Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (85)

Search Parameters:
Keywords = aquifer system depletion

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
30 pages, 9692 KiB  
Article
Integrating GIS, Remote Sensing, and Machine Learning to Optimize Sustainable Groundwater Recharge in Arid Mediterranean Landscapes: A Case Study from the Middle Draa Valley, Morocco
by Adil Moumane, Abdessamad Elmotawakkil, Md. Mahmudul Hasan, Nikola Kranjčić, Mouhcine Batchi, Jamal Al Karkouri, Bojan Đurin, Ehab Gomaa, Khaled A. El-Nagdy and Youssef M. Youssef
Water 2025, 17(15), 2336; https://doi.org/10.3390/w17152336 - 6 Aug 2025
Abstract
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies [...] Read more.
Groundwater plays a crucial role in sustaining agriculture and livelihoods in the arid Middle Draa Valley (MDV) of southeastern Morocco. However, increasing groundwater extraction, declining rainfall, and the absence of effective floodwater harvesting systems have led to severe aquifer depletion. This study applies and compares six machine learning (ML) algorithms—decision trees (CART), ensemble methods (random forest, LightGBM, XGBoost), distance-based learning (k-nearest neighbors), and support vector machines—integrating GIS, satellite data, and field observations to delineate zones suitable for groundwater recharge. The results indicate that ensemble tree-based methods yielded the highest predictive accuracy, with LightGBM outperforming the others by achieving an overall accuracy of 0.90. Random forest and XGBoost also demonstrated strong performance, effectively identifying priority areas for artificial recharge, particularly near ephemeral streams. A feature importance analysis revealed that soil permeability, elevation, and stream proximity were the most influential variables in recharge zone delineation. The generated maps provide valuable support for irrigation planning, aquifer conservation, and floodwater management. Overall, the proposed machine learning–geospatial framework offers a robust and transferable approach for mapping groundwater recharge zones (GWRZ) in arid and semi-arid regions, contributing to the achievement of Sustainable Development Goals (SDGs))—notably SDG 6 (Clean Water and Sanitation), by enhancing water-use efficiency and groundwater recharge (Target 6.4), and SDG 13 (Climate Action), by supporting climate-resilient aquifer management. Full article
Show Figures

Figure 1

30 pages, 7472 KiB  
Article
Two Decades of Groundwater Variability in Peru Using Satellite Gravimetry Data
by Edgard Gonzales, Victor Alvarez and Kenny Gonzales
Appl. Sci. 2025, 15(14), 8071; https://doi.org/10.3390/app15148071 - 20 Jul 2025
Viewed by 509
Abstract
Groundwater is a critical yet understudied resource in Peru, where surface water has traditionally dominated national assessments. This study provides the first country-scale analysis of groundwater storage (GWS) variability in Peru from 2003 to 2023 using satellite gravimetry data from the Gravity Recovery [...] Read more.
Groundwater is a critical yet understudied resource in Peru, where surface water has traditionally dominated national assessments. This study provides the first country-scale analysis of groundwater storage (GWS) variability in Peru from 2003 to 2023 using satellite gravimetry data from the Gravity Recovery and Climate Experiment (GRACE) and GRACE Follow-On (GRACE-FO) missions. We used the GRACE Data Assimilation-Data Mass Modeling (GRACE-DA-DM GLV3.0) dataset at 0.25° resolution to estimate annual GWS trends and evaluated the influence of El Niño–Southern Oscillation (ENSO) events and anthropogenic extraction, supported by in situ well data from six major aquifers. Results show a sustained GWS decline of 30–40% in coastal and Andean regions, especially in Lima, Ica, Arequipa, and Tacna, while the Amazon basin remained stable. Strong correlation (r = 0.95) between GRACE data and well records validate the findings. Annual precipitation analysis from 2003 to 2023, disaggregated by climatic zone, revealed nearly stable trends. Coastal El Niño events (2017 and 2023) triggered episodic recharge in the northern and central coastal regions, yet these were insufficient to reverse the sustained groundwater depletion. This research provides significant contributions to understanding the spatiotemporal dynamics of groundwater in Peru through the use of satellite gravimetry data with unprecedented spatial resolution. The findings reveal a sustained decline in GWS across key regions and underscore the urgent need to implement integrated water management strategies—such as artificial recharge, optimized irrigation, and satellite-based early warning systems—aimed at preserving the sustainability of the country’s groundwater resources. Full article
Show Figures

