Arbovirus Detection in Aedes aegypti Mosquitoes in Manabí, Ecuador
Abstract
1. Introduction
2. Material and Methods
2.1. Study Area
2.2. Mosquito Collection
2.3. RNA Extraction in Pool
2.4. cDNA Synthesis
2.5. Positive and Negative Controls
2.6. End-Point PCR
2.7. Real-Time PCR and Sanger Sequencing
2.8. Bioinformatic Analysis
3. Results and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hernandez, R.; Brown, D.T.; Paredes, A. Structural differences observed in arboviruses of the alphavirus and flavivirus genera. Adv. Virol. 2014, 2014, 259382. [Google Scholar] [CrossRef] [PubMed]
- Soni, S.; Gill, V.J.S.; Singh, J.; Chhabra, J.; Gill, G.J.S.; Bakshi, R. Dengue, chikungunya, and Zika: The causes and threats of emerging and re-emerging arboviral diseases. Cureus 2023, 15, e41717. [Google Scholar] [CrossRef]
- Velandia-Romero, M.; Olano, V.; Coronel-Ruiz, C.; Cabezas, L.; Calderón-Peláez, M.; Castellanos, J.; Matiz, M. Detección del virus del dengue en larvas y pupas de Aedes aegypti recolectadas en áreas rurales del municipio de Anapoima, Cundinamarca, Colombia. Biomédica 2017, 37, 193–200. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.J.; Carlson, C.J.; Mordecai, E.A.; Johnson, L.R. Global expansion and redistribution of Aedes-borne virus transmission risk with climate change. PLoS Negl. Trop. Dis. 2019, 13, e0007213. [Google Scholar] [CrossRef] [PubMed]
- Campbell-Lendrum, D.; Manga, L.; Bagayoko, M.; Sommerfeld, J. Climate change and vector-borne diseases: What are the implications for public health research and policy? Philos. Trans. R. Soc. Biol. Sci. 2015, 370, 20130552. [Google Scholar] [CrossRef]
- Santiago, G.A.; Vázquez, J.; Courtney, S.; Matías, K.Y.; Andersen, L.E.; Colón, C.; Butler, A.E.; Roulo, R.; Bowzard, J.; Villanueva, J.M.; et al. Performance of the Trioplex real-time RT-PCR assay for detection of Zika, dengue, and chikungunya viruses. Nat. Commun. 2018, 9, 1391. [Google Scholar] [CrossRef]
- Reinhold, J.M.; Lazzari, C.R.; Lahondère, C. Effects of the environmental temperature on Aedes aegypti and Aedes albopictus mosquitoes: A Review. Insects 2018, 9, 158. [Google Scholar] [CrossRef]
- Silva, N.M.; Santos, N.C.; Martins, I.C. Dengue and Zika viruses: Epidemiological history, potential therapies, and promising vaccines. Trop. Med. Infect. Dis. 2020, 5, 150. [Google Scholar] [CrossRef]
- World Health Organization. Disease Outbreak News: Annual Compendium 2022; World Health Organization: Geneva, Switzerland, 2024; Available online: https://www.who.int/es/emergencies/disease-outbreak-news/item/2023-DON448 (accessed on 14 December 2024).
- Khan, M.B.; Yang, Z.S.; Lin, C.Y.; Hsu, M.C.; Urbina, A.N.; Assavalapsakul, W.; Wang, W.H.; Chen, Y.H.; Wang, S.F. Dengue overview: An updated systemic review. J. Infect. Public Health 2023, 16, 1625–1642. [Google Scholar] [CrossRef]
- Chen, Y.; Li, N.; Lourenço, J.; Wang, L.; Cazelles, B.; Dong, L.; Li, B.; Liu, Y.; Jit, M.; Bosse, N.I.; et al. Measuring the effects of COVID-19-related disruption on dengue transmission in southeast Asia and Latin America: A statistical modelling study. Lancet Infect. Dis. 2022, 22, 657–667. [Google Scholar] [CrossRef]
- Pan American Health Organization. Epidemiological Update—Dengue, Chikungunya and Zika. 2023. Available online: https://www.paho.org/en/documents/epidemiological-update-dengue-chikungunya-and-zika-10-june-2023 (accessed on 10 September 2023).
- MSP. Enfermedades Transmitidas por Vectores Dengue Ecuador SE 01-14/2020. Available online: https://www.salud.gob.ec/wp-content/uploads/2020/04/DENGUE-SE_14_2020_GACETA.pdf (accessed on 10 September 2023).
- Valero-Cedeño, N.; Baque-Arteaga, K.; Calderón-Pico, A.; Caiza-Defaz, C.; Escobar-Rivera, M. Prevalencia de zika y chikungunya en los cantones de Jipijapa y Puerto López de la Provincia de Manabí, Ecuador. 2015–2020. Polo Del Conoc. 2020, 46, 968–981. Available online: https://polodelconocimiento.com/ojs/index.php/es/article/view/2388/4877 (accessed on 22 November 2024).
