Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (657)

Search Parameters:
Keywords = aquatic threat

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3368 KiB  
Article
Effective Ciprofloxacin Removal from Deionized and Salt Water by Sulfonated Pentablock Copolymer (NexarTM)
by Simona Filice, Simona Crispi, Viviana Scuderi, Daniela Iannazzo, Consuelo Celesti and Silvia Scalese
Molecules 2025, 30(15), 3275; https://doi.org/10.3390/molecules30153275 - 5 Aug 2025
Abstract
The presence of ciprofloxacin antibiotic in water is a threat to humans and aquatic life since antibiotics are currently regarded as emerging contaminants of major concern. This work reported the use of NexarTM film, a sulfonated pentablock copolymer, to effectively remove ciprofloxacin [...] Read more.
The presence of ciprofloxacin antibiotic in water is a threat to humans and aquatic life since antibiotics are currently regarded as emerging contaminants of major concern. This work reported the use of NexarTM film, a sulfonated pentablock copolymer, to effectively remove ciprofloxacin antibiotic from water in a sustainable approach. The removal efficiency of Nexar film was evaluated in aqueous or salty (NaCl 0.5 M) ciprofloxacin solutions as a function of contact time and the initial ciprofloxacin concentration. In the investigated conditions, the polymeric film totally removed ciprofloxacin in MilliQ solution while its removal efficiency in salty solution was approximately 73%. This lower value is due to the presence of Na+ ions that compete with antibiotic molecules for adsorption on active surface sites of the polymeric film. No further release of adsorbed antibiotic molecules occurred. The kinetic studies, conducted for ciprofloxacin adsorption on Nexar film in both MilliQ and salty solutions, revealed that the overall sorption process is controlled by the rate of surface reaction between ciprofloxacin molecules and active sites on Nexar surface. Furthermore, at equilibrium conditions, the isotherm model that best fits experimental parameters was not linear. This indicates that the competition between the solute and the solvent for binding sites on the adsorbent should be considered to describe adsorption processes in both MilliQ and salty solutions. Full article
(This article belongs to the Special Issue Materials for Environmental Remediation and Catalysis)
Show Figures

Figure 1

15 pages, 2611 KiB  
Article
Transgenerational Effects of Cadmium and Copper Exposure on Development, Reproduction, and Midgut Integrity in Culex pipiens (Diptera: Culicidae): Implications for Vector Ecology Under Metal Pollution
by Ahmed I. Hasaballah, Ramy E. El-Ansary, Mahmoud M. Zidan, Areej A. Al-Khalaf and Abdelwahab Khalil
Biology 2025, 14(8), 1004; https://doi.org/10.3390/biology14081004 - 5 Aug 2025
Abstract
Heavy metal contamination in freshwater ecosystems poses persistent threats to aquatic organisms and public health. This study evaluates the transgenerational toxicity of cadmium chloride and copper sulfate on Culex pipiens, focusing on development, reproduction, and midgut histopathology over two successive generations. Larval [...] Read more.
Heavy metal contamination in freshwater ecosystems poses persistent threats to aquatic organisms and public health. This study evaluates the transgenerational toxicity of cadmium chloride and copper sulfate on Culex pipiens, focusing on development, reproduction, and midgut histopathology over two successive generations. Larval bioassays showed cadmium chloride to be more toxic than copper sulfate, with early instars exhibiting higher sensitivity (LC50 = 8.66 μg/L for Cd; 175.63 μg/L for Cu). Both metals significantly delayed larval and pupal development, reduced fecundity, and decreased egg hatchability in a dose-dependent manner. Histopathological examination revealed midgut epithelial degeneration, vacuolation, and brush border loss, with copper sulfate inducing more severe cytotoxicity. These findings confirm that sublethal, chronic metal exposure can impair physiological and reproductive traits across generations. Moreover, this study highlights the utility of mosquitoes as sensitive bioindicators of aquatic pollution, and underscores the long-term ecological implications of heavy metal contamination on vector dynamics and disease transmission. Full article
Show Figures

