Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (333)

Search Parameters:
Keywords = aquifer layer

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2035 KiB  
Article
ABAQUS-Based Numerical Analysis of Land Subsidence Induced by Pit Pumping in Multi-Aquifer Systems
by Jiao Chen, Chaofeng Zeng, Xiuli Xue, Shuo Wang, Youwu Zhao and Zirui Zhang
Water 2025, 17(15), 2210; https://doi.org/10.3390/w17152210 - 24 Jul 2025
Viewed by 153
Abstract
Foundation pit pumping induces groundwater drawdown both inside and outside the pit, consequently causing surrounding land subsidence. Based on actual engineering cases, this study established a three-dimensional numerical model using ABAQUS software (version 6.14-4) to systematically investigate the temporal evolution of groundwater drawdown [...] Read more.
Foundation pit pumping induces groundwater drawdown both inside and outside the pit, consequently causing surrounding land subsidence. Based on actual engineering cases, this study established a three-dimensional numerical model using ABAQUS software (version 6.14-4) to systematically investigate the temporal evolution of groundwater drawdown and land subsidence during pit pumping, while quantifying the relationship between drawdown and subsidence stabilization time under different parameters. The key findings are as follows: (1) land subsidence stabilization time (50 days) is governed by external phreatic layer response, reaching 2.3 times longer than isolated aquifer conditions (22 days); (2) medium-permeability strata (0.01–10 K0,AdII) showed peak sensitivity to drawdown–subsidence coupling; (3) pumping from a confined aquifer extends the subsidence stabilization time by a factor of 1.1 compared to phreatic aquifer conditions. These findings provide valuable insights for the design and risk assessment of dewatering strategies in foundation pits within multi-aquifer systems. Full article
(This article belongs to the Special Issue Advances in Water Related Geotechnical Engineering)
Show Figures

Figure 1

15 pages, 2004 KiB  
Article
Impact of Aquifer Heterogeneity on the Migration and Natural Attenuation of Multicomponent Heavy Dense Nonaqueous Phase Liquids (DNAPLs) in a Retired Chemically Polluted Site
by Wenyi Xie, Mei Li, Dengdeng Jiang, Lingya Kong, Mengjie Wang, Shaopo Deng and Xuwei Li
Processes 2025, 13(8), 2338; https://doi.org/10.3390/pr13082338 - 23 Jul 2025
Viewed by 248
Abstract
Retired chemically polluted sites in southern Jiangsu Province, China, are characterized by dense nonaqueous phase liquids (DNAPLs) and extremely thick aquifers (>30 m), which pose substantial challenges for determining investigation and remediation depths during redevelopment and exploitation. This study constructed a 2D groundwater [...] Read more.
Retired chemically polluted sites in southern Jiangsu Province, China, are characterized by dense nonaqueous phase liquids (DNAPLs) and extremely thick aquifers (>30 m), which pose substantial challenges for determining investigation and remediation depths during redevelopment and exploitation. This study constructed a 2D groundwater transport model using TMVOC to systematically investigate the migration, diffusion, and natural attenuation processes of two typical DNAPLs—1,2-dichloroethane (DCE) and carbon tetrachloride (CTC)—under three scenarios: individual transport, mixed transport, and heterogeneous aquifer conditions, with a simulation period of 35 years. In individual transport scenarios, DCE and CTC showed distinct migration behaviors. DCE achieved a maximum vertical transport distance of 14.01 m and a downstream migration distance of 459.58 m, while CTC reached 13.57 m vertically and 453.51 m downstream. When transported as a mixture, their migration was inhibited: DCE’s vertical and downstream distances decreased to 13.76 m and 440.46 m, respectively; and CTC’s to 13.23 m and 420.32 m, likely due to mutual solvent effects that altered their physicochemical properties such as viscosity and solubility. Under natural attenuation conditions, both DNAPLs ceased downstream transport by the end of the 6th year. DCE concentrations dropped below its risk control value (0.81 mg/L) by the 14th year, and CTC (with a risk control value of 0.23 mg/L) by the 11th year. By the 10th year, DCE’s downstream plume had retreated to 48.65 m, and CTC’s to 0.95 m. In heterogeneous aquifers, vertical upward transport of DCE and CTC increased to 14.82 m and 14.22 m, respectively, due to the partial absence of low-conductivity silt layers, while their downstream distances decreased to 397.99 m and 354.11 m, constrained by low-permeability lenses in the migration path. These quantitative results clarify the dynamic differences in DNAPL transport under varying conditions, highlighting the impacts of multicomponent interactions, natural attenuation, and aquifer heterogeneity. They provide critical references for risk management, scientific determination of remediation depths, and safe exploitation of retired chemically polluted sites with similar hydrogeological characteristics. Full article
(This article belongs to the Section Environmental and Green Processes)
Show Figures

