Does Nutrient Availability and Larval Competition Alter Chikungunya Virus Infection in the Mosquito Aedes albopictus?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Statement
2.2. Mosquitoes
2.3. Nutrient Availability and Intraspecific Competition
2.4. Chikungunya Virus Infection
2.5. Chikungunya Virus Dissemination and Transmission
2.6. Viral Nucleic Acid Extraction and Quantitative RT-PCR
2.7. Statistical Analysis
3. Results
3.1. Competition
3.2. Infection Study
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Hawley, W.A. The biology of Aedes albopictus. J. Am. Mosq. Control Assoc. Suppl. 1988, 1, 1–39. [Google Scholar]
- O’Meara, G.F.; Evans, L.F., Jr.; Gettman, A.D.; Cuda, J.P. Spread of Aedes albopictus and decline of Ae. aegypti (Diptera: Culicidae) in Florida. J. Med. Entomol. 1995, 32, 554–562. [Google Scholar] [CrossRef]
- Barrera, R. Competition and resistance to starvation in larvae of container-inhabiting Aedes mosquitoes. Ecol. Entomol. 1996, 21, 117–127. [Google Scholar] [CrossRef]
- Mitchell, C.J. Geographic spread of Aedes albopictus and potential for involvement in arbovirus cycles in the Mediterranean basin. J. Vector Ecol. 1995, 20, 44–58. [Google Scholar]
- Resck, M.E.B.; Câmara, D.C.P.; Dos Santos, F.B.; Dos Santos, J.P.C.; Alto, B.W.; Honório, N.A. Spatial-temporal distribution of chikungunya virus in Brazil: A review on the circulating viral genotypes and Aedes (Stegomyia) albopictus as a potential vector. Front. Public Health 2024, 12, 1496021. [Google Scholar] [CrossRef] [PubMed]
- Focks, D.A.; Linda, S.B.; Craig, G.B.; Hawley, W.A.; Pumpuni, C.B. Aedes albopictus (Diptera: Culicidae): A statistical model of the role of temperature, photoperiod, and geography in the induction of egg diapause. J. Med. Entomol. 1994, 31, 278–286. [Google Scholar] [CrossRef]
- Lounibos, L.P.; Kramer, L.D. Invasiveness of Aedes aegypti and Aedes albopictus and vectorial capacity for Chikungunya virus. J. Infect. Dis. 2016, 214, S453–S458. [Google Scholar] [CrossRef] [PubMed]
- Hill, A.M.; Lodge, D.M. Diel changes in resource demand: Competition and predation in species replacement among crayfishes. Ecology 1994, 75, 2118–2126. [Google Scholar] [CrossRef]
- Petren, K.; Bolger, D.T.; Case, T.J. Mechanisms in the competitive success of an invading sexual gecko over an asexual native. Science 1993, 259, 354–358. [Google Scholar] [CrossRef]
- Altwegg, R. Trait-mediated indirect effects and complex life-cycles in two European frogs. Evol. Ecol. Res. 2002, 4, 519–536. [Google Scholar]
- Bargielowski, I.E.; Lounibos, L.P.; Shin, D.; Smartt, C.T.; Carrasquilla, M.C.; Henry, A.; Navarro, J.C.; Paupy, C.; Dennett, J.A. Widespread evidence for interspecific mating between Aedes aegypti and Aedes albopictus (Diptera: Culicidae) in nature. Infect. Genet. Evol. 2015, 36, 456–461. [Google Scholar] [CrossRef]
- Juliano, S.A. Coexistence, exclusion, or neutrality? A meta-analysis of competition between Aedes albopictus and resident mosquitoes. Isr. J. Ecol. Evol. 2010, 56, 325–351. [Google Scholar] [CrossRef]
