Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (308)

Search Parameters:
Keywords = arbovirus infections

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 517 KiB  
Article
Tick-Borne Pathogens in Companion Animals and Zoonotic Risk in Portugal: A One Health Surveillance Approach
by Rita Calouro, Telma de Sousa, Sónia Saraiva, Diana Fernandes, Ana V. Mourão, Gilberto Igrejas, José Eduardo Pereira and Patrícia Poeta
Microorganisms 2025, 13(8), 1774; https://doi.org/10.3390/microorganisms13081774 - 30 Jul 2025
Viewed by 350
Abstract
This study aimed to assess the emergence and/or re-emergence of Tick-borne Diseases (TBD) in Portugal by linking the hemoparasite burden in companion animals to vector-borne disease dynamics through a One Health approach. Between 2015 and 2024, 1169 clinically suspected animals with hemoparasite infections, [...] Read more.
This study aimed to assess the emergence and/or re-emergence of Tick-borne Diseases (TBD) in Portugal by linking the hemoparasite burden in companion animals to vector-borne disease dynamics through a One Health approach. Between 2015 and 2024, 1169 clinically suspected animals with hemoparasite infections, treated at the Hospital Veterinário de Santarém (HVS), underwent serological confirmation for Rickettsia conorii, Babesia canis, Ehrlichia spp., and Haemobartonella spp. A total of 3791 serological tests (3.2 tests per animal) were performed and 437 animals tested positive for at least one of the four hemoparasites under investigation. From 2020 to 2024, tests nearly tripled from 894 to 2883, raising positive cases and prevalence from 29.5% to 39.9%, especially for rickettsiosis and hemobartonellosis, indicating an increased circulation of their vectors. A national vector surveillance initiative identified Hyalomma spp., Rhipicephalus sanguineus, Ixodes ricinus, and Dermacentor sp. as primary tick vectors in Portugal for the hemoparasites mentioned above and for other agents like arbovirus, such as Crimean-Congo Hemorrhagic Fever Virus (CCHFV) and tick-borne encephalitis virus (TBEV). This study found that the vectors responsible for transmitting hemoparasitosis, given the high number of serologically positive cases detected in the HVS, represent an increasing risk for TBD. These findings highlight the relevance of companion animal monitoring as an early-warning component within a One Health surveillance approach. Full article
Show Figures

Figure 1

14 pages, 1447 KiB  
Review
Emerging Arthropod-Borne Viruses Hijack the Host Cell Cytoskeleton During Neuroinvasion
by Flora De Conto
Viruses 2025, 17(7), 908; https://doi.org/10.3390/v17070908 - 26 Jun 2025
Viewed by 380
Abstract
Arthropod-borne viral infections, ranging from asymptomatic to fatal diseases, are expanding from endemic to nonendemic areas. Climate change, deforestation, and globalization favor their spread. Although arboviral manifestations mainly determine the onset of generalized symptoms, distinct clinical signs have been assessed, depending on the [...] Read more.
Arthropod-borne viral infections, ranging from asymptomatic to fatal diseases, are expanding from endemic to nonendemic areas. Climate change, deforestation, and globalization favor their spread. Although arboviral manifestations mainly determine the onset of generalized symptoms, distinct clinical signs have been assessed, depending on the particular arthropod-borne virus (arbovirus) involved in the infectious process. A number of arboviruses cause neuroinvasive diseases in vertebrate hosts, with acute to chronic outcomes. Long-term neurological sequelae can include cognitive dysfunction and Parkinsonism. To increase knowledge of host interactions with arboviruses, in-depth investigations are needed to highlight how arboviruses exploit a host cell for efficient infection and clarify the molecular alterations underlying human brain diseases. This review focuses on the involvement of host cytoskeletal networks and associated signalling pathways in modulating the neurotropism of emerging arboviruses. A better understanding at the molecular level of the potential for emerging infectious diseases is fundamental for prevention and outbreak control. Full article
(This article belongs to the Special Issue Zoonotic and Vector-Borne Viral Diseases)
Show Figures