Figure 1

14 pages, 9007 KiB  
Article
A High-Resolution Spectral Analysis Method Based on Fast Iterative Least Squares Constraints
by Yanyan Ma, Haixia Kang, Weifeng Luo, Yunxiao Zhang and Lintao Luo
Appl. Sci. 2025, 15(14), 8034; https://doi.org/10.3390/app15148034 - 18 Jul 2025
Viewed by 264
Abstract
The prediction of reservoir and caprock thickness is important in geological evaluations for site selection for aquifer underground gas storage. Therefore, high-resolution seismic identification of reservoirs and caprocks is crucial. High-resolution time–frequency decomposition is one of the key methods for identifying sedimentary layers. [...] Read more.
The prediction of reservoir and caprock thickness is important in geological evaluations for site selection for aquifer underground gas storage. Therefore, high-resolution seismic identification of reservoirs and caprocks is crucial. High-resolution time–frequency decomposition is one of the key methods for identifying sedimentary layers. Based on this, we propose a least squares constrained spectral analysis method using a greedy fast shrinkage algorithm. This method replaces the traditional Tikhonov regularization objective function with an L1-norm regularized objective function and employs a greedy fast shrinkage algorithm. By utilizing shorter window lengths to segment the data into more precise series, the method significantly improves the computational efficiency of spectral analysis while also enhancing its accuracy to a certain extent. Numerical models demonstrate that compared to the time–frequency spectra obtained using traditional methods such as wavelet transform, short-time Fourier transform, and generalized S-transform, the proposed method can achieve high-resolution extraction of the dominant frequencies of seismic waves, with superior noise resistance. Furthermore, its application in a research area in southern China shows that the method can effectively predict thicker sedimentary layers in low-frequency ranges and accurately identify thinner sedimentary layers in high-frequency ranges. Full article
Show Figures

Figure 1

19 pages, 12075 KiB  
Article
Integrating Gravimetry and Spatial Analysis for Structural and Hydrogeological Characterization of the Northeast Tadla Plain Aquifer Complex, Morocco
by Salahddine Didi, Said El Boute, Soufiane Hajaj, Abdessamad Hilali, Amroumoussa Benmoussa, Said Bouhachm, Salah Lamine, Abdessamad Najine, Amina Wafik and Halima Soussi
Geographies 2025, 5(3), 35; https://doi.org/10.3390/geographies5030035 - 16 Jul 2025
Viewed by 306
Abstract
This study was conducted in the northeast of the Tadla plain, within the Beni Mellal-Khenifra region of Morocco. The primary objective is to elucidate the geometric and hydrogeological characteristics of this aquifer by analyzing and interpreting data from deep boreholes as well as [...] Read more.
This study was conducted in the northeast of the Tadla plain, within the Beni Mellal-Khenifra region of Morocco. The primary objective is to elucidate the geometric and hydrogeological characteristics of this aquifer by analyzing and interpreting data from deep boreholes as well as gravimetric and electrical measurements using GIS analysis. First, the regional gradient was established. Then, the initial data were extracted. Subsequently, based on the extracted data, a gravity map was created. The investigation of the Bouguer anomaly’s gravity map exposes the presence of a regional gradient, with values varying from −100 mGal in the South to −30 mGal in the North of the area. These Bouguer anomalies often correlate with exposed basement rock areas and variations in the thickness of sedimentary layers across the study area. The analysis of existing electrical survey and deep drilling data confirms the results of the gravimetry survey after applying different techniques such as horizontal gradient and upward extension on the gravimetric map. The findings enabled us to create a structural map highlighting the fault systems responsible for shaping the study area’s structure. The elaborated structural map serves as an indispensable geotectonic reference, facilitating the delineation of subsurface heterogeneities and providing a robust foundation for further hydrogeological assessments in the Tadla Plain. Full article
Show Figures