Figure 1

11 pages, 711 KiB  
Article
Cadmium Accumulation and Regulation in the Freshwater Mussel Anodonta woodiana
by Xiubao Chen, Chao Song, Jiazhen Jiang, Tao Jiang, Junren Xue, Ibrahim Bah, Mengying Gu, Meiyi Wang and Shunlong Meng
Toxics 2025, 13(8), 646; https://doi.org/10.3390/toxics13080646 - 30 Jul 2025
Viewed by 187
Abstract
Cadmium (Cd) pollution poses a serious threat to freshwater ecosystems. The freshwater mussel Anodonta woodiana is increasingly used as a bioindicator for monitoring Cd pollution in aquatic environments. However, the primary routes of Cd accumulation in A. woodiana remain unclear, and the molecular [...] Read more.
Cadmium (Cd) pollution poses a serious threat to freshwater ecosystems. The freshwater mussel Anodonta woodiana is increasingly used as a bioindicator for monitoring Cd pollution in aquatic environments. However, the primary routes of Cd accumulation in A. woodiana remain unclear, and the molecular regulatory mechanisms underlying Cd accumulation are poorly understood. To address these gaps, this study employed a novel stable isotope dual-tracer technique to trace Cd from water (waterborne 112Cd) and the green alga Chlorella vulgaris (dietary 113Cd) during the simultaneous exposure experiment. Comparative transcriptomic analysis was then conducted to characterize molecular responses in A. woodiana following Cd exposure. The results showed that although newly accumulated 112Cd and 113Cd increased with exposure concentration and duration, the relative importance of 112Cd (91.6 ± 2.8%) was significantly higher than that of 113Cd (8.4 ± 2.8%) (p < 0.05). Cd exposure induced differentially expressed genes primarily enriched in the metabolic processes, cellular processes, and/or the ubiquitin-mediated proteolysis pathway. Within the ubiquitin-mediated proteolysis pathway, TRIP12 (E3 ubiquitin-protein ligase TRIP12) and Cul5 (cullin-5) were significantly upregulated. The findings will provide critical insights for interpreting Cd biomonitoring data in freshwater environments using mussels as bioindicators. Full article
(This article belongs to the Special Issue The Impact of Heavy Metals on Aquatic Ecosystems)
Show Figures

Figure 1

14 pages, 4594 KiB  
Article
Short-Term Exposure to Tebuconazole Triggers Haematological, Histological and Biochemical Disturbances in Rainbow Trout (Oncorhynchus mykiss)
by Akif Er
Toxics 2025, 13(8), 630; https://doi.org/10.3390/toxics13080630 - 27 Jul 2025
Viewed by 359
Abstract
Tebuconazole (TBZ), a triazole-class fungicide widely used in agriculture, is frequently detected in aquatic environments due to runoff and leaching, where it poses a threat to non-target aquatic organisms. This study investigates the acute toxicity of TBZ on juvenile rainbow trout (Oncorhynchus [...] Read more.
Tebuconazole (TBZ), a triazole-class fungicide widely used in agriculture, is frequently detected in aquatic environments due to runoff and leaching, where it poses a threat to non-target aquatic organisms. This study investigates the acute toxicity of TBZ on juvenile rainbow trout (Oncorhynchus mykiss), a commercially important cold-water fish species. The 96 h LC50 value was determined to be 9.05 mg/L using probit analysis. In addition to mortality, the physiological responses of fish exposed to both LC50 and maximum tolerance concentration (MTC; 6 mg/L) were evaluated through haematological and histological assessments. TBZ exposure significantly suppressed key haematological parameters, particularly WBC, RBC, HGB, HCT, and LYM, indicating immunosuppression and potential hypoxia. Histological examination revealed progressive and regressive damage in gill tissues, including epithelial lifting, hyperplasia, and hypertrophy, which were more severe in the LC50 group. These alterations were quantified using a semi-quantitative scoring system. Additionally, significant changes in biochemical parameters such as ALT, AST, creatinine, total protein, and glucose levels were observed, further indicating hepatic and renal dysfunctions induced by TBZ exposure. The findings demonstrate that TBZ exposure induces substantial physiological and structural impairments in rainbow trout, highlighting the importance of assessing the ecological risks of fungicide contamination in aquatic environments. The study also provides a dose–response model that can be used to estimate mortality risk in aquaculture operations exposed to TBZ. Full article
Show Figures