Figure 1

15 pages, 1480 KiB  
Article
Development of a New Trapping System with Potential Implementation as a Tool for Mosquito-Borne Arbovirus Surveillance
by Luísa Maria Inácio da Silva, Larissa Krokovsky, Rafaela Cassiano Matos, Gabriel da Luz Wallau and Marcelo Henrique Santos Paiva
Insects 2025, 16(6), 637; https://doi.org/10.3390/insects16060637 - 17 Jun 2025
Viewed by 738
Abstract
Mosquitoes of the Aedes and Culex genera are primary vectors of arboviruses such as the dengue, Zika, chikungunya (CHIKV), Oropouche, and West Nile viruses, causing millions of infections annually. Standard virus detection in mosquitoes requires capturing, transporting, and processing samples with a cold [...] Read more.
Mosquitoes of the Aedes and Culex genera are primary vectors of arboviruses such as the dengue, Zika, chikungunya (CHIKV), Oropouche, and West Nile viruses, causing millions of infections annually. Standard virus detection in mosquitoes requires capturing, transporting, and processing samples with a cold chain to preserve RNA, which is challenging in resource-limited areas. FTA cards preserve viral RNA at room temperature and have been used to collect mosquito saliva, a key sample for assessing transmission. However, most FTA-based traps require electricity or CO2, limiting use in low-resource settings. This study adapted and evaluated the BR-ArboTrap, a low-cost trap derived from an oviposition trap, integrating a sugar-based attractant with FTA cards to collect mosquito saliva, without electricity or refrigeration. Aedes aegypti exposed to CHIKV were used in three experiments to evaluate: (i) RNA preservation under different conditions, (ii) the minimum number of positive mosquitoes for detection, and (iii) RNA amounts on FTA versus blood. RT-qPCR detected CHIKV RNA in 90% of FTA cards and 96% of exposed mosquitoes. RNA remained stable under varying conditions, with no significant difference compared to blood. BR-ArboTrap is an effective, affordable, and field-ready tool to enhance arbovirus surveillance in remote and low-resource areas. Full article
Show Figures

Graphical abstract

12 pages, 1358 KiB  
Article
Persistence and Active Replication Status of Oropouche Virus in Different Body Sites: Longitudinal Analysis of a Traveler Infected with a Strain Spreading in Latin America
by Andrea Matucci, Elena Pomari, Antonio Mori, Silvia Accordini, Natasha Gianesini, Rebeca Passarelli Mantovani, Federico Giovanni Gobbi, Concetta Castilletti and Maria Rosaria Capobianchi
Viruses 2025, 17(6), 852; https://doi.org/10.3390/v17060852 - 16 Jun 2025
Viewed by 619
Abstract
An unprecedented outbreak of Oropouche virus (OROV) is occurring in the Americas, characterized by thousands of confirmed cases and a wide geographical spread, including areas outside the Amazon Basin. Little is known about this neglected arbovirus regarding its pathophysiological aspects and potentially different [...] Read more.
An unprecedented outbreak of Oropouche virus (OROV) is occurring in the Americas, characterized by thousands of confirmed cases and a wide geographical spread, including areas outside the Amazon Basin. Little is known about this neglected arbovirus regarding its pathophysiological aspects and potentially different transmission modes. This study describes the clinical course of a man who returned from a trip to Cuba and presented to our hospital 4 days after the onset of febrile symptoms. The patient was diagnosed with Oropouche fever and was followed for 177 days after the onset of symptoms. We performed a longitudinal investigation of the samples collected from several body sites (whole blood, serum, urine, and semen) with the aim of providing further insights into OROV infection dynamics, using the detection of antigenomic RNA as a marker of active viral replication. Clinical samples that were longitudinally collected over the course of OROV infection showed consistently higher amounts of antigenomic RNA compared to genomic RNA, even after viral clearance from serum. Moreover, our case study showed the persistence of OROV RNA in serum of less than 15 days from the onset of symptoms, as compared to up to one month in urine, three months in semen, and four months in whole blood. Our study suggests that Oropouche virus may persist in an actively replicating state in different body sites for long periods of time, with important implications for transmission dynamics. Furthermore, our results provide a diagnostic indication, suggesting that serum is inferior to both urine and whole blood as preferred diagnostic samples. Further studies are needed to determine the pathogenetic implications of these findings, as they have been derived from a single case and must be confirmed using a larger number of cases. Full article
(This article belongs to the Special Issue Bunyaviruses 2025)
Show Figures