Figure 1

27 pages, 4704 KiB  
Article
Chemical Composition and Corrosion—Contributions to a Sustainable Use of Geothermal Water
by Ioana Maior, Gabriela Elena Badea, Oana Delia Stănășel, Mioara Sebeșan, Anca Cojocaru, Anda Ioana Graţiela Petrehele, Petru Creț and Cristian Felix Blidar
Energies 2025, 18(14), 3634; https://doi.org/10.3390/en18143634 - 9 Jul 2025
Viewed by 327
Abstract
The utilization of geothermal resources as renewable energy is a subject of interest for the regions that possess these resources. The exploitation of geothermal energy must consider local geological conditions and an integrated approach, which should include practical studies on the chemistry of [...] Read more.
The utilization of geothermal resources as renewable energy is a subject of interest for the regions that possess these resources. The exploitation of geothermal energy must consider local geological conditions and an integrated approach, which should include practical studies on the chemistry of geothermal waters and their effect on thermal installations. Geothermal waters from Bihor County, Romania, have a variable composition, depending on the crossed geological layers, but also on pressure and temperature. Obviously, water transport and heat transfer are involved in all applications of geothermal waters. This article aims to characterize certain geothermal waters from the point of view of composition and corrosion if used as a thermal agent. Atomic absorption spectroscopy (AAS) and UV–Vis spectroscopy were employed to analyze water specimens. Chemical composition includes calcite (CaCO3), chalcedony (SiO2), goethite (FeO(OH)), and magnetite (Fe3O4), which confirms the corrosion and scale potential of these waters. Corrosion resistance of mild carbon steel, commonly used as pipe material, was studied by the gravimetric method and through electrochemical methodologies, including chronoamperometry, electrochemical impedance spectroscopy (EIS), potentiodynamic polarization method, and open circuit potential measurement (OCP). Statistical analysis shows that the medium corrosion rate of S235 steel, expressed as penetration rate, is between 0.136 mm/year to 0.615 mm/year. The OCP, EIS, and chronoamperometry experiments explain corrosion resistance through the formation of a passive layer on the surface of the metal. This study proposes an innovative methodology and a systematic algorithm for analyzing chemical processes and corrosion phenomena in geothermal installations, emphasizing the necessity of individualized assessments for each aquifer to optimize operational parameters and ensure sustainable resource utilization. Full article
(This article belongs to the Special Issue The Status and Development Trend of Geothermal Resources)
Show Figures

Graphical abstract

24 pages, 3815 KiB  
Article
Evaluating Natural Attenuation of Dissolved Volatile Organic Compounds in Shallow Aquifer in Industrial Complex Using Numerical Models
by Muhammad Shoaib Qamar, Nipada Santha, Sutthipong Taweelarp, Nattapol Ploymaklam, Morrakot Khebchareon, Muhammad Zakir Afridi and Schradh Saenton
Water 2025, 17(13), 2038; https://doi.org/10.3390/w17132038 - 7 Jul 2025
Viewed by 1234
Abstract
A VOC-contaminated shallow aquifer in an industrial site was investigated to evaluate its potential for natural attenuation. The shallow groundwater aquifer beneath the industrial site has been contaminated by dissolved volatile organic compounds (VOCs) such as trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), [...] Read more.
A VOC-contaminated shallow aquifer in an industrial site was investigated to evaluate its potential for natural attenuation. The shallow groundwater aquifer beneath the industrial site has been contaminated by dissolved volatile organic compounds (VOCs) such as trichloroethylene (TCE), cis-1,2-dichloroethylene (cis-DCE), and vinyl chloride (VC) for more than three decades. Monitoring and investigation were implemented during 2011–2024, aiming to propose future groundwater aquifer management strategies. This study included groundwater borehole investigation, well installation monitoring, hydraulic head measurements, slug tests, groundwater samplings, and microbial analyses. Microbial investigations identified the predominant group of microorganisms of Proteobacteria, indicating biodegradation potential, as demonstrated by the presence of cis-DCE and VC. BIOSCREEN was used to evaluate the process of natural attenuation, incorporating site-specific parameters. A two-layer groundwater flow model was developed using MODFLOW with hydraulic conductivities obtained from slug tests. The site has an average hydraulic head of 259.6 m amsl with a hydraulic gradient of 0.026, resulting in an average groundwater flow velocity of 11 m/y. Hydraulic conductivities were estimated during model calibration using the PEST pilot point technique. A reactive transport model, RT3D, was used to simulate dissolved TCE transport over 30 years, which can undergo sorption as well as biodegradation. Model calibration demonstrated a satisfactory fit between observed and simulated groundwater heads with a root mean square error of 0.08 m and a correlation coefficient (r) between measured and simulated heads of 0.81, confirming the validity of the hydraulic conductivity distribution. The TCE plume continuously degraded and gradually migrated southward, generating a cis-DCE plume. The concentrations in both plumes decreased toward the end of the simulation period at Source 1 (located upstream), while BIOSCREEN results confirmed ongoing natural attenuation primarily by biodegradation. The integrated MODFLOW-RT3D-BIOSCREEN approach effectively evaluated VOC attenuation and plume migration. However, future remediation strategies should consider enhanced bioremediation to accelerate contaminant degradation at Source 2 and ensure long-term groundwater quality. Full article
(This article belongs to the Special Issue Application of Bioremediation in Groundwater and Soil Pollution)
Show Figures

