Liu, Yi Tan and Feilan Chen
Biomedicines 2025, 13(4), 821; https://doi.org/10.3390/biomedicines13040821 - 28 Mar 2025
Cited by 1 | Viewed by 3139
Abstract
Background/Objectives: Identifying effective and safe treatment options for non-infectious uveitis remains challenging due to chronic and relapsing ocular inflammation. Previous studies have shown that artesunate (ART) plays an immunosuppressive role in several classic autoimmune diseases, including uveitis. However, its impact on the [...] Read more.
Background/Objectives: Identifying effective and safe treatment options for non-infectious uveitis remains challenging due to chronic and relapsing ocular inflammation. Previous studies have shown that artesunate (ART) plays an immunosuppressive role in several classic autoimmune diseases, including uveitis. However, its impact on the plasma metabolic profile of recurrent autoimmune uveitis remains unclear. This study aims to explore the effect of ART on the plasma metabolic features of recurrent experimental autoimmune uveitis (EAU) in a Lewis rat. Methods: Rats were clinically and pathologically evaluated for the development of recurrent EAU induced by inter-photoreceptor retinoid-binding protein (IRBP) R16 peptide-specific T-cells (tEAU). The disruptive effects of ART on tEAU were investigated to evaluate the potential role of rat recurrent EAU. Differentially expressed metabolites were identified in the plasma of rats by untargeted metabolomics analysis after ART treatment. The differential metabolites were applied to subsequent pathway analysis and biomarker analysis by MetaboAnalyst. Results: ART can significantly alleviate the severity of clinical signs and pathological injuries of eyeballs with tEAU. Both non-supervised principal component analysis and orthogonal partial least-squares discriminant analysis showed 84 differential metabolites enriched in 16 metabolic pathways in the tEAU group compared with heathy controls and 51 differential metabolites enriched in 17 metabolic pathways, including arginine and proline metabolism, alanine metabolism, and aminoacyl-tRNA biosynthesis, in the ART-treated group compared with the tEAU group. Particularly, upregulated L-alanine levels in both alanine metabolism and aminoacyl-tRNA biosynthesis were associated with T-cell activation, while elevated spermidine and N-acetyl putrescine levels in arginine and proline metabolism related to T-cell differentiation proved to be valuable biomarkers for ART treatment. Conclusions: Our study demonstrates that ART treatment can alleviate recurrent uveitis by altering the plasma metabolic characteristics associated with T-cell activation and differentiation, which might provide novel insights for potential therapeutic treatments. Full article
(This article belongs to the Section Endocrinology and Metabolism Research)
Show Figures

Figure 1

27 pages, 2560 KB  
Review
Artesunate: A Review of Its Potential Therapeutic Effects and Mechanisms in Digestive Diseases
by Mengting Shi, Guanhua Ma and Xiulan Yang
Pharmaceutics 2025, 17(3), 299; https://doi.org/10.3390/pharmaceutics17030299 - 25 Feb 2025
Cited by 2 | Viewed by 3816
Abstract
Artesunate (ART), an artemisinin-derived semi-synthetic sesquiterpene lactone distinguished by its unique endoperoxide group, has become a cornerstone of clinical antimalarial therapy. Recent research has demonstrated its broad pharmacological profile, including its potent antimalarial, anti-inflammatory, anti-tumor, antidiabetic, immunomodulatory, and anti-fibrotic properties. These discoveries have [...] Read more.
Artesunate (ART), an artemisinin-derived semi-synthetic sesquiterpene lactone distinguished by its unique endoperoxide group, has become a cornerstone of clinical antimalarial therapy. Recent research has demonstrated its broad pharmacological profile, including its potent antimalarial, anti-inflammatory, anti-tumor, antidiabetic, immunomodulatory, and anti-fibrotic properties. These discoveries have significantly broadened the therapeutic scope of ART and offer new perspectives for its potential use in treating gastrointestinal disorders. Mechanistically, ART exerts significant therapeutic effects against diverse gastrointestinal pathologies—such as gastric ulcers, ulcerative colitis (UC), hepatic fibrosis (HF), gastric cancer, hepatocellular carcinoma, and colorectal cancer—via multimodal mechanisms, including cell cycle modulation, apoptosis induction, the suppression of tumor cell invasion and migration, proliferation inhibition, ferroptosis activation, and immune regulation. This review evaluates existing evidence on ART’s therapeutic applications and molecular mechanisms in digestive diseases, intending to elucidate its clinical translation potential. ART emerges as a promising multi-target agent with significant prospects for improving the management of gastrointestinal disorders. Full article
(This article belongs to the Section Biologics and Biosimilars)
Show Figures

Graphical abstract

7 pages, 325 KB  
Case Report
Acute Kidney Injury and Post-Artesunate Delayed Haemolysis in the Course of Plasmodium falciparum Malaria
by Alicja Kubanek, Małgorzata Sulima, Aleksandra Szydłowska, Katarzyna Sikorska and Marcin Renke
Pathogens 2024, 13(10), 851; https://doi.org/10.3390/pathogens13100851 - 30 Sep 2024
Cited by 2 | Viewed by 2817
Abstract
Malaria is a major international public health problem. The risk of acquiring malaria varies depending on the intensity of transmission and adherence to mosquito precautions and prophylaxis recommendations. Severe malaria can cause significant multiorgan dysfunction, including acute kidney injury (AKI). Intravenous artesunate is [...] Read more.
Malaria is a major international public health problem. The risk of acquiring malaria varies depending on the intensity of transmission and adherence to mosquito precautions and prophylaxis recommendations. Severe malaria can cause significant multiorgan dysfunction, including acute kidney injury (AKI). Intravenous artesunate is the treatment of choice for severe malaria in non-endemic areas. One of the possible events connected with the lifesaving effects of artemisins is post-artesunate haemolysis (PADH), which may be potentially dangerous and under-recognised. We present a case of a seafarer with severe Plasmodium falciparum malaria complicated with AKI and PADH, with a good response to steroid treatment. This case highlights the need for malaria prophylaxis in business travellers, e.g., seafarers to malara-endemic regions, and close supervision of patients with malaria even after the completion of antimalarial treatment due to the possibility of late complications. Full article
(This article belongs to the Special Issue Parasitic Diseases in the Contemporary World)
Show Figures

Figure 1

Back to TopTop