Figure 1

26 pages, 4486 KiB  
Article
Predicting Groundwater Level Dynamics and Evaluating the Impact of the South-to-North Water Diversion Project Using Stacking Ensemble Learning
by Hangyu Wu, Rong Liu, Chuiyu Lu, Qingyan Sun, Chu Wu, Lingjia Yan, Wen Lu and Hang Zhou
Sustainability 2025, 17(13), 6120; https://doi.org/10.3390/su17136120 - 3 Jul 2025
Viewed by 380
Abstract
This study aims to improve the accuracy and interpretability of deep groundwater level forecasting in Cangzhou, a typical overexploitation area in the North China Plain. To address the limitations of traditional models and existing machine learning approaches, we develop a Stacking ensemble learning [...] Read more.
This study aims to improve the accuracy and interpretability of deep groundwater level forecasting in Cangzhou, a typical overexploitation area in the North China Plain. To address the limitations of traditional models and existing machine learning approaches, we develop a Stacking ensemble learning framework that integrates meteorological, spatial, and anthropogenic variables, including lagged groundwater levels to reflect aquifer memory. The model combines six heterogeneous base learners with a meta-model to enhance prediction robustness. Performance evaluation shows that the ensemble model consistently outperforms individual models in accuracy, generalization, and spatial adaptability. Scenario-based simulations are further conducted to assess the effects of the South-to-North Water Diversion Project. Results indicate that the diversion project significantly mitigates groundwater depletion, with the most overexploited zones showing water level recovery of up to 17 m compared to the no-diversion scenario. Feature importance analysis confirms that lagged water levels and pumping volumes are dominant predictors, aligning with groundwater system dynamics. These findings demonstrate the effectiveness of ensemble learning in modeling complex groundwater behavior and provide a practical tool for water resource regulation. The proposed framework is adaptable to other groundwater-stressed regions and supports dynamic policy design for sustainable groundwater management. Full article
(This article belongs to the Special Issue Sustainable Water Management in Rapid Urbanization)
Show Figures

Figure 1

22 pages, 2863 KiB  
Article
Predicting Thermal Performance of Aquifer Thermal Energy Storage Systems in Depleted Clastic Hydrocarbon Reservoirs via Machine Learning: Case Study from Hungary
by Hawkar Ali Abdulhaq, János Geiger, István Vass, Tivadar M. Tóth, Tamás Medgyes, Gábor Bozsó, Balázs Kóbor, Éva Kun and János Szanyi
Energies 2025, 18(10), 2642; https://doi.org/10.3390/en18102642 - 20 May 2025
Viewed by 846
Abstract
This study presents an innovative approach for repurposing depleted clastic hydrocarbon reservoirs in Hungary as High-Temperature Aquifer Thermal Energy Storage (HT-ATES) systems, integrating numerical heat transport modeling and machine learning optimization. A detailed hydrogeological model of the Békési Formation was built using historical [...] Read more.
This study presents an innovative approach for repurposing depleted clastic hydrocarbon reservoirs in Hungary as High-Temperature Aquifer Thermal Energy Storage (HT-ATES) systems, integrating numerical heat transport modeling and machine learning optimization. A detailed hydrogeological model of the Békési Formation was built using historical well logs, core analyses, and production data. Heat transport simulations using MODFLOW/MT3DMS revealed optimal dual-well spacing and injection strategies, achieving peak injection temperatures around 94.9 °C and thermal recovery efficiencies ranging from 81.05% initially to 88.82% after multiple operational cycles, reflecting an efficiency improvement of approximately 8.5%. A Random Forest model trained on simulation outputs predicted thermal recovery performance with high accuracy (R2 ≈ 0.87) for candidate wells beyond the original modeling domain, demonstrating computational efficiency gains exceeding 90% compared to conventional simulations. The proposed data-driven methodology significantly accelerates optimal site selection and operational planning, offering substantial economic and environmental benefits and providing a scalable template for similar geothermal energy storage initiatives in other clastic sedimentary basins. Full article
(This article belongs to the Special Issue Energy, Engineering and Materials 2024)
Show Figures