- Braks, M.; Honório, N.; Lounibos, L.; Lourenço-de-Oliveira, R.; Juliano, S. Interspecific competition between two invasive species of container mosquitoes, Aedes aegypti and Aedes albopictus (Diptera: Culicidae), in Brazil. Ann. Entomol. Soc. Am. 2004, 97, 130–139. [Google Scholar] [CrossRef]
- Juliano, S.A.; Lounibos, L.P.; O’Meara, G.F. A field test for competitive effects of Aedes albopictus on Aedes aegypti in South Florida: Differences between sites of coexistence and exclusion? Oecologia 2004, 139, 583–593. [Google Scholar] [CrossRef]
- Camara, D.C.; Codeço, C.T.; Juliano, S.A.; Lounibos, L.P.; Riback, T.I.; Pereira, G.R.; Honorio, N.A. Seasonal differences in density but similar competitive impact of Aedes albopictus (Skuse) on Aedes aegypti (L.) in Rio de Janeiro, Brazil. PLoS ONE 2016, 11, e0157120. [Google Scholar] [CrossRef]
- Alto, B.W.; Lounibos, L.P.; Higgs, S.; Juliano, S.A. Larval competition differentially affects arbovirus infection in Aedes mosquitoes. Ecology 2005, 86, 3279–3288. [Google Scholar] [CrossRef]
- Reiskind, M.H.; Lounibos, L.P. Effects of intraspecific larval competition on adult longevity in the mosquitoes Aedes aegypti and Aedes albopictus. Med. Vet. Entomol. 2009, 23, 62–68. [Google Scholar] [CrossRef]
- Bara, J.; Rapti, Z.; Cáceres, C.E.; Muturi, E.J. Effect of larval competition on extrinsic incubation period and vectorial capacity of Aedes albopictus for Dengue virus. PLoS ONE 2015, 10, e0126703. [Google Scholar] [CrossRef]
- Noden, B.H.; O’NEAL, P.A.; Fader, J.E.; Juliano, S.A. Impact of inter-and intra-specific competition among larvae on larval, adult, and life table traits of Aedes aegypti and Aedes albopictus females. Ecol. Entomol. 2016, 41, 192–200. [Google Scholar] [CrossRef]
- Alto, B.; Lounibos, L.; Mores, C.; Reiskind, M. Larval competition alters susceptibility of adult Aedes mosquitoes to dengue infection. Proc. Roy. Soc. London, Ser. B, Biol. Sci. 2008, 275, 463–471. [Google Scholar]
- Xue, R.D.; Barnard, D.R.; Schreck, C.E. Influence of body size and age of Aedes albopictus on human host attack rates and the repellency of deet. J. Am. Mosq. Control Assoc. 1995, 11, 50–53. [Google Scholar]
- Farjana, T.; Tuno, N. Multiple blood feeding and host-seeking behavior in Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2013, 50, 838–846. [Google Scholar] [CrossRef]
- Dye, C.; Hasibeder, G. Population dynamics of mosquito-borne disease: Effects of flies which bite some people more frequently than others. Trans. R. Soc. Trop. Med. Hyg. 1986, 80, 69–77. [Google Scholar] [CrossRef]
- Anderson, R.M.; May, R.M. Infectious Diseases of Humans: Dynamics and Control; Oxford University Press: Oxford, UK, 1991. [Google Scholar]
- Hardy, J.L.; Houk, E.J.; Kramer, L.D.; Reeves, W.C. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu. Rev. Entomol. 1983, 28, 229–262. [Google Scholar] [CrossRef]
- Beaty, B.; Higgs, S. Natural cycles of vector-borne pathogens. Biol. Dis. Vectors 2005, 2, 167–186. [Google Scholar]
- Pialoux, G.; Gaüzère, B.A.; Jauréguiberry, S.; Strobel, M. Chikungunya, an epidemic arbovirosis. Lancet Infect. Dis. 2007, 7, 319–327. [Google Scholar] [CrossRef]
- Weaver, S.C.; Reisen, W.K. Present and future arboviral threats. Antivir. Res. 2010, 85, 328–345. [Google Scholar] [CrossRef]