Graphical abstract

17 pages, 1305 KiB  
Review
The Application and Challenges of Brain Organoids in Exploring the Mechanism of Arbovirus Infection
by Baoqiu Cui, Zhijie Wang, Anum Farid, Zeyu Wang, Kaiyue Wei, Naixia Ren, Fengtang Yang and Hong Liu
Microorganisms 2025, 13(6), 1281; https://doi.org/10.3390/microorganisms13061281 - 30 May 2025
Viewed by 596
Abstract
Arboviruses, transmitted by blood-sucking arthropods, are responsible for significant human and animal diseases, including fever, hemorrhagic fever, and encephalitis, posing a serious threat to global public health. Nevertheless, research on the mechanisms of arbovirus infection and the development of therapeutic interventions has been [...] Read more.
Arboviruses, transmitted by blood-sucking arthropods, are responsible for significant human and animal diseases, including fever, hemorrhagic fever, and encephalitis, posing a serious threat to global public health. Nevertheless, research on the mechanisms of arbovirus infection and the development of therapeutic interventions has been impeded. This delay is primarily due to the limitations inherent in current in vitro research models, including cell cultures and animal models. The simplicity of cell types and interspecies differences present significant obstacles to advancing our understanding of arbovirus infection mechanisms and the development of effective drugs. Human brain organoids, derived from human pluripotent stem cells or human embryonic stem cells and cultured in three-dimensional systems, more accurately replicate the extensive neuronal cellular diversity and key characteristics of human neurodevelopment. These organoids serve as an ideal model for investigating the intricate interactions between viruses and human hosts, and providing a novel platform for the development of antiviral drugs. In this review, we summarize how brain organoid models complement classical approaches to accelerate research into the infection mechanisms of arboviruses, with a particular focus on the types of neural cells, key factors, and cellular signaling pathways involved in the arbovirus infection of brain organoids that have been reported. Furthermore, we examine the development of brain organoids, address their current limitations, and propose future directions to enhance the application of brain organoids in the study of arboviral infectious diseases. Full article
(This article belongs to the Collection Feature Papers in Medical Microbiology)
Show Figures

Figure 1

5 pages, 173 KiB  
Commentary
Oropouche Virus (OROV) and Breastfeeding Safety: Analysis of Related Orthobunyaviruses for Mother-Infant Vertical Transmission in Breast Milk
by David A. Schwartz, Creuza Rachel Vicente and Mija Ververs
Viruses 2025, 17(6), 738; https://doi.org/10.3390/v17060738 - 22 May 2025
Viewed by 1719
Abstract
The discovery that the Oropouche virus (OROV) can be transmitted vertically from an infected pregnant mother to the fetus, resulting in fetal and placental OROV infection, miscarriage, stillbirth, and congenital malformations including microcephaly, has emphasized its public health significance. Because of the importance [...] Read more.
The discovery that the Oropouche virus (OROV) can be transmitted vertically from an infected pregnant mother to the fetus, resulting in fetal and placental OROV infection, miscarriage, stillbirth, and congenital malformations including microcephaly, has emphasized its public health significance. Because of the importance of breastfeeding in those areas affected by the Oropouche fever outbreak, public health agencies have continued to encourage nursing among mothers who have had OROV infection or who reside or travel in endemic regions. However, the basis for this recommendation has not been stated. At the present time, there have been no reports of the OROV being transmitted from mothers having had Oropouche fever during pregnancy to their infants through breast milk. To further evaluate the potential risk of OROV transmission through breastfeeding, we have examined the peer-reviewed literature to determine if related Orthobunyavirus species infecting humans and animals are transmissible via breast milk. Bibliographic search engines, including PubMed, Scopus, and Google Scholar, were extensively reviewed using keywords, MeSH terms, and other sources cited in the articles examined. Studies investigating Orthobunyavirus species that infect humans and animals, including reassortant strains of OROV and viruses within the Simbu serogroup, were reviewed. We found that there have been no reported events of vertical transmission of any Orthobunyavirus through breast milk. Based on these results, we believe that the advantages of breastfeeding following maternal OROV infection outweigh any negligible risk for vertical transmission. Full article
(This article belongs to the Special Issue Oropouche Virus (OROV): An Emerging Peribunyavirus (Bunyavirus))
20 pages, 762 KiB  
Article
Perinatal Mother-to-Child Chikungunya Virus Infection: Screening of Cognitive and Learning Difficulties in a Follow-Up Study of the Chimere Cohort on Reunion Island
by Raphaëlle Sarton, Magali Carbonnier, Stéphanie Robin, Duksha Ramful, Sylvain Sampériz, Pascale Gauthier, Marc Bintner, Brahim Boumahni and Patrick Gérardin
Viruses 2025, 17(5), 704; https://doi.org/10.3390/v17050704 - 14 May 2025
Viewed by 693
Abstract
In this cohort study, we evaluated the cognitive and learning difficulties of school-age children perinatally infected with Chikungunya virus (CHIKV) on Reunion Island using the Evaluation of Cognitive Functions and Learning in Children (EDA) battery screening test compared to the healthy children cohort [...] Read more.
In this cohort study, we evaluated the cognitive and learning difficulties of school-age children perinatally infected with Chikungunya virus (CHIKV) on Reunion Island using the Evaluation of Cognitive Functions and Learning in Children (EDA) battery screening test compared to the healthy children cohort used for EDA development. Of the 19 infected children, 11 (57.9%) exhibited subnormal or abnormal scores, of whom 3 were classified as high risk, and 8 were classified as at risk for cognitive and learning difficulties. Children who had encephalopathy were at higher risk for displaying at least one difficulty than non-encephalopathic children (relative risk 2.13; 95% CI 1.05–4.33). The difficulties observed affected verbal functions, non-verbal functions, and learning abilities, such as phonology, lexical evocation and comprehension, graphism, selective visual attention, planning, visual–spatial reasoning, dictation and mathematics, as well as core executive functions, such as inhibitory control, shifting, and working memory. Neurocognitive dysfunctions could be linked to severe brain damage, as evidenced by severe white matter reduction mainly in the frontal lobes and corpus callosum and potentially in all functional networks involved in difficulties. These results should motivate further investigation of intellectual and adaptive functioning to diagnose intellectual deficiency and severe maladaptive behaviour in children perinatally infected with Chikungunya virus. Full article
(This article belongs to the Special Issue Long-Term Developmental Outcomes of Congenital Virus Infections)
Show Figures