Figure 1

16 pages, 4793 KiB  
Article
Agroforestry Systems Enhance Soil Moisture Retention and Aquifer Recharge in a Semi-Arid Mexican Valley
by Aldo Yair Pulido-Esquivel, Jorge Víctor Prado-Hernández, Julio César Buendía-Espinoza and Rosa María García-Núñez
Water 2025, 17(10), 1488; https://doi.org/10.3390/w17101488 - 15 May 2025
Viewed by 624
Abstract
Agroforestry systems (AFSs) have been recognized for their ecological potential, yet quantitative assessments of their hydrological functions in semi-arid regions remain limited. This study evaluates soil moisture retention and potential aquifer recharge in two agroforestry systems compared to a traditional rainfed maize system [...] Read more.
Agroforestry systems (AFSs) have been recognized for their ecological potential, yet quantitative assessments of their hydrological functions in semi-arid regions remain limited. This study evaluates soil moisture retention and potential aquifer recharge in two agroforestry systems compared to a traditional rainfed maize system in the semi-desert region of Celaya, Mexico, where aquifer depletion is a growing concern. Field measurements during the 2022 rainy season included precipitation, soil moisture at multiple depths, and soil physical properties across seven vegetation covers. The results show significantly higher moisture content, improved uniformity, and enhanced recharge potential under tree species such as Bursera graveolens and Lysiloma divaricatum. These effects are attributed to vegetation cover, organic matter input, and reduced evaporation. This study provides empirical evidence supporting the integration of AFSs into regional water management strategies, offering a nature-based solution for aquifer recovery and climate adaptation in arid landscapes. Full article
(This article belongs to the Special Issue Research on Soil and Water Conservation and Vegetation Restoration)
Show Figures

Figure 1

28 pages, 2480 KiB  
Article
Sustainable Water-Related Hazards Assessment in Open Pit-to-Underground Mining Transitions: An IDRR and MCDM Approach at Sijiaying Iron Mine, China
by Aboubakar Siddique, Zhuoying Tan, Wajid Rashid and Hilal Ahmad
Water 2025, 17(9), 1354; https://doi.org/10.3390/w17091354 - 30 Apr 2025
Cited by 2 | Viewed by 662
Abstract
The transition from open pit to underground mining intensifies water-related hazards such as Acid Mine Drainage (AMD), groundwater contamination, and aquifer depletion, threatening ecological and socio-economic sustainability. This study develops an Inclusive Disaster Risk Reduction (IDRR) framework using a Multi-Dimensional Risk (MDR) approach [...] Read more.
The transition from open pit to underground mining intensifies water-related hazards such as Acid Mine Drainage (AMD), groundwater contamination, and aquifer depletion, threatening ecological and socio-economic sustainability. This study develops an Inclusive Disaster Risk Reduction (IDRR) framework using a Multi-Dimensional Risk (MDR) approach to holistically assess water hazards in China’s mining regions, integrating environmental, social, governance, economic, technical, community-based, and technological dimensions. A Multi-Criteria Decision-Making (MCDM) model combining the Fuzzy Analytic Hierarchy Process (AHP) and Technique for Order Preference by Similarity to Ideal Solution (TOPSIS) evaluates risks, enhanced by a Z-number Fuzzy Delphi AHP (ZFDAHP) spatiotemporal model to dynamically weight hazards across temporal (short-, medium-, long-term) and spatial (local to global) scales. Applied to the Sijiaying Iron Mine, AMD (78% severity) and groundwater depletion (72% severity) emerge as dominant hazards exacerbated by climate change impacts (36.3% dynamic weight). Real-time IoT monitoring systems and AI-driven predictive models demonstrate efficacy in mitigating contamination, while gender-inclusive governance and community-led aquifer protection address socio-environmental gaps. The study underscores the misalignment between static regulations and dynamic spatiotemporal risks, advocating for Lifecycle Assessments (LCAs) and transboundary water agreements. Policy recommendations prioritize IoT adoption, carbon–water nexus incentives, and Indigenous knowledge integration to align mining transitions with Sustainable Development Goals (SDGs) 6 (Clean Water), 13 (Climate Action), and 14 (Life Below Water). This research advances a holistic strategy to harmonize mineral extraction with water security, offering scalable solutions for global mining regions facing similar ecological and governance challenges. Full article
Show Figures