- Petersen, L.R.; Powers, A.M. Chikungunya: Epidemiology. F1000Research 2016, 5, 82. [Google Scholar] [CrossRef]
- Honório, N.A.; Câmara, D.C.; Calvet, G.A.; Brasil, P. Chikungunya: An arbovirus infection in the process of establishment and expansion in Brazil. Cad. Saude Publica 2015, 31, 906–908. [Google Scholar] [CrossRef]
- Pinheiro, T.J.; Guimarães, L.F.; Silva, M.T.; Soares, C.N. Neurological manifestations of Chikungunya and Zika infections. Arq. Neuropsiquiatr. 2016, 74, 937–943. [Google Scholar] [CrossRef]
- Tsetsarkin, K.A.; Vanlandingham, D.L.; McGee, C.E.; Higgs, S. A single mutation in chikungunya virus affects vector specificity and epidemic potential. PLoS Pathog. 2007, 3, e201. [Google Scholar] [CrossRef]
- Beesoon, S.; Funkhouser, E.; Kotea, N.; Spielman, A.; Robich, R.M. Chikungunya fever, Mauritius, 2006. Emerg. Infect. Dis. 2008, 14, 337–338. [Google Scholar] [CrossRef]
- de Lamballerie, X.; Leroy, E.; Charrel, R.N.; Ttsetsarkin, K.; Higgs, S.; Gould, E.A. Chikungunya virus adapts to tiger mosquito via evolutionary convergence: A sign of things to come? Virol. J. 2008, 5, 33. [Google Scholar] [CrossRef]
- Dubrulle, M.; Mousson, L.; Moutailler, S.; Vazeille, M.; Failloux, A.B. Chikungunya virus and Aedes mosquitoes: Saliva is infectious as soon as two days after oral infection. PLoS ONE 2009, 4, e5895. [Google Scholar] [CrossRef]
- Severini, F.; Boccolini, D.; Fortuna, C.; Di Luca, M.; Toma, L.; Amendola, A.; Benedetti, E.; Minelli, G.; Romi, R.; Venturi, G.; et al. Vector competence of Italian Aedes albopictus populations for the chikungunya virus (E1-226V). PLoS Negl. Trop. Dis. 2018, 12, e0006435. [Google Scholar] [CrossRef]
- Livdahl, T.P.; Sugihara, G. Non-linear interactions of populations and the importance of estimating per capita rates of change. J. Anim. Ecol. 1984, 53, 573–580. [Google Scholar] [CrossRef]
- Livdahl, T.P.; Willey, M.S. Prospects for an invasion: Competition between Aedes albopictus and native Aedes triseriatus. Science 1991, 253, 189–191. [Google Scholar] [CrossRef]
- Lounibos, L.P. Invasions by insect vectors of human disease. Annu. Rev. Entomol. 2002, 47, 233–266. [Google Scholar] [CrossRef]
- Glushakova, L.G.; Alto, B.W.; Kim, M.S.; Wiggins, K.; Eastmond, B.; Moussatche, P.; Burkett-Cadena, N.D.; Benner, S.A. Optimization of cationic (Q)-paper for detection of arboviruses in infected mosquitoes. J. Virol. Methods 2018, 261, 71–79. [Google Scholar] [CrossRef]
- Honório, N.A.; Wiggins, K.; Câmara, D.C.P.; Eastmond, B.; Alto, B.W. Chikungunya virus vector competency of Brazilian and Florida mosquito vectors. PLoS Negl. Trop. Dis. 2018, 12, e0006521. [Google Scholar] [CrossRef]
- Alto, B.W.; Wiggins, K.; Eastmond, B.; Velez, D.; Lounibos, L.P.; Lord, C.C. Transmission risk of two chikungunya lineages by invasive mosquito vectors from Florida and the Dominican Republic. PLoS Negl. Trop. Dis. 2017, 11, e0005724. [Google Scholar] [CrossRef]
- Alto, B.W.; Wiggins, K.; Eastmond, B.; Ortiz, S.; Zirbel, K.; Lounibos, L.P. Diurnal temperature range and Chikungunya virus infection in invasive mosquito vectors. J. Med. Entomol. 2018, 55, 217–224. [Google Scholar] [CrossRef]
