Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (120)

Search Parameters:
Keywords = aquaculture wastewater treatment

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2189 KiB  
Article
A Synergistic Role of Photosynthetic Bacteria and Fungal Community in Pollutant Removal in an Integrated Aquaculture Wastewater Bioremediation System
by Muhammad Naeem Ramzan, Ding Shen, Yingzhen Wei, Bilal Raza, Hongmei Yuan, Arslan Emmanuel, Zulqarnain Mushtaq and Zhongming Zheng
Biology 2025, 14(8), 959; https://doi.org/10.3390/biology14080959 - 30 Jul 2025
Viewed by 351
Abstract
This study addresses the understanding of fungal diversity and their bioremediation roles in an integrated aquaculture wastewater bioremediation system, an area less explored compared to bacteria, viruses, and protozoa. Despite the rapid advancement and affordability of molecular tools, insights into fungal communities remain [...] Read more.
This study addresses the understanding of fungal diversity and their bioremediation roles in an integrated aquaculture wastewater bioremediation system, an area less explored compared to bacteria, viruses, and protozoa. Despite the rapid advancement and affordability of molecular tools, insights into fungal communities remain vague, and interpreting environmental studies in an ecologically meaningful manner continues to pose challenges. To bridge this knowledge gap, we developed an integrated aquaculture wastewater bioremediation system, incorporating photosynthetic bacteria, and utilizing internal transcribed spacer (ITS) sequencing to analyze fungal community composition. Our findings indicate that the fungal community in aquaculture wastewater is predominantly composed of the phyla Ascomycota and Chytridiomycota, with dominant genera including Aspergillus, Hortea, and Ciliphora. FUNGuild, a user-friendly trait and character database operating at the genus level, facilitated the ecological interpretation of fungal functional groups. The analysis revealed significant negative correlations between nutrient levels (CODmn, NH4+-N, NO3-N, NO2-N, and PO4−3-P) and specific fungal functional groups, including epiphytes, animal pathogens, dung saprotrophs, plant pathogens, and ectomycorrhizal fungi. The removal rate for the CODmn, NH4+-N, NO3-N, NO2-N, and PO4−3-P were 71.42, 91.37, 88.80, 87.20, and 91.72% respectively. This study highlights the potential role of fungal communities in bioremediation processes and provides a framework for further ecological interpretation in aquaculture wastewater treatment systems. Full article
Show Figures

Figure 1

28 pages, 525 KiB  
Review
Ozone for Industrial Wastewater Treatment: Recent Advances and Sector Applications
by Daniel A. Leontieff, Keisuke Ikehata, Yasutaka Inanaga and Seiji Furukawa
Processes 2025, 13(8), 2331; https://doi.org/10.3390/pr13082331 - 23 Jul 2025
Viewed by 620
Abstract
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented [...] Read more.
Ozonation and ozone-based advanced oxidation processes, including ozone/hydrogen peroxide and ozone/ultraviolet irradiation, have been extensively studied for their efficacy in treating wastewater across various industries. While sectors such as pulp and paper, textile, food and beverage, microelectronics, and municipal wastewater have successfully implemented ozone at full scale, others have yet to fully embrace these technologies’ effectiveness. This review article examines recent publications from the past two decades, exploring novel applications of ozone-based technologies in treating wastewater from diverse sectors, including food and beverage, agriculture, aquaculture, textile, pulp and paper, oil and gas, medical and pharmaceutical manufacturing, pesticides, cosmetics, cigarettes, latex, cork manufacturing, semiconductors, and electroplating industries. The review underscores ozone’s broad applicability in degrading recalcitrant synthetic and natural organics, thereby reducing toxicity and enhancing biodegradability in industrial effluents. Additionally, ozone-based treatments prove highly effective in disinfecting pathogenic microorganisms present in these effluents. Continued research and application of these ozonation and ozone-based advanced oxidation processes hold promise for addressing environmental challenges and advancing sustainable wastewater management practices globally. Full article
(This article belongs to the Special Issue Processes Development for Wastewater Treatment)
Show Figures

Figure 1

26 pages, 888 KiB  
Review
Current Trends in Approaches to Prevent and Control Antimicrobial Resistance in Aquatic Veterinary Medicine
by Dongqing Zhao, Konrad Wojnarowski, Paulina Cholewińska and Dušan Palić
Pathogens 2025, 14(7), 681; https://doi.org/10.3390/pathogens14070681 - 10 Jul 2025
Viewed by 511
Abstract
The growth of aquaculture production in recent years has revealed multiple challenges, including the rise of antimicrobial resistance (AMR) in aquatic animal production, which is currently attracting significant attention from multiple one-health stakeholders. While antibiotics have played a major role in the treatment [...] Read more.
The growth of aquaculture production in recent years has revealed multiple challenges, including the rise of antimicrobial resistance (AMR) in aquatic animal production, which is currently attracting significant attention from multiple one-health stakeholders. While antibiotics have played a major role in the treatment of bacterial infections for almost a century, a major consequence of their use is the increase in AMR, including the emergence of AMR in aquaculture. The AMR phenomenon creates a situation where antibiotic use in one system (e.g., aquaculture) may impact another system (e.g., terrestrial–human). Non-prudent use of antibiotics in aquaculture and animal farming increases the risk of AMR emergence, since bacteria harboring antibiotic resistance genes can cross between compartments such as wastewater or other effluents to aquatic environments, including intensive aquaculture. Transferable antimicrobial resistance gene (AMG) elements (plasmids, transposons, integrons, etc.) have already been detected in varying degrees from pathogenic bacteria that are often causing infections in farmed fish (Aeromonas, Vibrio, Streptococcus, Pseudomonas, Edwardsiella, etc.). This review of current veterinary approaches for the prevention and control of AMR emergence in aquaculture focuses on the feasibility of alternatives to antimicrobials and supplemental treatment applications during on-farm bacterial disease control and prevention. The use of vaccines, bacteriophages, biosurfactants, probiotics, bacteriocins, and antimicrobial peptides is discussed. Full article
Show Figures