Graphical abstract

27 pages, 1706 KiB  
Review
Micro- and Nanoplastics as Emerging Threats to Both Terrestrial and Aquatic Animals: A Comprehensive Review
by Munwar Ali, Chang Xu and Kun Li
Vet. Sci. 2025, 12(8), 688; https://doi.org/10.3390/vetsci12080688 - 23 Jul 2025
Viewed by 525
Abstract
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs [...] Read more.
Micro- and Nanoplastic (MNP) pollution is an emerging challenge globally, posing a significant threat to both aquatic and terrestrial ecosystems worldwide. This review critically examines the sources, exposure routes, and impact of plastics, with particular focus on implications for the livestock sector. MNPs enter animals’ bodies primarily through ingestion of contaminated feed and water, inhalation, and dermal exposure, subsequently accumulating in various organs, disrupting physiological functions. Notably, MNPs facilitate the horizontal transfer of antimicrobial resistance genes (ARGs), exacerbating the global challenge of antimicrobial resistance (AMR). In agricultural environments, sources such as organic fertilizers, wastewater irrigation systems, surface runoff, and littering contribute to soil contamination, adversely affecting plant growth and soil health, which in turn compromises feed quality and ultimately animals’ productivity. This review synthesizes current evidence demonstrating how MNP exposure impairs animal production, reproduction, and survival, and highlights the interconnected risks to food safety and ecosystem health. The findings call for the urgent need for comprehensive research under controlled conditions to underscore the fine details regarding mechanisms of MNP toxicity and to inform effective mitigation strategies. Addressing MNP pollution is crucial for safeguarding animal health, ensuring sustainable livestock production, and promoting environmental sustainability and integrity. Full article
Show Figures

Graphical abstract

25 pages, 2545 KiB  
Article
Kinetic, Isotherm, and Thermodynamic Modeling of Methylene Blue Adsorption Using Natural Rice Husk: A Sustainable Approach
by Yu-Ting Huang and Ming-Cheng Shih
Separations 2025, 12(8), 189; https://doi.org/10.3390/separations12080189 - 22 Jul 2025
Viewed by 304
Abstract
The discharge of synthetic dyes in industrial wastewaters poses a serious environmental threat as they are difficult to degrade naturally and are harmful to aquatic organisms. This study aimed to evaluate the feasibility of using clean untreated rice husk (CRH) as a sustainable [...] Read more.
The discharge of synthetic dyes in industrial wastewaters poses a serious environmental threat as they are difficult to degrade naturally and are harmful to aquatic organisms. This study aimed to evaluate the feasibility of using clean untreated rice husk (CRH) as a sustainable and low-cost adsorbent for the removal of methylene blue (MB) from synthetic wastewater. This approach effectively avoids the energy-intensive grinding process by directly using whole unprocessed rice husk, highlighting its potential as a sustainable and cost-effective alternative to activated carbon. A series of batch adsorption experiments were conducted to evaluate the effects of key operating parameters such as initial dye concentration, contact time, pH, ionic strength, and temperature on the adsorption performance. Adsorption kinetics, isotherm models, and thermodynamic analysis were applied to elucidate the adsorption mechanism and behavior. The results showed that the maximum adsorption capacity of CRH for MB was 5.72 mg/g. The adsorption capacity was stable and efficient between pH 4 and 10, and reached the highest value at pH 12. The presence of sodium ions (Na+) and calcium ions (Ca2+) inhibited the adsorption efficiency, with calcium ions having a more significant effect. Kinetic analysis confirmed that the adsorption process mainly followed a pseudo-second-order model, suggesting the involvement of a chemisorption mechanism; notably, in the presence of ions, the Elovich model provided better predictions of the data. Thermodynamic evaluation showed that the adsorption was endothermic (ΔH° > 0) and spontaneous (ΔG° < 0), accompanied by an increase in the disorder of the solid–liquid interface (ΔS° > 0). The calculated activation energy (Ea) was 17.42 kJ/mol, further supporting the involvement of chemisorption. The equilibrium adsorption data were well matched to the Langmuir model at high concentrations (monolayer adsorption), while they were accurately described by the Freundlich model at lower concentrations (surface heterogeneity). The dimensionless separation factor (RL) confirmed that the adsorption process was favorable at all initial MB concentrations. The results of this study provide insights into the application of agricultural waste in environmental remediation and highlight the potential of untreated whole rice husk as a sustainable and economically viable alternative to activated carbon, which can help promote resource recovery and pollution control. Full article
(This article belongs to the Section Environmental Separations)
Show Figures