Figure 1

20 pages, 4438 KiB  
Article
Impacts of Urbanization and Climate Variability on Groundwater Environment in a Basin Scale
by Olawale Joshua Abidakun, Mitsuyo Saito, Shin-ichi Onodera and Kunyang Wang
Hydrology 2025, 12(7), 173; https://doi.org/10.3390/hydrology12070173 - 30 Jun 2025
Viewed by 519
Abstract
Globally, groundwater resources are experiencing a decline in hydraulic heads resulting from the dual effects of urbanization and climate change, highlighting the need for integrated and sustainable water resources management. Urban development in the cities of Kansai region, western Japan, presents a significant [...] Read more.
Globally, groundwater resources are experiencing a decline in hydraulic heads resulting from the dual effects of urbanization and climate change, highlighting the need for integrated and sustainable water resources management. Urban development in the cities of Kansai region, western Japan, presents a significant challenge to the sustainability of groundwater resources. This study aims to assess the combined influence of urbanization and climate change on the groundwater resources of the Nara Basin using MODFLOW 6 for two distinct periods: The Pre-Urbanization Period (PreUP: 1980–1988), and the Post-Urbanization Period (PostUP, 2000–2008) with an emphasis on spatiotemporal distribution of recharge in a multi-layer aquifer system. Simulated hydraulic heads were evaluated under three different recharge scenarios: uniformly, spatiotemporally and spatially distributed. The uniform recharge scenario both overestimates and underestimates hydraulic heads, while the spatially distributed scenario produced a simulated heads distribution similar to the spatiotemporally distributed recharge scenario, underscoring the importance of incorporating spatiotemporal variability in recharge input for accurate groundwater flow simulation. Moreover, our results highlight the relevance of spatial distribution of recharge input than temporal distribution. Our findings indicate a significant decrease in hydraulic heads of approximately 5 m from the PreUP to PostUP in the unconfined aquifer, primarily driven by changes in land use and climate. In contrast, the average head decline in deep confined aquifers is about 4 m and is mainly influenced by long-term climatic variations. The impervious land use types experienced more decline in hydraulic heads than the permeable areas under changing climate because of the impedance to infiltration and percolation exacerbating the climate variability effect. These changes in hydraulic heads were particularly evident in the interactions between surface and groundwater. The cumulative volume of groundwater discharge to the river decreased by 27%, while the river seepage into the aquifer increased by 16%. Sustainable groundwater resources management under conditions of urbanization and climate change necessitates a holistic and integrated approach. Full article
(This article belongs to the Section Hydrological and Hydrodynamic Processes and Modelling)
Show Figures

Figure 1

18 pages, 4250 KiB  
Article
A Novel Carbon Fiber Composite Material for the Simulation of Damage Evolution in Thick Aquifers
by Bozhi Zhao, Xing Gao, Weibing Zhu, Jiaxing Ding and Pengjun Gao
Appl. Sci. 2025, 15(13), 7314; https://doi.org/10.3390/app15137314 - 29 Jun 2025
Viewed by 282
Abstract
Simulation experiments are a crucial method for investigating overburden failure, strata movement, and strata control during coal mining. However, traditional similar materials struggle to effectively monitor internal damage, fracturing, and dynamic development processes within the strata during mining. To address this issue, carbon [...] Read more.
Simulation experiments are a crucial method for investigating overburden failure, strata movement, and strata control during coal mining. However, traditional similar materials struggle to effectively monitor internal damage, fracturing, and dynamic development processes within the strata during mining. To address this issue, carbon fibers were introduced into the field of similar material simulation experiments for mining. Leveraging the excellent conductivity and the sensitive feedback of resistivity changes in response to damage of this composite material enabled real-time monitoring of internal damage and fracture patterns within the mining strata during similar simulation experiments, leading to the development of a carbon fiber similar simulation composite material with damage self-sensing properties. This study found that as the carbon fiber content increased, the evolution patterns of the electrical resistance change rate and the damage coefficient of the similar material tended to coincide. When the carbon fiber content in the similar material exceeded 2%, the electrical resistance change rate and the damage coefficient consistently exhibited synchronized growth with identical increments. A similar simulation experiment revealed that after the completion of workface mining, the thick sandstone aquifer did not develop significant cracks and remained stable. In the early stages of mining, damage rapidly accumulated at the bottom of the thick aquifer, approaching the failure threshold. In the middle layers, a step-like increase in the damage coefficient occurred after mining reached a certain width, while the top region was less affected by mining activities, resulting in less significant damage development. The research findings offer new experimental insights into rock layer movement and control studies, providing theoretical guidance for the prediction, early warning, and prevention of dynamic disasters in mines with thick key layers. Full article
Show Figures