Figure 1

30 pages, 2923 KiB  
Article
Assessing the Relationship Between Groundwater Availability, Access, and Contamination Risk in Arizona’s Drinking Water Sources
by Simone A. Williams, Adriana A. Zuniga-Teran, Sharon B. Megdal, David M. Quanrud and Gary Christopherson
Water 2025, 17(7), 1097; https://doi.org/10.3390/w17071097 - 6 Apr 2025
Cited by 1 | Viewed by 2242
Abstract
Groundwater is a critical drinking water source in arid regions globally, where reliance on groundwater is highest. However, disparities in groundwater availability, access, and quality pose challenges to water security. This case study employs geostatistical tools, multivariate regression, and clustering analysis to examine [...] Read more.
Groundwater is a critical drinking water source in arid regions globally, where reliance on groundwater is highest. However, disparities in groundwater availability, access, and quality pose challenges to water security. This case study employs geostatistical tools, multivariate regression, and clustering analysis to examine the intersection of groundwater level changes (availability), socioeconomic and regulatory factors (access), and nitrate and arsenic contamination (quality) across 1881 groundwater-supplied drinking water service areas in Arizona. Groundwater availability declined over 20-year and 10-year periods, particularly outside designated management areas, with mean annual decline rates ranging from −15.97 to −0.003 m/year. In contrast, increases (0.003 to 13.41 m/year) were concentrated in urban and managed areas. Karst aquifers show long-term resilience but short-term vulnerability. Non-designated areas exhibit mixed effects, reflecting variable management effectiveness. Disparities in groundwater access emerge along various socioeconomic and regulatory lines. Communities with higher Black populations are twice as likely (OR = 2.01, p < 0.001) to experience groundwater declines, while Hispanic/Latino communities have lower depletion risks (OR = 0.92, p < 0.001). Tribal oversight significantly reduces groundwater decline risk (OR = 0.62, p < 0.001), whereas state–primacy areas show mixed effects. Higher female populations correlate with increased groundwater declines, while older populations (65+) experience greater stability. Married-family households and institutional housing are associated with greater declines. Migrant worker housing shows protective effects in long-term models. Rising groundwater levels are associated with higher nitrate and arsenic detection, reinforcing recharge-driven contaminant mobilization. Nitrate exceedance (OR = 1.05) responds more to short-term groundwater changes, while arsenic exceedance persists over longer timescales (OR = 1.01–1.05), reflecting their distinct hydrogeochemical behaviors. Community water systems show higher pollutant detection rates than domestic well areas, suggesting monitoring and infrastructure differences influence contamination patterns. Tribal primacy areas experience lower groundwater declines but show mixed effects on water quality, with reduced nitrate exceedance probabilities; yet they show variable arsenic contamination patterns, suggesting that governance influences availability and contamination dynamics. These findings advance groundwater sustainability research by quantifying disparities across multiple timescales and socio-hydrogeological drivers of groundwater vulnerability. The results underscore the need for expanded managed aquifer recharge, targeted regulatory interventions, and strengthened Tribal water governance to reduce inequities in availability, access, and contamination risk to support equitable and sustainable groundwater management. Full article
Show Figures

Figure 1

17 pages, 689 KiB  
Article
Bridging Governance Gaps: A Political Ecology Analysis of Water Challenges in Guanajuato, Mexico
by Luzma Fabiola Nava
Sustainability 2025, 17(7), 3245; https://doi.org/10.3390/su17073245 - 5 Apr 2025
Viewed by 2136
Abstract
In this study, the systemic challenges of water governance in Guanajuato, Mexico, are examined through a political ecology framework, identifying how governance failures, power asymmetries, and socio-environmental inequalities contribute to water scarcity and mismanagement. Guanajuato, a key agricultural and industrial hub in Mexico’s [...] Read more.
In this study, the systemic challenges of water governance in Guanajuato, Mexico, are examined through a political ecology framework, identifying how governance failures, power asymmetries, and socio-environmental inequalities contribute to water scarcity and mismanagement. Guanajuato, a key agricultural and industrial hub in Mexico’s semi-arid Bajío region, faces severe aquifer depletion, pollution, and institutional fragmentation, disproportionately affecting rural and marginalized communities. Using a qualitative research design, 25 semi-structured expert interviews and a case study analysis were conducted, applying thematic coding and content analysis to examine governance structures, regulatory gaps, and socio-environmental conflicts. The findings revealed that institutional fragmentation, preferential water allocation to industry, and weak enforcement mechanisms perpetuate governance failures, with community resistance and alternative governance strategies emerging as key responses. The results of this study emphasize the need for adaptive governance reforms, including measures such as integrating local knowledge, strengthening participatory decision-making, and fostering cross-sector collaboration to ensure equitable resource distribution and environmental sustainability. Guanajuato’s case offers critical insights for improving water governance in arid regions globally, demonstrating the relevance of political ecology in analyzing and addressing governance asymmetries in water management. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Graphical abstract