Figure 1

17 pages, 646 KiB  
Article
Screening of Potential Drug Targets Based on the Genome-Scale Metabolic Network Model of Vibrio parahaemolyticus
by Lingrui Zhang, Bin Wang, Ruiqi Zhang, Zhen He, Mingzhi Zhang, Tong Hao and Jinsheng Sun
Curr. Issues Mol. Biol. 2025, 47(7), 575; https://doi.org/10.3390/cimb47070575 - 21 Jul 2025
Viewed by 329
Abstract
Vibrio parahaemolyticus is a pathogenic bacterium widely distributed in marine environments, posing significant threats to aquatic organisms and human health. The overuse and misuse of antibiotics has led to the development of multidrug- and pan-resistant V. parahaemolyticus strains. There is an urgent need [...] Read more.
Vibrio parahaemolyticus is a pathogenic bacterium widely distributed in marine environments, posing significant threats to aquatic organisms and human health. The overuse and misuse of antibiotics has led to the development of multidrug- and pan-resistant V. parahaemolyticus strains. There is an urgent need for novel antibacterial therapies with innovative mechanisms of action. In this work, a genome-scale metabolic network model (GMSN) of V. parahaemolyticus, named VPA2061, was reconstructed to predict the metabolites that can be explored as potential drug targets for eliminating V. parahaemolyticus infections. The model comprises 2061 reactions and 1812 metabolites. Through essential metabolite analysis and pathogen–host association screening with VPA2061, 10 essential metabolites critical for the survival of V. parahaemolyticus were identified, which may serve as key candidates for developing new antimicrobial strategies. Additionally, 39 structural analogs were found for these essential metabolites. The molecular docking analysis of the essential metabolites and structural analogs further investigated the potential value of these metabolites for drug design. The GSMN reconstructed in this work provides a new tool for understanding the pathogenic mechanisms of V. parahaemolyticus. Furthermore, the analysis results regarding the essential metabolites hold profound implications for the development of novel antibacterial therapies for V. parahaemolyticus-related disease. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

27 pages, 4623 KiB  
Article
Preparation and Application of Wetland-Plant-Derived Biochar for Tetracycline Antibiotic Adsorption in Water
by Qingyun Chen, Hao Tong, Xing Gao, Peng Li, Jiaqi Li, Haifeng Zhuang and Suqing Wu
Sustainability 2025, 17(14), 6625; https://doi.org/10.3390/su17146625 - 20 Jul 2025
Viewed by 341
Abstract
Every year, a large amount of antibiotics enter aquatic environments globally through discharging of pharmaceutical wastewater and domestic sewage, emissions from agriculture, and livestock, posing a severe threat to ecosystems and human health. Therefore, it is essential to develop efficient adsorption materials for [...] Read more.
Every year, a large amount of antibiotics enter aquatic environments globally through discharging of pharmaceutical wastewater and domestic sewage, emissions from agriculture, and livestock, posing a severe threat to ecosystems and human health. Therefore, it is essential to develop efficient adsorption materials for rapid removal of antibiotics in water. In this study, abundant and renewable wetland plants (lotus leaves, Arundo donax, and canna lilies) were utilized as raw materials to prepare biochar through slow pyrolysis combined with KOH chemical activation. The prepared biochar was employed to adsorb typical tetracycline (TC) antibiotics (TC-HCl, CTC-HCl, OTC-HCl) from water. The results showed that the optimum biochar (LBC-600 (1:3)) was prepared at a pyrolysis temperature of 600 °C with the mass ratio of KOH to lotus leaf of 1:3. The optimum pH for the adsorption of the three antibiotics were 5, 4, and 3, respectively. The highest adsorption rates reached 93.32%, 81.44%, and 83.76% for TC-HCl, CTC-HCl, and OTC-HCl with 0.6 g/L of biochar, respectively. At an initial antibiotic concentration of 80 mg·L−1, the maximum adsorption capacities achieved 40.17, 27.76, and 24.6 mg·g−1 for TC-HCl, CTC-HCl, and OTC-HCl, respectively. The adsorption process conformed to the pseudo-second-order kinetic and Langmuir isotherm models, indicating that it was a spontaneous endothermic process and primarily involved monolayer chemical adsorption. This study transformed wetland plant waste into adsorbent and applied it for antibiotic removal, providing a valuable resource utilization strategy and technical support for recycling wetland plant residues and antibiotic removal from water environments. Full article
(This article belongs to the Section Sustainable Water Management)
Show Figures