Figure 1

13 pages, 1534 KiB  
Article
Numerical Investigation of Offshore CCUS in Deep Saline Aquifers Using Multi-Layer Injection Method: A Case Study of the Enping 15-1 Oilfield CO2 Storage Project, China
by Jiayi Shen, Futao Mo, Zhongyi Tao, Yi Hong, Bo Gao and Tao Xuan
J. Mar. Sci. Eng. 2025, 13(7), 1247; https://doi.org/10.3390/jmse13071247 - 28 Jun 2025
Viewed by 296
Abstract
Geological storage of CO2 in offshore deep saline aquifers is widely recognized as an effective strategy for large-scale carbon emission reduction. This study aims to assess the mechanical integrity and storage efficiency of reservoirs using a multi-layer CO2 injection method in [...] Read more.
Geological storage of CO2 in offshore deep saline aquifers is widely recognized as an effective strategy for large-scale carbon emission reduction. This study aims to assess the mechanical integrity and storage efficiency of reservoirs using a multi-layer CO2 injection method in the Enping 15-1 Oilfield CO2 storage project which is the China’s first offshore carbon capture, utilization, and storage (CCUS) demonstration. A coupled Hydro–Mechanical (H–M) model is constructed using the TOUGH-FLAC simulator to simulate a 10-year CO2 injection scenario, incorporating six vertically distributed reservoir layers. A sensitivity analysis of 14 key geological and geomechanical parameters is performed to identify the dominant factors influencing injection safety and storage capacity. The results show that a total injection rate of 30 kg/s can be sustained over a 10-year period without exceeding mechanical failure thresholds. Reservoirs 3 and 4 exhibit the greatest lateral CO2 migration distances over the 10-year injection period, indicating that they are the most suitable target layers for CO2 storage. The sensitivity analysis further reveals that the permeability of the reservoirs and the friction angle of the reservoirs and caprocks are the most critical parameters governing injection performance and mechanical stability. Full article
(This article belongs to the Special Issue Advanced Studies in Offshore Geotechnics)
Show Figures