Graphical abstract

31 pages, 18369 KiB  
Article
Identification and Characterization of Antiviral Activity of Synthetic Compounds Against Mayaro Virus
by Ana Paula Andreolla, Andrea Cristine Koishi, Alessandra Abel Borges, Larissa Albuquerque de Oliveira, Viviane Guedes de Oliveira, Nerilson Marques Lima, Eloah Pereira Ávila, Pedro Pôssa de Castro, Giovanni Wilson Amarante, Mauro Vieira de Almeida, Juliano Bordignon and Claudia Nunes Duarte dos Santos
Pharmaceuticals 2025, 18(5), 717; https://doi.org/10.3390/ph18050717 - 13 May 2025
Viewed by 791
Abstract
Background/objectives: In Brazil, the co-circulation of arboviruses—such as dengue, Zika, yellow fever, and Chikungunya viruses—creates a complex epidemiological landscape, drawing attention from health authorities due to high morbidity and mortality rates. Also present in this context is the Mayaro virus (MAYV), a neglected [...] Read more.
Background/objectives: In Brazil, the co-circulation of arboviruses—such as dengue, Zika, yellow fever, and Chikungunya viruses—creates a complex epidemiological landscape, drawing attention from health authorities due to high morbidity and mortality rates. Also present in this context is the Mayaro virus (MAYV), a neglected arbovirus, which can also cause severe syndromes and has been expanding beyond its usual endemic areas in northern and central-western Brazil. Epidemiological surveillance measures remain limited, and there are no effective prophylactic strategies or antiviral treatments for this neglected arbovirus. In this study, we evaluated the antiviral activity of commercial and synthetic compounds against MAYV using an image high-throughput screening (iHTS) system. Methods: A total of 52 compounds from an FDA-approved commercial library (Tocriscreen) and 50 other compounds were tested. Results: Seven compounds showed anti-MAYV activity and were non-toxic for the following cell lines: Naringenin, LLA9A, chrysin, and its ester C6. Post-infection treatments with these selected compounds significantly decreased the percentage of infected cells and the release of infectious viral particles in the supernatant. Additionally, anti-MAYV activity of these four selected hits was confirmed using several human cell lines and two different MAYV genotypes. Conclusions: Our results indicate that the iHTS platform is effective for screening anti-MAYV drugs and that four promising compounds can efficiently inhibit MAYV replication in human cell lines. Although in vivo studies are still required to confirm the efficacy of the selected hits, our findings provide a starting point for developing a potential treatment for MAYV infections. Full article
Show Figures