Figure 1

13 pages, 1593 KiB  
Review
Airborne Algae and Cyanobacteria Originating from Lakes: Formation Mechanisms, Influencing Factors, and Potential Health Risks
by Xiaoming Liu, Tingfu Li, Yuqi Qiu, Changliang Nie, Xiaoling Nie and Xueyun Geng
Microorganisms 2025, 13(7), 1702; https://doi.org/10.3390/microorganisms13071702 - 20 Jul 2025
Viewed by 434
Abstract
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial [...] Read more.
Algal and cyanobacterial blooms are anticipated to increase in frequency, duration, and geographic extent as a result of environmental changes, including climate warming, elevated nutrient concentrations, and increased runoff in both marine and freshwater ecosystems. The eutrophication of aquatic environments represents a substantial threat to human health. As eutrophication progresses, airborne algae and cyanobacteria, particularly harmful genera originating from aquatic environments, are released into the atmosphere and may pose potential risks to human health. Furthermore, respiratory distress has been documented in individuals exposed to aerosols containing harmful algal bloom (HAB) toxins. This review investigates the generation of aerosolised harmful algal blooms, their responses to environmental factors, and their associated health risks. Evidence suggests that airborne algae, cyanobacteria, and their toxins are widespread. When these are aerosolised into micrometre-sized particles, they become susceptible to atmospheric processing, which may degrade the HAB toxins and produce byproducts with differing potencies compared to the parent compounds. Inhalation of aerosolised HAB toxins, especially when combined with co-morbid factors such as exposure to air pollutants, could present a significant health risk to a considerable proportion of the global population. A more comprehensive understanding of the chemical transformations of these toxins and the composition of harmful algal and cyanobacterial communities can improve public safety. Full article
(This article belongs to the Special Issue Research on Airborne Microbial Communities)
Show Figures

Figure 1

8 pages, 2222 KiB  
Proceeding Paper
Advanced 3D Polymeric Sponges Offer Promising Solutions for Addressing Environmental Challenges in Qatar’s Marine Ecosystems
by Mohamed Helally, Mostafa H. Sliem and Noora Al-Qahtani
Mater. Proc. 2025, 22(1), 4; https://doi.org/10.3390/materproc2025022004 - 18 Jul 2025
Viewed by 220
Abstract
The increasing incidence of oil contamination in many aquatic ecosystems, particularly in oil-rich regions such as Qatar, poses significant threats to marine life and human activities. Our study addresses the critical need for effective and eco-friendly oil-water separation techniques, focusing on developing graphene [...] Read more.
The increasing incidence of oil contamination in many aquatic ecosystems, particularly in oil-rich regions such as Qatar, poses significant threats to marine life and human activities. Our study addresses the critical need for effective and eco-friendly oil-water separation techniques, focusing on developing graphene and chitosan-based three-dimensional (3D) polymeric sponges. These materials have demonstrated potential due to their high porosity and surface area, which can be enhanced through surface treatment to improve hydrophobicity and oleophilicity. This study introduces a new technique dependent on the optimization of the graphene oxide (GO) concentration within the composite sponge to achieve a superior oil uptake capacity (51.4 g oil/g sponge at 3% GO), and the detailed characterization of the material’s performance in separating heavy oil-water emulsions. Our study seeks to answer key questions regarding the performance of these modified sponges and their scalability for industrial applications. This research directly aligns with Qatar’s environmental goals and develops sustainable oil-water separation technologies. It addresses the pressing challenges of oil spills, ultimately contributing to improved marine ecosystem protection and efficient resource recovery. Full article
Show Figures