Figure 1

19 pages, 1022 KiB  
Article
Impact of Biochar Interlayer on Surface Soil Salt Content, Salt Migration, and Photosynthetic Activity and Yield of Sunflowers: Laboratory and Field Studies
by Muhammad Irfan, Gamal El Afandi, Amira Moustafa, Salem Ibrahim and Santosh Sapkota
Sustainability 2025, 17(12), 5642; https://doi.org/10.3390/su17125642 - 19 Jun 2025
Viewed by 487
Abstract
Soil salinization presents a significant challenge, driven by factors such as inadequate drainage, shallow aquifers, and high evaporation rates, threatening global food security. The sunflower emerges as a key cash crop in such areas, providing the opportunity to convert its straw into biochar, [...] Read more.
Soil salinization presents a significant challenge, driven by factors such as inadequate drainage, shallow aquifers, and high evaporation rates, threatening global food security. The sunflower emerges as a key cash crop in such areas, providing the opportunity to convert its straw into biochar, which offers additional agronomic and environmental benefits. This study investigates the effectiveness of biochar interlayers in enhancing salt leaching and suppressing upward salt migration through integrated laboratory and field experiments. The effectiveness of varying biochar interlayer application rates was assessed in promoting salt leaching, decreasing soil electrical conductivity (EC), and enhancing crop performance in saline soils through a systematic approach that combines laboratory and field experiments. The biochar treatments included a control (CK) and different applications of 20 (BL20), 40 (BL40), 60 (BL60), and 80 (BL80) tons of biochar per hectare, all applied below a depth of 20 cm, with each treatment replicated three times. The laboratory and field experimental setups maintained consistency in terms of biochar treatments and interlayer placement methodology. During the laboratory column experiments, the soil columns were treated with deionized water, and their leachates were analyzed for EC and major ionic components. The results showed that columns with biochar interlayers exhibited significantly higher efflux rates compared to those of the control and notably accelerated the time required for the effluent EC to decrease to 2 dS m−1. The CK required 43 days for full discharge and 38 days for EC stabilization below 2 dS m−1. In contrast, biochar treatments notably reduced these times, with BL80 achieving discharge in just 7 days and EC stabilization in 10 days. Elution events occurred 20–36 days earlier in the biochar-treated columns, confirming biochar’s effectiveness in enhancing leaching efficiency in saline soils. The field experiment results supported the laboratory findings, indicating that increased biochar application rates significantly reduced soil EC and ion concentrations at depths of 0–20 cm and 20–40 cm, lowering the EC from 7.12 to 2.25 dS m−1 and from 6.30 to 2.41 dS m−1 in their respective layers. The application of biochar interlayers resulted in significant reductions in Na+, K+, Ca2+, Mg2+, Cl, SO42−, and HCO3 concentrations across both soil layers. In the 0–20 cm layer, Na+ decreased from 3.44 to 2.75 mg·g−1, K+ from 0.24 to 0.11 mg·g−1, Ca2+ from 0.35 to 0.20 mg·g−1, Mg2+ from 0.31 to 0.24 mg·g−1, Cl from 1.22 to 0.88 mg·g−1, SO42− from 1.91 to 1.30 mg·g−1 and HCO3 from 0.39 to 0.18 mg·g−1, respectively. Similarly, in the 20–40 cm layer, Na+ declined from 3.62 to 3.05 mg·g−1, K+ from 0.28 to 0.12 mg·g−1, Ca2+ from 0.39 to 0.26 mg·g−1, Mg2+ from 0.36 to 0.27 mg·g−1, Cl from 1.18 to 0.80 mg·g−1, SO42− from 1.95 to 1.33 mg·g−1 and HCO3 from 0.42 to 0.21 mg·g−1 under increasing biochar rates. Moreover, the use of biochar interlayers significantly improved the physiological traits of sunflowers, including their photosynthesis rates, stomatal conductance, and transpiration efficiency, thereby boosting biomass and achene yield. These results highlight the potential of biochar interlayers as a sustainable strategy for soil desalination, water conservation, and enhanced crop productivity. This approach is especially promising for managing salt-affected soils in regions like California, where soil salinization represents a considerable threat to agricultural sustainability. Full article
(This article belongs to the Special Issue Sustainable Development and Climate, Energy, and Food Security Nexus)
Show Figures

Figure 1

14 pages, 6670 KiB  
Article
Numerical Simulation of Horizontal Barrier in Controlling Groundwater and Deformation During Foundation Pit Dewatering
by Ruonan Kuang, Changjie Xu, Chaofeng Zeng, Xiuli Xue, Youwu Zhao, Bin Li and Lijuan Yi
Water 2025, 17(12), 1763; https://doi.org/10.3390/w17121763 - 12 Jun 2025
Cited by 1 | Viewed by 398
Abstract
In water-rich strata, a traditional vertical barrier exhibits certain limitations when applied to deep foundation pit construction under complex geological conditions, such as it is difficult to completely cut off deep and thick aquifer, which may pose potential risks during pit dewatering. To [...] Read more.
In water-rich strata, a traditional vertical barrier exhibits certain limitations when applied to deep foundation pit construction under complex geological conditions, such as it is difficult to completely cut off deep and thick aquifer, which may pose potential risks during pit dewatering. To address the above challenge, this study introduced a mixed barrier system in which the horizontal barrier (HB) was set at the bottom of the foundation pit and was combined with the enclosure wall to collectively retard groundwater seepage into the pit. Based on an actual project in Tianjin, this study established HB models with varying numbers of its layers using ABAQUS 6.14 software. It systematically investigated the effect of HB on groundwater drawdown, ground surface settlement, and enclosure deflection during foundation pit dewatering. The research shows that HB can significantly reduce the magnitude of external water level drawdown by altering groundwater seepage paths while effectively controlling soil settlement. Furthermore, it exhibits favorable overall restraining effects on wall deformation. Varying the number of horizontal barrier layers (L) exhibits an insignificant effect on water-blocking and subsidence-control performance. However, the constraint effect on the enclosure shows a correlation with L. Full article
(This article belongs to the Section Hydrogeology)
Show Figures