- MSP. Enfermedades Transmitidas por Vectores Dengue Ecuador SE 03-1/2023. Available online: https://www.salud.gob.ec/wp-content/uploads/2023/02/Gaceta-SE-3_2023.pdf (accessed on 10 September 2023).
- Talbot, B.; Sander, B.; Cevallos, V.; González, C.; Benítez, D.; Carissimo, C.; Carrasquilla Ferro, M.C.; Gauto, N.; Litwiñiuk, S.; López, K.; et al. Determinants of Aedes mosquito density as an indicator of arbovirus transmission risk in three sites affected by co-circulation of globally spreading arboviruses in Colombia, Ecuador and Argentina. Parasites Vectors 2021, 14, 482. [Google Scholar] [CrossRef]
- López-Rosero, A.; Sippy, R.; Stewart-Ibarra, A.M.; Ryan, S.J.; Mordecai, E.; Heras, F.; Beltrán, E.; Costales, J.A.; Neira, M. High prevalence of Zika virus infection in populations of Aedes aegypti from South-western Ecuador. PLoS Negl. Trop. Dis. 2024, 18, e0011908. [Google Scholar] [CrossRef] [PubMed]
- Ryan, S.J.; Mundis, S.J.; Aguirre, A.; Lippi, C.A.; Beltrán, E.; Heras, F.; Sanchez, V.; Borbor-Cordova, M.J.; Sippy, R.; Stewart-Ibarra, A.M.; et al. Seasonal and geographic variation in insecticide resistance in Aedes aegypti in southern Ecuador. PLoS. Negl. Trop. Dis. 2019, 13, e0007448. [Google Scholar] [CrossRef] [PubMed]
- Morales, D.; Ponce, P.; Cevallos, V.; Espinosa, P.; Vaca, D.; Quezada, W. Resistance Status of Aedes aegypti to Deltamethrin, Malathion, and Temephos in Ecuador. J. Am. Mosq. Control. Assoc. 2019, 35, 113–122. [Google Scholar] [CrossRef]
- Grijalva, M.J.; Villacís, A.G.; Moncayo, A.L.; Ocaña-Mayorga, S.; Yumiseva, C.A.; Baus, E.G. Distribution of triatomine species in domestic and peridomestic environments in central coastal Ecuador. PLoS Negl. Trop. Dis. 2017, 11, e0005970. [Google Scholar] [CrossRef]
- Black, C.L.; Ocaña, S.; Riner, D.; Costales, J.A.; Lascano, M.S.; Davila, S.; Arcos-Teran, L.; Seed, J.R.; Grijalva, M.J. Household risk factors for Trypanosoma cruzi seropositivity in two geographic regions of Ecuador. J. Parasitol. 2007, 93, 12–16. [Google Scholar] [CrossRef]
- Villacís, A.G.; Marcet, P.L.; Yumiseva, C.A.; Dotson, E.M.; Tibayrenc, M.; Brenière, S.F.; Grijalva, M.J. Pioneer study of population genetics of Rhodnius ecuadoriensis (Hemiptera: Reduviidae) from the central coast and southern Andean regions of Ecuador. Infect. Genet. Evol. 2017, 53, 116–127. [Google Scholar] [CrossRef]
- Hidalgo Zambrano, R.V.; Milanes, C.B.; Pérez Montero, O.; Mestanza-Ramón, C.; Nexar Bolivar, L.O.; Cobeña Loor, D.; García Flores De Válgaz, R.G.; Cuker, B.A. Sustainable Proposal for a Cultural Heritage Declaration in Ecuador: Vernacular Housing of Portoviejo. Sustainability 2023, 15, 1115. [Google Scholar] [CrossRef]
- Vazquez-Prokopec, G.M.; Galvin, W.A.; Kelly, R.; Kitron, U. A New, Cost-Effective, Battery-Powered Aspirator for Adult Mosquito Collections. J. Med. Entomol. 2009, 6, 1256–1259. [Google Scholar] [CrossRef]
- Kuno, G. Universal diagnostic RT-PCR protocol for arboviruses. J. Virol. Methods 1998, 72, 27–41. [Google Scholar] [CrossRef] [PubMed]
- Pfeffer, M.; Proebster, B.; Kinney, R.M.; Kaaden, O.R. Genus-specific detection of alphaviruses by a semi-nested reverse transcription-polymerase chain reaction. Am. J. Trop. Med. Hyg. 1997, 57, 709–718. [Google Scholar] [CrossRef]
- Lanciotti, R.S.; Calisher, C.H.; Gubler, D.J.; Chang, G.J.; Vorndam, A.V. Rapid detection and typing of dengue viruses from clinical samples by using reverse transcriptase-polymerase chain reaction. J. Clin. Microbiol. 1992, 30, 545–551. [Google Scholar] [CrossRef]
- Faye, O.; Faye, O.; Dupressoir, A.; Weidmann, M.; Ndiaye, M.; Alpha Sall, A. One-step RT-PCR for detection of Zika virus. J. Clin. Virol. 2008, 43, 96–101. [Google Scholar] [CrossRef]
- BioPerfectus Technologies. Zika Virus Real Time PCR Kit. Available online: https://www.bioperfectus.com/ProductDetail/ZikaVirusRealTimePCRKit (accessed on 18 September 2023).