Figure 1

14 pages, 4131 KiB  
Article
An Experimental and Modelling Study on the Effect of Vegetation-Influenced Water Velocity on Cadmium Accumulation in Corbicula fluminea
by Nan Geng, Guojin Sun, Lin Zhang and Hui Wang
Sustainability 2025, 17(14), 6570; https://doi.org/10.3390/su17146570 - 18 Jul 2025
Viewed by 237
Abstract
Cadmium (Cd) accumulation by benthic organisms poses a significant threat to aquatic environmental safety. Both vegetation and water velocity in rivers could influence this process, yet their coupled interaction mechanisms remain unclear. This study used laboratory flume experiments to simulate four scenarios: static [...] Read more.
Cadmium (Cd) accumulation by benthic organisms poses a significant threat to aquatic environmental safety. Both vegetation and water velocity in rivers could influence this process, yet their coupled interaction mechanisms remain unclear. This study used laboratory flume experiments to simulate four scenarios: static water (C0), pure water velocity (C+H), vegetation-water velocity (V+H), and coexistence of vegetation-water velocity-Corbicula fluminea (C. fluminea) (C+V+H). The dynamics of Cd release from sediment to overlying water and its bioaccumulation within C. fluminea were investigated. A mathematical model coupling Cd release, diffusion, and C. fluminea bioaccumulation was developed based on the lattice Boltzmann method (LBM). The results showed that compared to the non-vegetation group (C+H), the presence of vegetation (V+H, C+V+H) initially reduced sediment resuspension and Cd release. However, the turbulence induced by vegetation significantly increased the Cd diffusion coefficient and equilibrium concentration in the water. Consequently, Cd accumulation in C. fluminea within the vegetation-water velocity group (C+V+H) was significantly higher than in the pure water velocity group (C+H). The established LBM model exhibited good simulation accuracy (for overlying water Cd concentration: R2 = 0.8201–0.942; for C. fluminea Cd concentration: R2 = 0.7604–0.8191) and successfully reproduced the processes of Cd release and bioaccumulation under varying vegetation-water velocity conditions. This study elucidates the mechanism by which vegetation promotes Cd accumulation in C. fluminea by altering water velocity structure and diffusion characteristics, providing crucial theoretical parameters for multi-media migration and transformation models of heavy metals in complex water velocity environments and for early warning systems concerning Cd accumulation risks in riverine organisms. Full article
Show Figures