Figure 1

9 pages, 576 KiB  
Communication
Arbovirus Detection in Aedes aegypti Mosquitoes in Manabí, Ecuador
by Alvaro Wilca-Cepeda, Andrea López-Rosero, Cesar A. Yumiseva, Mario J. Grijalva and Anita G. Villacís
Pathogens 2025, 14(5), 446; https://doi.org/10.3390/pathogens14050446 - 1 May 2025
Viewed by 794
Abstract
Arboviruses transmitted by Aedes aegypti pose a significant challenge in Ecuador, as they are persistent, emerging, and re-emerging. During the SARS-CoV-2 pandemic, these diseases were temporarily overshadowed. This study aimed to detect and identify arbovirus species in mosquitoes collected from two communities in [...] Read more.
Arboviruses transmitted by Aedes aegypti pose a significant challenge in Ecuador, as they are persistent, emerging, and re-emerging. During the SARS-CoV-2 pandemic, these diseases were temporarily overshadowed. This study aimed to detect and identify arbovirus species in mosquitoes collected from two communities in Manabí province—Caja Fuego (rural) and San Gregorio (marginal urban). A total of 468 mosquitoes were collected—385 from Caja Fuego and 83 from San Gregorio—and grouped into 72 pools. Samples were transported to CISeAL under proper biosafety protocols, homogenized, and analyzed using End-Point PCR, RT-PCR, and Sanger sequencing. The results revealed the presence of Flaviviruses and Alphaviruses. Of the 22 Flavivirus pools tested, 18 were positive, with PCR analysis specifically identifying dengue and Zika. Although no arbovirus was identified via RT-PCR, Sanger sequencing detected two Zika-positive samples. Notably, no official Zika cases were reported in 2023, suggesting a potential undetected risk of infection in human populations of Caja Fuego and San Gregorio. This study recommends the implementation of a surveillance campaign in collaboration with the Ecuadorian Ministry of Public Health to mitigate the risk. Full article
(This article belongs to the Collection Emerging and Re-emerging Pathogens)
Show Figures

Figure 1

17 pages, 2563 KiB  
Article
Molecular Epidemiology of Travel-Associated and Locally Acquired Dengue Virus Infections in Catalonia, Spain, 2019
by Jéssica Navero-Castillejos, Adrián Sánchez-Montalvá, Elena Sulleiro, Aroa Silgado, Tomás Montalvo, Laura Barahona, Núria Busquets, José Muñoz, Daniel Camprubí-Ferrer, Manuel Valdivia, Ana Martínez, Maria Assumpció Bou-Monclús, Itziar Martínez-Calleja, Mireia Jané, Cristina Rius, Hernán Vargas-Leguas, Beatriz Escudero-Pérez, Rosa Albarracín, Alexander Navarro, Mireia Navarro, Josep Barrachina and Miguel J. Martínezadd Show full author list remove Hide full author list
Viruses 2025, 17(5), 621; https://doi.org/10.3390/v17050621 - 26 Apr 2025
Viewed by 723
Abstract
Dengue virus (DENV) is the most important arbovirus worldwide. In 2019, a significant increase in dengue cases was reported worldwide, resulting in a peak of imported cases in some European countries such as Spain. We aimed to describe travel-associated and locally acquired DENV [...] Read more.
Dengue virus (DENV) is the most important arbovirus worldwide. In 2019, a significant increase in dengue cases was reported worldwide, resulting in a peak of imported cases in some European countries such as Spain. We aimed to describe travel-associated and locally acquired DENV strains detected in 2019 in the Catalonia region (northeastern Spain), a hotspot for dengue introduction in Europe. Through sequencing and phylogenetic analysis of the envelope gene, 75 imported viremic cases and two local strains were described. Autochthonous transmission events included an infection of a local mosquito with an imported dengue strain and a locally acquired human dengue infection from a locally infected mosquito. Overall, all four DENV serotypes and up to 10 different genotypes were detected. Phylogenetic analysis revealed transcontinental circulations associated with DENV-1 and DENV-2 and the presence of DENV-4 genotype I in Indonesia, where few cases had been previously described. A molecular study of the autochthonous events determined that local Ae. albopictus mosquitoes were infected by an African DENV-1 genotype V strain, while the locally acquired human case was caused by a DENV-3 genotype I of Asian origin. These findings underline the wide variability of imported strains and the high risk of DENV introduction into this territory, emphasizing the importance and usefulness of molecular characterization and phylogenetics for both local and global surveillance of the disease. Full article
(This article belongs to the Section Human Virology and Viral Diseases)
Show Figures