16 pages, 13043 KiB  
Article
The Hydrodynamic Simulation of Karst Water Under Deep Coal Mining and Fault Conditions: A Case Study of the Zhuxianzhuang Mine in Northern Anhui
by Zhenghao Xu, Qimeng Liu, Kai Chen, Huichan Chai and Qiding Ju
Appl. Sci. 2025, 15(5), 2312; https://doi.org/10.3390/app15052312 - 21 Feb 2025
Viewed by 573
Abstract
As shallow coal resources in China become increasingly depleted, deep coal mining in complex geological areas has become an inevitable trend. However, the technical challenges associated with deep mining are becoming more significant, particularly the issues related to mine water hazards. This study [...] Read more.
As shallow coal resources in China become increasingly depleted, deep coal mining in complex geological areas has become an inevitable trend. However, the technical challenges associated with deep mining are becoming more significant, particularly the issues related to mine water hazards. This study utilized hydrogeological data from the III3 Mining Area in the Zhuxianzhuang Coal Mine, Anhui Province, and employed GMS (Groundwater Modeling System) software to construct a numerical karst water flow model under deep mining conditions. By simulating variations in the flow field, the study verified the drainage potential of the limestone water at the base of Seam 10 and assessed the water conductivity and connectivity of the F22 fault. The following conclusions were obtained: The simulation effectively captured the formation process of the karst water drawdown cone in the study area. The observed water level variations in different monitoring wells aligned well with the engineering reality after validation. The limestone water at the base of Seam 10 in the III3 Mining Area exhibited good transmissivity, weak recharge, and high drainage potential. Although the F22 fault is a normal fault with a maximum displacement of 550 m, offsetting formations from Seam 3 to the Ordovician limestone, its connectivity and water conductivity are poor, exhibiting significant water-blocking properties. The specific capacity (q) ranges from 1.40 × 10−4 to 3.26 × 10−3 m3/(s·m), and the hydraulic conductivity (K) ranges from 2.10 × 10−5 to 6.80 × 10−5. Under deep coal mining conditions, the extraction of coal disturbs the underlying limestone, generally resulting in an increase in its permeability coefficient compared to pre-mining conditions. The permeability coefficient (K) from the measured data before mining impact ranged from 0.000067 to 0.0022, while the simulated values after mining impact ranged from 0.0021 to 0.09. Additionally, mining activities affect the hydraulic head, flow rate, and flow paths of the karst water; the floor karst water is easily drainable, effectively reducing water pressure and the inrush coefficient, thus lowering water hazard risks. Although the mining area is affected by the large F22 fault, its water-resisting properties under sufficient drainage conditions prevent direct connectivity between the coal seam and the aquifer, avoiding water hazards. As global coal resources continue to be exploited, deep mining will inevitably become a common trend in coal extraction worldwide. This study develops a hydrogeological model tailored to deep mining under fault conditions, offering a solid theoretical foundation and practical reference for the prevention and management of mine water hazards on a global scale. This advancement contributes to the development of sustainable mining practices across the global industry. Full article
Show Figures