Figure 1

20 pages, 1893 KiB  
Article
Acute Dermatotoxicity of Green-Synthesized Silver Nanoparticles (AgNPs) in Zebrafish Epidermis
by Grace Emily Okuthe and Busiswa Siguba
Toxics 2025, 13(7), 592; https://doi.org/10.3390/toxics13070592 - 15 Jul 2025
Viewed by 333
Abstract
Silver nanoparticles (AgNPs), lauded for their unique antibacterial and physicochemical attributes, are proliferating across industrial sectors, raising concerns about their environmental fate, in aquatic systems. While “green” synthesis offers a sustainable production route with reduced chemical byproducts, the safety of these AgNPs for [...] Read more.
Silver nanoparticles (AgNPs), lauded for their unique antibacterial and physicochemical attributes, are proliferating across industrial sectors, raising concerns about their environmental fate, in aquatic systems. While “green” synthesis offers a sustainable production route with reduced chemical byproducts, the safety of these AgNPs for aquatic fauna remains uncertain due to nanoparticle-specific effects. Conversely, mast cells play crucial roles in fish immunity, orchestrating innate and adaptive immune responses by releasing diverse mediators and recognizing danger signals. Goblet cells are vital for mucosal immunity and engaging in immune surveillance, regulation, and microbiota interactions. The interplay between these two cell types is critical for maintaining mucosal homeostasis, is central to defending against fish diseases and is highly responsive to environmental cues. This study investigates the acute dermatotoxicity of environmentally relevant AgNP concentrations (0, 0.031, 0.250, and 5.000 μg/L) on zebrafish epidermis. A 96 h assay revealed a biphasic response: initial mucin hypersecretion at lower AgNP levels, suggesting an early stress response, followed by a concentration-dependent collapse of mucosal integrity at higher exposures, with mucus degradation and alarm cell depletion. A rapid and generalized increase in epidermal mucus production was observed across all AgNP exposure groups within two hours of exposure. Further mechanistic insights into AgNP-induced toxicity were revealed by concentration-dependent alterations in goblet cell dynamics. Lower AgNP concentrations initially led to an increase in both goblet cell number and size. However, at the highest concentration, this trend reversed, with a significant decrease in goblet cell numbers and size evident between 48 and 96 h post-exposure. The simultaneous presence of neutral and acidic mucins indicates a dynamic epidermal response suggesting a primary physical barrier function, with acidic mucins specifically upregulated early on to enhance mucus viscosity, trap AgNPs, and inhibit pathogen invasion, a clear defense mechanism. The subsequent reduction in mucin-producing cells at higher concentrations signifies a critical breakdown of this protective strategy, leaving the epidermis highly vulnerable to damage and secondary infections. These findings highlight the vulnerability of fish epidermal defenses to AgNP contamination, which can potentially compromise osmoregulation and increase susceptibility to threats. Further mechanistic research is crucial to understand AgNP-induced epithelial damage to guide sustainable nanotechnology. Full article
(This article belongs to the Section Ecotoxicology)
Show Figures

Graphical abstract

19 pages, 2285 KiB  
Review
Aquatic Pollution in the Bay of Bengal: Impacts on Fisheries and Ecosystems
by Nowrin Akter Shaika, Saleha Khan, Sadiqul Awal, Md. Mahfuzul Haque, Abul Bashar and Halis Simsek
Hydrology 2025, 12(7), 191; https://doi.org/10.3390/hydrology12070191 - 11 Jul 2025
Viewed by 884
Abstract
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as [...] Read more.
Aquatic pollution in the Bay of Bengal has become a major environmental issue with long-term impacts on fisheries, biodiversity, and ecosystems. The review paper examines the major pathways, sources, and ecological consequences of aquatic pollution in the Bay of Bengal. Pollutants such as heavy metals, pesticides, petroleum hydrocarbons, and microplastics have been reported at concerning levels in the soil and water in aquatic ecosystems. Rivers act as key routes, transporting pollutants from inland sources to the Bay of Bengal. These contaminants disrupt metabolic and physiological functions in fish and other aquatic species and pose serious threats to food safety and public health through bioaccumulation. Harmful algal blooms (HABs), caused by nutrient enrichment, further exacerbate ecosystem degradation in the Bay of Bengal. The review highlights the immediate need for strengthened pollution control regulations, real-time water quality monitoring, sustainable farming practices, and community-based policy interventions to preserve biodiversity and safeguard fisheries. Full article
(This article belongs to the Section Surface Waters and Groundwaters)
Show Figures