- Stellwagen, N.C. Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution. Electrophoresis 2009, 30, S188–S195. [Google Scholar] [CrossRef]
- Ryan, S.J.; Lippi, C.A.; Stewart-Ibarra, A.M. Mapping geographic and demographic shifts for container breeding mosquito-borne disease transmission suitability in Central and South America in a warming world. PLoS Clim. 2024, 49, e0000312. [Google Scholar] [CrossRef]
- Ciota, A.T. The role of co-infection and swarm dynamics in arbovirus transmission. Virus Res. 2019, 35, 88–93. [Google Scholar] [CrossRef] [PubMed]
- Rückert, C.; Weger-Lucarelli, J.; Garcia-Luna, S.M.; Young, M.C.; Byas, A.D.; Murrieta, R.A.; Fauver, J.R.; Ebel, G.D. Impact of simultaneous exposure to arboviruses on infection and transmission by Aedes aegypti mosquitoes. Nat. Commun. 2017, 8, 15412. [Google Scholar] [CrossRef]
- Hummon, A.B.; Lim, S.R.; Difilippantonio, M.J.; Ried, T. Isolation and solubilization of proteins after TRIzol® extraction of RNA and DNA from patient material following prolonged storage. Biotechniques 2007, 42, 467–472. [Google Scholar] [CrossRef]
- Mhamadi, M.; Mencattelli, G.; Gaye, A.; Ndiaye, E.H.; Sow, A.A.; Faye, M.; Ndione, M.H.D.; Diagne, M.M.; Mhamadi, M.; Faye, O.; et al. Rapid On-Site Detection of Arboviruses by a Direct RT-qPCR Assay. Biosensors 2023, 13, 1035. [Google Scholar] [CrossRef]
- Bos, S.; Gadea, G.; Despres, P. Dengue: A growing threat requiring vaccine development for disease prevention. Pathog. Glob. Health 2018, 112, 294–305. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Harada, S. RNA isolation from mammalian samples. Curr. Protoc. Mol. Biol. 2013, 103, 4–16. [Google Scholar] [CrossRef] [PubMed]
Primer Pair (Code) | Amplicon | Source | |
---|---|---|---|
Flavivirus | MA: 5′-CATGATGGGRAARAGRGARRAG-3′ CFD2: 5′-GTGTCCCAGCCGGCGGTGTCATCAGC-3′ | 260 bp | [25] |
Alphavirus | M2W: 5′-(CT)AGAGC(AGT)TTTTCGCA(CT)(GC)T(AG)GC(ACT)(AT) cM3W: 3′-ACAT(AG)AAN(GT)GNGTNGT(AG)TC(AG)AANCC(AGT)A(CT)CC | 434 bp | [26] |
dengue | D1-F: 5′-TCAATATGCTGAAACGCGCGAGAAACCG-3′ D2-R: 5′-TTGCACCAACAGTCAATGTCTTCAGGTTC-3′ | 511 bp | [27] |
Zika | ZIKVENVF: 5′-GCTGGDGCRGACACHGGRACT-3′ ZIKVENVR: 5′-RTCYACYGCCATYTGGRCTG-3′ | 364 bp | [28] |
End-Point PCR | RT-PCR Kit (bioPerfectus) | Sanger Sequencing | |
---|---|---|---|
Flavivirus | >75% | N/A | N/A |
dengue | 11 | 0 | 0 |
Zika | 7 | 0 | 2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wilca-Cepeda, A.; López-Rosero, A.; Yumiseva, C.A.; Grijalva, M.J.; Villacís, A.G. Arbovirus Detection in Aedes aegypti Mosquitoes in Manabí, Ecuador. Pathogens 2025, 14, 446. https://doi.org/10.3390/pathogens14050446
Wilca-Cepeda A, López-Rosero A, Yumiseva CA, Grijalva MJ, Villacís AG. Arbovirus Detection in Aedes aegypti Mosquitoes in Manabí, Ecuador. Pathogens. 2025; 14(5):446. https://doi.org/10.3390/pathogens14050446
Chicago/Turabian StyleWilca-Cepeda, Alvaro, Andrea López-Rosero, Cesar A. Yumiseva, Mario J. Grijalva, and Anita G. Villacís. 2025. "Arbovirus Detection in Aedes aegypti Mosquitoes in Manabí, Ecuador" Pathogens 14, no. 5: 446. https://doi.org/10.3390/pathogens14050446
APA StyleWilca-Cepeda, A., López-Rosero, A., Yumiseva, C. A., Grijalva, M. J., & Villacís, A. G. (2025). Arbovirus Detection in Aedes aegypti Mosquitoes in Manabí, Ecuador. Pathogens, 14(5), 446. https://doi.org/10.3390/pathogens14050446