- Bustin, S.A. Absolute quantification of mRNA using real-time reverse transcription polymerase chain reaction assays. J. Mol. Endocrinol. 2000, 25, 169–193. [Google Scholar] [CrossRef]
- Scheiner, S.M. MANOVA: Multiple response variables and multispecies interactions. In Design and Analysis of Ecological Experiments; CRC Press: Boca Raton, FL, USA, 2020; pp. 94–112. [Google Scholar]
- Alto, B.W.; Lounibos, L.P. Vector competence for arboviruses in relation to the larval environment of mosquitoes. In Ecology of Parasite-Vector Interactions; Wageningen Academic: Wageningen, The Netherlands, 2013; pp. 81–101. [Google Scholar]
- Lord, C.C. Density dependence in larval Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 1998, 35, 825–829. [Google Scholar] [CrossRef]
- Alto, B.; Reiskind, M.; Lounibos, L. Size alters susceptibility of vectors to dengue virus infection and dissemination. Am. J. Trop. Med. Hyg. 2008, 79, 688–695. [Google Scholar] [CrossRef]
- Xue, R.-D.; Barnard, D.R.; Muller, G.C. Effects of body size and nutritional regimen on survival in adult Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2010, 47, 778–782. [Google Scholar] [CrossRef]
- Telang, A.; Qayum, A.A.; Parker, A.; Sacchetta, B.R.; Byrnes, G.R. Larval nutritional stress affects vector immune traits in adult yellow fever mosquito Aedes aegypti (Stegomyia aegypti). Med. Vet. Entomol. 2012, 26, 271–281. [Google Scholar] [CrossRef]
- Murrell, E.G.; Juliano, S.A. Detritus type alters the outcome of interspecific competition between Aedes aegypti and Aedes albopictus (Diptera: Culicidae). J. Med. Entomol. 2008, 45, 375–383. [Google Scholar] [CrossRef]
- Weger-Lucarelli, J.; Auerswald, H.; Vignuzzi, M.; Dussart, P.; Karlsson, E.A. Taking a bite out of nutrition and arbovirus infection. PLoS Negl. Trop. Dis. 2018, 12, e0006247. [Google Scholar] [CrossRef]
- Sumanochitrapon, W.; Strickman, D.; Sithiprasasna, R.; Kittayapong, P.; Innis, B.L. Effect of size and geographic origin of Aedes aegypti on oral infection with dengue-2 virus. Am. J. Trop. Med. Hyg. 1998, 58, 283–286. [Google Scholar] [CrossRef]
- Baqar, S.; Hayes, C.; Ahmed, T. The effect of larval rearing conditions and adult age on the susceptibility of Culex tritaenio-rhynchus to infection with West Nile virus. Mosq. News 1980, 40, 165–171. [Google Scholar]
- Vanslembrouck, A.; Jansen, S.; De Witte, J.; Janssens, C.; Vereecken, S.; Helms, M.; Lange, U.; Lühken, R.; Schmidt-Chanasit, J.; Heitmann, A. Larval Competition between Aedes and Culex mosquitoes carries over to higher arboviral infection during their adult stage. Viruses 2024, 16, 1202. [Google Scholar] [CrossRef] [PubMed]
- Bevins, S.N. Invasive mosquitoes, larval competition, and indirect effects on the vector competence of native mosquito species (Diptera: Culicidae). Biol. Invasions 2008, 10, 1109–1117. [Google Scholar] [CrossRef]
- Teng, H.-J.; Apperson, C.S. Development and survival of immature Aedes albopictus and Aedes triseriatus (Diptera: Culicidae) in the laboratory: Effects of density, food, and competition on response to temperature. J. Med. Entomol. 2000, 37, 40–52. [Google Scholar] [CrossRef]