Figure 1

12 pages, 3285 KiB  
Article
Assessing the Tolerance of Spotted Longbarbel Catfish as a Candidate Species for Aquaculture to Ammonia Nitrogen Exposure
by Song Guo, Linwei Yang and Xiaopeng Xu
Animals 2025, 15(14), 2035; https://doi.org/10.3390/ani15142035 - 10 Jul 2025
Viewed by 215
Abstract
The spotted longbarbel catfish, Hemibagrus guttatus, a nationally protected Class II species in China, faces increasing threats from habitat degradation. Recently, the spotted longbarbel catfish has gained attention as a promising aquaculture species, not only for its premium flesh quality but also [...] Read more.
The spotted longbarbel catfish, Hemibagrus guttatus, a nationally protected Class II species in China, faces increasing threats from habitat degradation. Recently, the spotted longbarbel catfish has gained attention as a promising aquaculture species, not only for its premium flesh quality but also for its potential role in conservation through sustainable captive breeding programs. Ammonia nitrogen (ammonia-N) is a ubiquitous byproduct of intensive farming and serves as the primary environmental stressor confronting aquatic species. Elucidating the ammonia-N tolerance of spotted longbarbel catfish constitutes a critical prerequisite for its successful domestication, which is the aim of this study. We demonstrate that ammonia-N stress significantly decreases the survival rate of spotted longbarbel catfish and induces tissue damage, including gill lamella proliferation, hepatocyte blurring, and renal necrosis. Transcriptomic analysis revealed that ammonia-N stress promotes the expression of genes related to endoplasmic reticulum stress, heat-shock proteins, immune response, and apoptosis, while inhibiting antioxidant-related genes and Wnt-related genes. Enzymatic assays indicate that ammonia-N stress inhibits the activities of multiple antioxidant enzymes, including SOD, CAT, GSH, GSH-Px, and T-AOC. Microbiome analysis showed that ammonia-N stress altered the intestinal microbial community by increasing harmful bacteria (e.g., Vibrio and Aeromonas) and suppressing beneficial bacteria (e.g., Cetobacterium and Lactococcus). These findings highlight the comprehensive negative impacts of ammonia-N on the health of the spotted longbarbel catfish and provide a theoretical basis for optimizing aquaculture conditions to support the sustainable protection and domestication of the spotted longbarbel catfish. Full article
Show Figures

Figure 1

13 pages, 1949 KiB  
Article
Assessment of Growth and Physiological Responses of Lemna minor Exposed to 4-Aminodiphenylamine, a Tire Wear Compound
by Shila Kandel, Naja’Ree Campbell, Abubakar Abdulkadir, Kristin Moore, Raphyel Rosby and Ekhtear Hossain
Pollutants 2025, 5(3), 20; https://doi.org/10.3390/pollutants5030020 - 7 Jul 2025
Viewed by 417
Abstract
4-Aminodiphenylamine (4-ADPA) is a common additive in rubber tires, known for its antioxidant properties. It plays a crucial role in enhancing tire durability by preventing issues such as drying, cracking, and degradation from prolonged exposure to environmental factors like heat, oxygen, and ozone. [...] Read more.
4-Aminodiphenylamine (4-ADPA) is a common additive in rubber tires, known for its antioxidant properties. It plays a crucial role in enhancing tire durability by preventing issues such as drying, cracking, and degradation from prolonged exposure to environmental factors like heat, oxygen, and ozone. However, despite its advantages in extending tire lifespan, the use of 4-ADPA raises significant environmental concerns. As tires wear down, microscopic tire wear particles (TWPs) containing 4-ADPA are released into the environment with substantial leaching, contaminating the waterways. The 4-ADPA leachates pollute and pose a threat to aquatic ecosystems, affecting various forms of marine life. The current study investigates the ecotoxicological effects of 4-ADPA on the aquatic plant Lemna minor (L. minor), focusing on its impact on relative growth and physiological biomarkers. Several parameters were assessed to evaluate ecotoxicity, including frond morphology, fresh biomass, total frond number, chlorophyll content, and starch accumulation. L. minor was grown for 7 and 14 days under controlled laboratory conditions using Hoagland media with varying concentrations of 4-ADPA (10–100 μg/L), while a control group was maintained in media without 4-ADPA. The results indicate that exposure to 4-ADPA led to a dose-dependent reduction in fresh biomass, total frond number, and chlorophyll levels. Lugol’s staining revealed increased starch accumulation in the fronds after exposure to 4-ADPA. The biological effects observed in L. minor following exposure to 4-ADPA, even at environmentally relevant concentrations, demonstrate a significant ecotoxicological impact on aquatic ecosystems. Further research involving additional species and investigating the mechanisms behind 4-ADPA toxicity is recommended to better understand its long-term consequences. Full article
Show Figures

Graphical abstract

Back to TopTop