Figure 1

25 pages, 3614 KiB  
Review
Challenges and Opportunities for Aquifer Thermal Energy Storage (ATES) in EU Energy Transition Efforts—An Overview
by Katarina Marojević, Tomislav Kurevija and Marija Macenić
Energies 2025, 18(4), 1001; https://doi.org/10.3390/en18041001 - 19 Feb 2025
Viewed by 1668
Abstract
Aquifer Thermal Energy Storage (ATES) systems are a promising solution for sustainable energy storage, leveraging underground aquifers to store and retrieve thermal energy for heating and cooling. As the global energy sector faces rising energy demands, climate change, and the depletion of fossil [...] Read more.
Aquifer Thermal Energy Storage (ATES) systems are a promising solution for sustainable energy storage, leveraging underground aquifers to store and retrieve thermal energy for heating and cooling. As the global energy sector faces rising energy demands, climate change, and the depletion of fossil fuels, transitioning to renewable energy sources is imperative. ATES systems contribute to these efforts by reducing greenhouse gas (GHG) emissions and improving energy efficiency. This review uses the PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analysis) methodology as a systematic approach to collect and analyze relevant literature. It highlights trends, gaps, and advancements in ATES systems, focusing on simulation methods, environmental impacts, and economic feasibility. Tools like MODFLOW, FEFLOW, and COMSOL Multiphysics are emphasized for optimizing design and system performance. Europe is identified as a continent with the most favorable predispositions for ATES implementation due to its diverse and abundant aquifer systems, strong policy frameworks supporting renewable energy, and advancements in subsurface energy technologies. Full article
(This article belongs to the Special Issue Development and Utilization in Geothermal Energy)
Show Figures

Figure 1

27 pages, 6016 KiB  
Review
An Overview of Historical Development, Current Situation, and Future Prospects of Managed Aquifer Recharge in Türkiye
by Mehmet Korkut, Niels Hartog and Vural Yavuz
Water 2025, 17(3), 439; https://doi.org/10.3390/w17030439 - 5 Feb 2025
Cited by 2 | Viewed by 1578
Abstract
Climate change, rapid population growth, and unsustainable water use in industry and agriculture have all significantly harmed the quantity and quality of groundwater resources. Managed aquifer recharge (MAR) offers a solution to these challenges, encompassing a variety of methods and strategies for protecting [...] Read more.
Climate change, rapid population growth, and unsustainable water use in industry and agriculture have all significantly harmed the quantity and quality of groundwater resources. Managed aquifer recharge (MAR) offers a solution to these challenges, encompassing a variety of methods and strategies for protecting and improving groundwater systems. This article provides a complete overview of MAR in Türkiye, concentrating on its historical development, current situation, and future prospects. MAR has been increasingly used to combat water scarcity since the 1960s, particularly in arid and semi-arid regions in Türkiye with significant groundwater depletion. The majority of completed managed aquifer recharge (MAR) projects in Türkiye employ in-channel modifications, accounting for 77%. This is followed by well recharge techniques and surface spreading methods, with values of 16% and 4%, respectively. Future projects are expected to focus on the southeastern and central regions, with in-channel modifications increasing to 90%. In comparison, methods such as well recharge (6%), surface spreading (3%), and other methods are limited. Despite the growing application of MAR, Turkey requires strong regulatory frameworks to ensure the safe and successful implementation of these methods, including groundwater quality, source water regulations, and geological concerns regionally. MAR can promote sustainable water management by minimizing the effects of population growth and climate change on groundwater resources. Full article
Show Figures