Figure 1

22 pages, 5189 KiB  
Article
Inversion of Hydrogeological Parameters of Polluted Sites Based on Coupled Hydrothermal Salt-Tracer Tests
by Junwei Yang, Changsheng Chen, Guojiao Huang, Jintao Huang and Zhou Chen
Water 2025, 17(11), 1607; https://doi.org/10.3390/w17111607 - 26 May 2025
Viewed by 403
Abstract
To address the hydrogeological parameters of polluted sites at the site scale, a series of physical and numerical simulation experiments were conducted to investigate seepage and solute transport under the influence of various physical fields. These experiments utilized an experimental platform designed for [...] Read more.
To address the hydrogeological parameters of polluted sites at the site scale, a series of physical and numerical simulation experiments were conducted to investigate seepage and solute transport under the influence of various physical fields. These experiments utilized an experimental platform designed for the acquisition of pollutant transport and transformation data, which incorporated three-dimensional multifield coupling, alongside a numerical model that also accounted for multiphysical field interactions. The numerical simulations employed Darcy’s law, the heat conduction equation, and convective–dispersive equations to analyze the seepage field, heat transfer, and solute transport processes, respectively. The findings from both physical and numerical tests indicate that variations in groundwater temperature and solute concentration significantly influence solute transport dynamics. Specifically, an increase in groundwater temperature correlates with an accelerated migration rate of sodium chloride (NaCl) solute, resulting in a reduced time for the solute to achieve equivalent concentrations in observation wells. Conversely, when the concentration of NaCl in groundwater rises, the temperature of the groundwater also increases when the solute reaches the same concentration in the observation wells. This phenomenon can be attributed to the decrease in the specific heat capacity of groundwater with higher solute concentrations. Moreover, as the concentration of sodium chloride in groundwater increases, the rate of temperature elevation in the groundwater accelerates due to a decrease in specific heat capacity associated with higher solute concentrations, thereby requiring less thermal energy for the groundwater to attain the same temperature. The results further reveal that the hydraulic conductivity of the target aquifer, specifically the pulverized clay layer, ranges from 6.72 to 8.52 × 10−6 m/s, with an effective thermal conductivity of 2.2 W/(m·K), a longitudinal dispersion of 0.554 m, and a transverse dispersion of 0.05 m. Full article
Show Figures

Figure 1

18 pages, 4825 KiB  
Article
The Prediction of Aquifer Water Abundance in Coal Mines Using a Convolutional Neural Network–Bidirectional Long Short-Term Memory Model: A Case Study of the 1301E Working Face in the Yili No. 1 Coal Mine
by Yangmin Ye, Wenping Li, Zhi Yang, Xiaoqin Li and Qiqing Wang
Water 2025, 17(11), 1595; https://doi.org/10.3390/w17111595 - 25 May 2025
Viewed by 483
Abstract
To address the challenges in predicting roof water hazards in weakly cemented strata of Northwest China, this study pioneers an integrated CNN-BiLSTM model for aquifer water abundance prediction. Focusing on the 1301E working face in the Yili No. 1 Coal Mine, we employed [...] Read more.
To address the challenges in predicting roof water hazards in weakly cemented strata of Northwest China, this study pioneers an integrated CNN-BiLSTM model for aquifer water abundance prediction. Focusing on the 1301E working face in the Yili No. 1 Coal Mine, we employed kriging interpolation to process sparse hydrological datasets (mean relative error: 8.7%), identifying five dominant controlling factors—aquifer burial depth, hydraulic conductivity, core recovery rate, sandstone–mudstone interbedded layer count, and sandstone equivalent thickness. The proposed bidirectional architecture synergizes CNN-based spatial feature extraction with BiLSTM-driven nonlinear temporal modeling, optimized via Bayesian algorithms to determine hyperparameters (32-channel convolutional kernels and 64-unit BiLSTM hidden layers). This framework achieves the comprehensive characterization of multifactorial synergistic effects. The experimental results demonstrate: (1) that the test set root mean square error (1.57 × 10−3) shows 65.3% and 85.9% reductions compared to the GA-BP and standalone CNN models, respectively; (2) that the coefficient of determination (R2 = 0.9966) significantly outperforms the conventional fuzzy analytic hierarchy process (FAHP, error: 0.071 L/(s·m)) and BP-based neural networks; (3) that water abundance zoning reveals predominantly weak water-rich zones (q = 0.05–0.1 L/(s·m)), with 93.3% spatial consistency between predictions and pumping test data. Full article
Show Figures