Figure 1

15 pages, 1969 KiB  
Article
Does Nutrient Availability and Larval Competition Alter Chikungunya Virus Infection in the Mosquito Aedes albopictus?
by Maria Eduarda Barreto Resck, Nildimar Alves Honório and Barry Wilmer Alto
Viruses 2025, 17(5), 613; https://doi.org/10.3390/v17050613 - 25 Apr 2025
Viewed by 563
Abstract
Aedes albopictus is a mosquito that has spread rapidly in the United States and is considered an important vector for arbovirus transmission to humans in several countries. Larval interactions and environmental conditions can influence mosquitoes and their ability to transmit pathogens as adults. [...] Read more.
Aedes albopictus is a mosquito that has spread rapidly in the United States and is considered an important vector for arbovirus transmission to humans in several countries. Larval interactions and environmental conditions can influence mosquitoes and their ability to transmit pathogens as adults. We investigated whether intraspecific larval competition among Ae. albopictus mosquitoes from Florida, combined with varying food availability, affects vector competence for Chikungunya virus (CHIKV). We reared larvae under four competition treatment densities and two food levels. Measurements were taken for larval development duration, survival rate, and female wing length. Mosquitoes from each treatment group were orally challenged with CHIKV. Our results showed that development time was longer for both female and male Ae. albopictus under high-competition conditions and appeared as the most important factor, followed by survivorship. Survival rates were highest under low-density conditions compared to those reared under high-density conditions. Mosquitoes reared with a low amount of food had the lowest survivorship and longest development times compared to those provided with high food levels. Our results also showed susceptibility infection and disseminated infection of CHIKV was influenced by an interaction of density and food availability. Mosquitoes from the high-food, high-density treatment group exhibited lower CHIKV infection and dissemination rates compared to other treatment combinations. These findings highlight the role of larval competition and nutritional stress during immature stages in shaping adult mosquito traits, with important epidemiological implications for CHIKV transmission. Full article
(This article belongs to the Special Issue Chikungunya Virus and Emerging Alphaviruses—Volume II)
Show Figures

Figure 1

10 pages, 589 KiB  
Article
Yellow Fever Virus (YFV) Detection in Different Species of Culicids Collected During an Outbreak in Southeastern Brazil, 2016–2019
by Giovana Santos Caleiro, Lucila Oliveira Vilela, Karolina Morales Barrio Nuevo, Rosa Maria Tubaki, Regiane Maria Tironi de Menezes, Luis Filipe Mucci, Juliana Telles-de-Deus, Eduardo Sterlino Bergo, Emerson Luiz Lima Araújo and Mariana Sequetin Cunha
Trop. Med. Infect. Dis. 2025, 10(5), 118; https://doi.org/10.3390/tropicalmed10050118 - 24 Apr 2025
Viewed by 1055
Abstract
Yellow fever virus (YFV) is an endemic arbovirus in parts of Africa and the Americas. In Brazil, following the eradication of the urban transmission cycle, YFV is maintained in a sylvatic cycle involving several species of neotropical primates and mosquitoes of the genera [...] Read more.
Yellow fever virus (YFV) is an endemic arbovirus in parts of Africa and the Americas. In Brazil, following the eradication of the urban transmission cycle, YFV is maintained in a sylvatic cycle involving several species of neotropical primates and mosquitoes of the genera Haemagogus and Sabethes, which serve as primary and secondary vectors, respectively. During the 2016–2019 outbreak in São Paulo State, a total of 3731 mosquito pools were collected from sites with ongoing epizootic events in 192 municipalities. The RT-qPCR analysis detected YFV in 46 pools (1.4%) across nine mosquito species, including both primary and secondary vectors, as well as species from the genera Aedes and Psorophora. Differences in viral loads were observed among species. While Aedes aegypti was not found to be positive, the detection of natural YFV infection in other Aedes species raises concerns about potential virus reurbanization. Further studies are needed to clarify the role of additional mosquito species in YFV transmission in Brazil. Full article
(This article belongs to the Special Issue Emerging Viral Threats: Surveillance, Impact, and Mitigation)
Show Figures