Figure 1

22 pages, 4466 KiB  
Article
Assessment of the Geological Storage Potential and Suitability of CO2 in the Deep Saline Aquifers in the Northwest Plain of Shandong Province, China
by Shihao Wang, Hailong Tian, Xincun Zhao, Yan Yan, Xunchang Yang and Xuepeng Wang
Energies 2024, 17(24), 6387; https://doi.org/10.3390/en17246387 - 19 Dec 2024
Viewed by 1081
Abstract
Carbon capture and storage (CCS) technology is a crucial and effective tool to achieve China’s dual carbon goals. The primary locations suitable for underground CO2 storage include depleted oil and gas reservoirs, deep saline aquifers, and deep unmineable coal seams. Among these, [...] Read more.
Carbon capture and storage (CCS) technology is a crucial and effective tool to achieve China’s dual carbon goals. The primary locations suitable for underground CO2 storage include depleted oil and gas reservoirs, deep saline aquifers, and deep unmineable coal seams. Among these, deep saline aquifers are widely distributed in most of the world’s sedimentary basins, and they offer significant advantages—such as substantial storage capacity, well-established technology, high safety standards, and cost effectiveness—making them crucial geological reservoirs for carbon dioxide storage. In comparison to foreign countries’ projects on CO2 capture, utilization, and storage (CCUS) technology, China’s initiatives have been implemented more recently, and no research has been conducted on the geological storage of CO2 in the deep saline aquifers within the study area. In this study, we systematically analyzed the key factors for the geological storage of CO2 in saline reservoirs within the northwest plain of Shandong Province: the Paleogene Shahejie Formation saline aquifer, and the lower reservoir of the Minghuazhen Formation saline aquifer located east of the Zhanhua–Lijin–Dongying line. The CO2 geological storage potential of these aquifers was assessed using the evaluation methodology of the United States Department of Energy, yielding a result of 30.355 billion tons. An evaluation index system of CO2 geological storage suitability was established. Evaluation indices for regions in the study area were assigned according to this evaluation index, and the score and grade of each unit were obtained. The results indicated that the Huimin latent fault depression, Dongying latent fault depression, Dezhou latent fault depression, and Dongming–Shenxian latent fault depression are suitable prospective areas for CO2 geological storage in the saline aquifers of Shandong Province’s northwest plain. Full article
(This article belongs to the Section D: Energy Storage and Application)
Show Figures

Figure 1

23 pages, 9027 KiB  
Article
Investigating Induced Infiltration by Municipal Production Wells Using Stable Isotopes of Water (δ18O and δ2H), Four Mile Creek, Ohio
by Idah Ngoma, Jonathan Levy, Jason A. Rech and Tedros M. Berhane
Hydrology 2024, 11(12), 208; https://doi.org/10.3390/hydrology11120208 - 3 Dec 2024
Viewed by 1417
Abstract
Many municipalities around the world place their production wells in shallow alluvial aquifers that are adjacent to streams. Pumping these wells then induces the infiltration of surface water into the aquifer, allowing the greater extraction of water without significantly depleting the aquifer. However, [...] Read more.
Many municipalities around the world place their production wells in shallow alluvial aquifers that are adjacent to streams. Pumping these wells then induces the infiltration of surface water into the aquifer, allowing the greater extraction of water without significantly depleting the aquifer. However, induced infiltration poses a risk of introducing contamination from surface water into groundwater systems. The goal of this study was to quantify the amount of induced infiltration due to municipal pumping at the Four Mile Creek well field in Oxford, Ohio, using stable isotopes of water oxygen (δ18O) and deuterium (δ2H). In areas of municipal pumping, we sampled water from the production wells, Four Mile Creek, and from monitoring wells that we hypothesized to be both influenced and not influenced by induced infiltration. Samples were collected over 10 months in 2012 and over 12 months in 2021. In 2012, surface water δ18O values ranged from −3.89 to −8.04‰, and δ2H ranged from −26.55 to −55.65‰ at sampling sites. PW1 δ18O values ranged from −4.71 to −7.39‰ with a mean of −6.61 and −32.01 to −47.86‰ with a mean of −42.74‰ for δ2H. PW2 δ18O values ranged from −5.74 to −7.34‰, with a mean of −6.45‰, and δ2H ranged from −36.29 to −47.82‰ with a mean of −42.43‰. PW3 had lower values of both δ18O and δ2H, ranging from −6.36 to −8.02‰ and −47.7 to −40.35‰, and with means of −7.08 and −45.11, respectively. In 2021/2022, surface water δ18O values ranged from −5.32 to −7.93‰, and the δ2H ranged from −36.14 to −50.56‰. PW1 δ18O values ranged from −6.15 to −7.54‰ with a mean of −7.13‰, and δ2H ranged from −43.52 to −49.01‰ with a mean of −45.99‰. PW2 δ18O values ranged from −5.72 to −7.34‰, with a mean of −6.70‰, and δ2H ranged from −36.69 to −46.14‰, with a mean of −43.61‰. Using the time averaged values of δ18O of groundwater, production wells and surface water, the percentages of surface water resulting from induced infiltration in 2012 were 57%, 59% and 15% at the three wells, respectively, while in 2021, PW1 had 35% and PW2 91%. The amount of induced infiltration was apparently related to the pumping rates of the production wells, the length of time of pumping and the distance between Four Mile Creek and production wells. Our results indicate that stable isotopes of water provide a reliable method of quantifying groundwater/surface water interaction in alluvial aquifers. Full article
(This article belongs to the Special Issue Isotope Hydrology in the U.S.)
Show Figures