Figure 1

28 pages, 6148 KiB  
Article
The Utilization of a 3D Groundwater Flow and Transport Model for a Qualitative Investigation of Groundwater Salinization in the Ca Mau Peninsula (Mekong Delta, Vietnam)
by Tran Viet Hoan, Karl-Gerd Richter, Felix Dörr, Jonas Bauer, Nicolas Börsig, Anke Steinel, Van Thi Mai Le, Van Cam Pham, Don Van Than and Stefan Norra
Hydrology 2025, 12(5), 126; https://doi.org/10.3390/hydrology12050126 - 20 May 2025
Viewed by 665
Abstract
The Ca Mau Peninsula (CMP), the southernmost region of the Mekong Delta, is increasingly threatened by groundwater salinization, posing severe risks to both the freshwater supply and land sustainability. This study develops a three-dimensional, density-dependent groundwater flow and salinity transport model to investigate [...] Read more.
The Ca Mau Peninsula (CMP), the southernmost region of the Mekong Delta, is increasingly threatened by groundwater salinization, posing severe risks to both the freshwater supply and land sustainability. This study develops a three-dimensional, density-dependent groundwater flow and salinity transport model to investigate salinization dynamics across the CMP’s complex multi-aquifer system. Unlike previous studies that largely rely on model calibration, this research introduces a novel approach by systematically deriving the spatial distribution of longitudinal dispersivity based on sediment characteristics. Moreover, detailed land use mapping is integrated to assign spatially and temporally variable Total Dissolved Solids (TDS) values to the uppermost layers, thereby enhancing the model realism in areas where monitoring data are limited. The model was utilized not only to simulate the regional salinity evolution, but also to critically evaluate conceptual hypotheses related to the mechanisms driving groundwater salinization. Results reveal a strong influence of seasonal and land use factors on salinity variability in the upper aquifers, while deeper aquifers remain largely stable, affected primarily by paleosalinity and localized pumping. This integrated modeling approach contributes to a better understanding of regional-scale groundwater salinization and highlights both the potential and the limitations of numerical modeling under data-scarce conditions. The findings provide a valuable scientific basis for adaptive water resource management in vulnerable coastal zones. Full article
(This article belongs to the Topic Advances in Hydrogeological Research)
Show Figures

Figure 1

37 pages, 20031 KiB  
Article
MODFLOW Application for Exploitable Groundwater Resource Assessment of the Zhem Artesian Basin Aquifer Complex, Kazakhstan
by Daniyar Serikovich Sapargaliyev, Yermek Zhamshitovich Murtazin, Vladimir Mirlas, Vladimir Alexandrovich Smolyar and Yaakov Anker
Appl. Sci. 2025, 15(10), 5443; https://doi.org/10.3390/app15105443 - 13 May 2025
Viewed by 513
Abstract
Groundwater resources are becoming increasingly scarce, especially in arid regions of western Kazakhstan. By 2070, the domestic and drinking water demands will increase from 640 to 901 thousand m3/day. This deficiency may be overcome by utilizing the Zhem Artesian Basin’s Cretaceous [...] Read more.
Groundwater resources are becoming increasingly scarce, especially in arid regions of western Kazakhstan. By 2070, the domestic and drinking water demands will increase from 640 to 901 thousand m3/day. This deficiency may be overcome by utilizing the Zhem Artesian Basin’s Cretaceous Albian–Cenomanian aquifer complex. The hydrodynamic interactions between the 123 known aquifer segments and recharge zones of these promising, exploitable, high-quality groundwater sources are unclear. While MODFLOW is a nominal platform for groundwater flow assessment, which is usually used for the simulation of simple hydrological scenarios, in this study, integrating several different scales and functional modules over a GIS platform enabled delineation and the forecast of this multi-layer aquifer complex. The MODFLOW simulation assessed exploitable groundwater resources and reservoir interactions, enabling the establishment of a simultaneous operation to the Zhem aquifer complex and its neighboring reservoirs. The model suggests that the total exploitable groundwater resources may grow to 629.4 thousand m3/day during the next 50 years. The simultaneous drawdown model suggests a water level decrease of up to 80 m at the end of this period, which will cause a river flow reduction of approximately 6% of the average long-term river flow. Thus, the assessed exploitable groundwater resources will cover more than 70% of the future regional water demand. The mathematical model developed may be used for monitoring and forecasting groundwater head and water balance changes and may be applied to attain a more detailed groundwater resource transfer scheme with economic criteria. Full article
Show Figures

Figure 1

Back to TopTop