Density | Food Level | Lambda λ′ | Standard Error |
---|---|---|---|
30 | High | 1.465 | 0.1416 |
30 | Low | 1.396 | 0.1416 |
60 | High | 1.435 | 0.1416 |
60 | Low | 1.117 | 0.1416 |
120 | High | 1.110 | 0.1416 |
120 | Low | 1.345 | 0.1416 |
180 | High | 1.300 | 0.1416 |
180 | Low | 1.279 | 0.1416 |
Standardized Canonical Coefficients | ||||||
---|---|---|---|---|---|---|
Factor | df | Pillai’s Trace | p | Survivorship | Development Time | Adult Size (Wing Length) |
Larval density | 9.81 | 1.02 | <0.0001 | 0.46 | 1.84 | −0.28 |
Food level | 3.25 | 0.23 | 0.0775 | 0.93 | −0.42 | 0.57 |
Larval density × food level | 9.81 | 0.20 | 0.7306 | 0.47 | 1.43 | −0.72 |
Standardized Canonical Coefficients | ||||||
---|---|---|---|---|---|---|
Factor | df | Pillai’s Trace | p | Survivorship | Development Time | Adult Size (Wing Length) |
Larval density | 9.63 | 1.14 | 0.0002 | 1.32 | 2.24 | 0.90 |
Food level | 3.19 | 0.34 | 0.0195 | 1.72 | 1.81 | 0.98 |
Larval density × food level | 9.63 | 0.23 | 0.7966 | 0.77 | 0.83 | −0.72 |
Treatment Effect | Body Infection (%) | Estimate | Standard Error | p | Disseminated Infection (%) | Estimate | Standard Error | p |
---|---|---|---|---|---|---|---|---|
30 Low | 76.92 | −1.2040 | 0.3801 | 0.0015 | 45.16 | 0.1942 | 0.3609 | 0.5906 |
30 High | 76.92 | −1.2040 | 0.6583 | 0.0674 | 61.54 | −0.4700 | 0.5701 | 0.4097 |
60 Low | 82.69 | −1.5640 | 0.3666 | <0.0001 | 38.10 | 0.4855 | 0.3177 | 0.1265 |
60 High | 79.66 | −1.3652 | 0.3234 | <0.0001 | 30.61 | 0.8183 | 0.3100 | 0.0083 |
120 Low | 72.31 | −0.9598 | 0.2772 | 0.0005 | 44.68 | 0.2136 | 0.2934 | 0.4666 |
120 High | 73.33 | −1.0116 | 0.4129 | 0.0143 | 31.82 | 0.7621 | 0.4577 | 0.0959 |
180 Low | 71.74 | −0.9316 | 0.3275 | 0.0044 | 54.55 | −0.1823 | 0.3496 | 0.6020 |
180 High | 39.13 | 0.4418 | 0.2467 | 0.0733 | 7.14 | 2.5649 | 0.7338 | 0.0005 |
Source | df | F-Value | p |
---|---|---|---|
Body titer | |||
Food | 1 | 1.18 | 0.2936 |
Density | 3 | 0.82 | 0.5036 |
Food × density | 3 | 1.01 | 0.4158 |
Leg titer | |||
Food | 1 | 2.66 | 0.1272 |
Density | 3 | 1.63 | 0.2305 |
Food × density | 3 | 0.95 | 0.4466 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Resck, M.E.B.; Honório, N.A.; Alto, B.W. Does Nutrient Availability and Larval Competition Alter Chikungunya Virus Infection in the Mosquito Aedes albopictus? Viruses 2025, 17, 613. https://doi.org/10.3390/v17050613
Resck MEB, Honório NA, Alto BW. Does Nutrient Availability and Larval Competition Alter Chikungunya Virus Infection in the Mosquito Aedes albopictus? Viruses. 2025; 17(5):613. https://doi.org/10.3390/v17050613
Chicago/Turabian StyleResck, Maria Eduarda Barreto, Nildimar Alves Honório, and Barry Wilmer Alto. 2025. "Does Nutrient Availability and Larval Competition Alter Chikungunya Virus Infection in the Mosquito Aedes albopictus?" Viruses 17, no. 5: 613. https://doi.org/10.3390/v17050613
APA StyleResck, M. E. B., Honório, N. A., & Alto, B. W. (2025). Does Nutrient Availability and Larval Competition Alter Chikungunya Virus Infection in the Mosquito Aedes albopictus? Viruses, 17(5), 613. https://doi.org/10.3390/v17050613