Figure 1

16 pages, 654 KiB  
Article
Serologic Surveillance for Orthoflaviviruses and Chikungunya Virus in Bats and Opossums in Chiapas, Mexico
by J. Manuel Aranda-Coello, Carlos Machain-Williams, Manuel Weber, Alma R. Dzul Rosado, Tyler R. Simpkins and Bradley J. Blitvich
Viruses 2025, 17(5), 590; https://doi.org/10.3390/v17050590 - 22 Apr 2025
Viewed by 1055
Abstract
We performed serologic surveillance for selected arthropod-borne viruses (arboviruses) in bats and opossums in the Lacandona Rainforest, Chiapas, Mexico, in 2023–2024. Sera were collected from 94 bats of at least 15 species and 43 opossums of three species. The sera were assayed by [...] Read more.
We performed serologic surveillance for selected arthropod-borne viruses (arboviruses) in bats and opossums in the Lacandona Rainforest, Chiapas, Mexico, in 2023–2024. Sera were collected from 94 bats of at least 15 species and 43 opossums of three species. The sera were assayed by the plaque reduction neutralization test (PRNT) for antibodies to eight orthoflaviviruses (dengue viruses 1–4, St. Louis encephalitis virus, T’Ho virus, West Nile virus, and Zika virus) and one alphavirus (chikungunya virus; CHIKV). Twelve (12.8%) bats and 15 (34.9%) opossums contained orthoflavivirus-specific antibodies. One bat (a Jamaican fruit bat) was seropositive for Zika virus, and 11 bats contained antibodies to an undetermined orthoflavivirus, as did the 15 opossums. All bats and most opossums seropositive for an undetermined orthoflavivirus had low PRNT titers, possibly because they had been infected with another (perhaps unrecognized) orthoflavivirus not included in the PRNTs. Antibodies that neutralized CHIKV were detected in three (7.0%) opossums and none of the bats. The three opossums had low CHIKV PRNT titers, and therefore, another alphavirus may have been responsible for the infections. In summary, we report serologic evidence of arbovirus infections in bats and opossums in Chiapas, Mexico. Full article
(This article belongs to the Section Animal Viruses)
Show Figures

Figure 1

14 pages, 2687 KiB  
Article
Baseline Seroprevalence of Arboviruses in Liberia Using a Multiplex IgG Immunoassay
by Albert To, Varney M. Kamara, Davidetta M. Tekah, Mohammed A. Jalloh, Salematu B. Kamara, Teri Ann S. Wong, Aquena H. Ball, Ludwig I. Mayerlen, Kyle M. Ishikawa, Hyeong Jun Ahn, Bode Shobayo, Julius Teahton, Brien K. Haun, Wei-Kung Wang, John M. Berestecky, Vivek R. Nerurkar, Peter S. Humphrey and Axel T. Lehrer
Trop. Med. Infect. Dis. 2025, 10(4), 92; https://doi.org/10.3390/tropicalmed10040092 - 3 Apr 2025
Viewed by 2271
Abstract
Insect-borne viruses may account for a significant proportion of non-malaria and non-bacterial febrile illnesses in Liberia. Although the presence of many arthropod vectors has been documented, the collective burden of arbovirus infections and baseline pre-existing immunity remains enigmatic. Our goal was to determine [...] Read more.
Insect-borne viruses may account for a significant proportion of non-malaria and non-bacterial febrile illnesses in Liberia. Although the presence of many arthropod vectors has been documented, the collective burden of arbovirus infections and baseline pre-existing immunity remains enigmatic. Our goal was to determine the seroprevalence of arbovirus exposure across the country using a resource-sparing, multiplex immunoassay to determine IgG responses to immunodominant antigens. 532 human serum samples, from healthy adults, collected from 10 counties across Liberia, were measured for IgG reactivity against antigens of eight common flavi-, alpha-, and orthobunya/nairoviruses suspected to be present in West Africa. Approximately 32.5% of our samples were reactive to alphavirus (CHIKV) E2, ~7% were reactive separately to West Nile (WNV) and Zika virus (ZIKV) NS1, while 4.3 and 3.2% were reactive to Rift Valley Fever virus (RVFV) N and Dengue virus-2 (DENV-2) NS1, respectively. Altogether, 21.6% of our samples were reactive to ≥1 flavivirus NS1s. Of the CHIKV E2 reactive samples, 8.5% were also reactive to at least one flavivirus NS1, and six samples were concurrently reactive to antigens of all three arbovirus groups, suggesting a high burden of multiple arbovirus infections for some participants. These insights suggest the presence of these four arbovirus families in Liberia with low and moderate rates of flavi- and alphavirus infections, respectively, in healthy adults. Further confirmational investigation, such as mosquito surveillance or other serological tests, is warranted and should be conducted before initiating additional flavivirus vaccination campaigns. The findings of these studies can help guide healthcare resource mobilization, vector control, and animal husbandry practices. Full article
(This article belongs to the Special Issue Beyond Borders—Tackling Neglected Tropical Viral Diseases)
Show Figures