Figure 1

36 pages, 46209 KiB  
Article
Subsidence and Uplift in Active and Closed Lignite Mines: Impacts of Energy Transition and Climate Change
by Artur Guzy
Energies 2024, 17(22), 5540; https://doi.org/10.3390/en17225540 - 6 Nov 2024
Cited by 1 | Viewed by 1088
Abstract
This study examines the combined effects of decommissioning lignite mining operations and long-term climate trends on groundwater systems and land surface movements in the Konin region of Poland, which is characterised by extensive open-pit lignite extraction. The findings reveal subsidence rates ranging from [...] Read more.
This study examines the combined effects of decommissioning lignite mining operations and long-term climate trends on groundwater systems and land surface movements in the Konin region of Poland, which is characterised by extensive open-pit lignite extraction. The findings reveal subsidence rates ranging from −26 to 14 mm per year within mining zones, while land uplift of a few millimetres per year occurred in closed mining areas between 2015 and 2022. Groundwater levels in shallow Quaternary and deeper Paleogene–Neogene aquifers have declined significantly, with drops of up to 26 m observed near active mining, particularly between 2009 and 2019. A smaller groundwater decline of around a few metres was observed outside areas influenced by mining. Meteorological data show an average annual temperature of 8.9 °C from 1991 to 2023, with a clear warming trend of 0.0050 °C per year since 2009. Although precipitation patterns show a slight increase from 512 mm to 520 mm, a shift towards drier conditions has emerged since 2009, characterised by more frequent dry spells. These climatic trends, combined with mining activities, highlight the need for adaptive groundwater management strategies. Future research should focus on enhanced monitoring of groundwater recovery and sustainable practices in post-mining landscapes. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

14 pages, 4407 KiB  
Article
Geochemical Characteristics and Genesis of Brine Chemical Composition in Cambrian Carbonate-Dominated Succession in the Northeastern Region of Chongqing, Southwestern China
by Zhi-lin Zheng, Bin Xie, Chun-mei Wu, Lei Zhou, Ke Zhang, Bin-chen Zhang and Ping-heng Yang
Water 2024, 16(19), 2859; https://doi.org/10.3390/w16192859 - 9 Oct 2024
Cited by 2 | Viewed by 1536
Abstract
Deeply situated brine is abundant in rare metal minerals, possessing significant economic worth. To the authors’ knowledge, brine present within the Cambrian carbonate-dominated succession in the northeastern region of Chongqing, Southwestern China, has not been previously reported. In this investigation, brine samples were [...] Read more.
Deeply situated brine is abundant in rare metal minerals, possessing significant economic worth. To the authors’ knowledge, brine present within the Cambrian carbonate-dominated succession in the northeastern region of Chongqing, Southwestern China, has not been previously reported. In this investigation, brine samples were collected from an abandoned brine well, designated as Tianyi Well, for the purpose of analyzing the hydrochemical characteristics and geochemical evolution of the brine. Halide concentrations, associated ions, and their ionic ratios within the sampled brine were analyzed. The brine originating from the deep Cambrian aquifer was characterized by high salinity levels, with an average TDS value of 242 ± 11 g/L, and was dominated by a Na-Cl facies. The studied brine underwent a moderate degree of seawater evaporation, occurring between the saturation levels of gypsum and halite, accompanied by some halite dissolution. Compared to modern seawater evaporation, the depletion of Mg2+, HCO3, and SO42− concentrations, along with the enrichment of Ca2+, Li+, K+, and Sr2+, is likely primarily attributed to water–rock interactions. These interactions include dolomitization, combination of halite dissolution, upwelling of lithium- and potassium-bearing groundwater, calcium sulfate precipitation, biological sulfate reduction (BSR), and the common ion effect within the brine system. This research offers valuable insights into the genesis of the brine within the Cambrian carbonate succession and provides theoretical backing for the development of brine resources in the future. Full article
Show Figures

Figure 1

Back to TopTop