Figure 1

18 pages, 2106 KiB  
Article
Oropouche orthobunyavirus in Urban Mosquitoes: Vector Competence, Coinfection, and Immune System Activation in Aedes aegypti
by Silvana F. de Mendonça, Lívia V. R. Baldon, Yaovi M. H. Todjro, Bruno A. Marçal, Maria E. C. Rodrigues, Rafaela L. Moreira, Ellen C. Santos, Marcele N. Rocha, Isaque J. da S. de Faria, Bianca D. M. Silva, Thiago N. Pereira, Amanda C. de Freitas, Myrian M. Duarte, Felipe C. de M. Iani, Natália R. Guimarães, Talita E. R. Adelino, Marta Giovanetti, Luiz C. J. Alcantara, Álvaro G. A. Ferreira and Luciano A. Moreira
Viruses 2025, 17(4), 492; https://doi.org/10.3390/v17040492 - 28 Mar 2025
Cited by 1 | Viewed by 1196
Abstract
Oropouche orthobunyavirus (OROV) is an emerging public health concern due to its expanding geographic range and increasing case numbers. In Brazil, 13,785 cases were confirmed in 2024, with an additional 3680 reported by January 2025, according to the Ministry of Health. Initially restricted [...] Read more.
Oropouche orthobunyavirus (OROV) is an emerging public health concern due to its expanding geographic range and increasing case numbers. In Brazil, 13,785 cases were confirmed in 2024, with an additional 3680 reported by January 2025, according to the Ministry of Health. Initially restricted to the Amazon region, OROV has recently been detected in new areas, highlighting the need for enhanced surveillance and vector control strategies. While Culicoides paraensis is the primary vector, the potential role of other species in transmitting the currently circulating OROV strain in Brazil remains unclear. Here, we experimentally assessed the infectivity and dissemination of a recently isolated Oropouche orthobunyavirus (OROV) strain in two widespread mosquito species, Aedes aegypti and Culex quinquefasciatus, collected from diverse regions of Brazil. Our results demonstrated that both mosquito species were refractory to oral infection, suggesting that natural transmission through these vectors is unlikely. However, in artificial systemic infection, Ae. aegypti showed viral replication and immune system activation, indicating its potential to support OROV replication under specific conditions. Additionally, to assess the potential impact of coinfection, we investigated whether Chikungunya virus (CHIKV), an arbovirus that naturally infects Ae. aegypti, could facilitate OROV infection dynamics in this mosquito species. Our results suggest that coinfection does not promote OROV oral infection. Furthermore, we examined whether OROV systemic infection induced an immune response in Ae aegypti. We analyzed the major immune response pathways—RNAi, Toll, IMD, and JAK-STAT—and observed that the RNAi pathway was the most strongly activated in response to OROV infection in Ae. aegypti. These findings highlight the importance of ongoing surveillance and further studies on OROV evolution, vector adaptation, and transmission dynamics, particularly in urban settings where vector populations and viral interactions may facilitate new epidemiological scenarios. Full article
(This article belongs to the Section Invertebrate Viruses)
Show Figures

Figure 1

Back to TopTop