Figure 1

19 pages, 3395 KiB  
Article
Characterization, Microbial Community Structure, and Pathogen Occurrence in Two Typical Eel Farms
by Jing-Ying Lai, Hui-Rong Lin, Xiao-Hui Sun, Gong-Ren Hu, Rui-Lian Yu and Jia-Qi Li
Microorganisms 2025, 13(7), 1624; https://doi.org/10.3390/microorganisms13071624 - 10 Jul 2025
Viewed by 360
Abstract
Pollutants and pathogens in aquaculture systems may cause economic losses and threaten public health. Yet, the risks associated with microbiological contaminants and their relationship with environmental factors remain largely unknown. In this study, two typical eel farms in southeast China were chosen for [...] Read more.
Pollutants and pathogens in aquaculture systems may cause economic losses and threaten public health. Yet, the risks associated with microbiological contaminants and their relationship with environmental factors remain largely unknown. In this study, two typical eel farms in southeast China were chosen for investigation of water quality and microbial community in the treatment processes. It was found that flocculant addition can only effectively reduce total phosphorus (TP) in both farms. However, excessive total nitrogen (TN) was found (6.16 mg/L and 6.74 mg/L, respectively). NH4+ (3.98 mg/L) was the main nitrogen pollutant in QR farm, while NO3 (3.81 mg/L) and NO2 (1.22 mg/L) were the main nitrogen pollutants in ZJ farm. The treatment processes could not effectively remove nitrogen pollution, and the abundance of nitrogen functional bacteria was low. NO2 was positively correlated with Verrucomicrobiota (p < 0.05). NH4+ and TN were significantly negatively correlated with Nitrospirota and unclassified_f_Anaerolineaceae, respectively (p < 0.05). Some typical pathogens associated with aquaculture (e.g., Lactococcus) and human beings (e.g., Escherichia-Shigella,) were found in the systems. This study proposes suggestions for aquaculture tailwater by analyzing the shortcomings of the existing treatment processes. Meanwhile, it offers certain support for the prevention of pathogen risks in aquaculture systems. Full article
(This article belongs to the Special Issue Microbes in Aquaculture)
Show Figures

Figure 1

31 pages, 3790 KiB  
Systematic Review
Plants Used in Constructed Wetlands for Aquaculture: A Systematic Review
by Erick Arturo Betanzo-Torres, Gastón Ballut-Dajud, Graciano Aguilar-Cortés, Elizabeth Delfín-Portela and Luis Carlos Sandoval Herazo
Sustainability 2025, 17(14), 6298; https://doi.org/10.3390/su17146298 - 9 Jul 2025
Viewed by 770
Abstract
The latest FAO report indicates that aquaculture accounts for 51% of the global production volume of fish and seafood. However, despite the continuous growth of this activity, there is evidence of the excessive use of groundwater in its production processes, as well as [...] Read more.
The latest FAO report indicates that aquaculture accounts for 51% of the global production volume of fish and seafood. However, despite the continuous growth of this activity, there is evidence of the excessive use of groundwater in its production processes, as well as pollution caused by nutrient discharges into surface waters due to the water exchange required to maintain water quality in fishponds. Given this context, the objectives of this study were as follows: (1) to review which emergent and floating plant species are used in constructed wetlands (CWs) for the bioremediation of aquaculture wastewater; (2) to identify the aquaculture species whose wastewater has been treated with CW systems; and (3) to examine the integration of CWs with recirculating aquaculture systems (RASs) for water reuse. A systematic literature review was conducted, selecting 70 scientific articles published between 2003 and 2023. The results show that the most used plant species in CW systems were Phragmites australis, Typha latifolia, Canna indica, Eichhornia crassipes, and Arundo donax, out of a total of 43 identified species. These plants treated wastewater generated by 25 aquaculture species, including Oreochromis niloticus, Litopenaeus vannamei, Ictalurus punctatus, Clarias gariepinus, Tachysurus fulvidraco, and Cyprinus carpio, However, only 40% of the reviewed studies addressed aspects related to the incorporation of RAS elements in their designs. In conclusion, the use of plants for wastewater treatment in CW systems is feasible; however, its application remains largely at the experimental scale. Evidence indicates that there are limited real-scale applications and few studies focused on the reuse of treated water for agricultural purposes. This highlights the need for future research aimed at production systems that integrate circular economy principles in this sector, through RAS–CW systems. Additionally, there is a wide variety of plant species that remain unexplored for these purposes. Full article
Show Figures

Figure 1

15 pages, 1908 KiB  
Article
Screening and Application of High-Efficiency Ammonia Nitrogen Degrading Bacteria
by Yingte Song, Ruitao Cai, Chuyang Wei, Xiaoyong Liu and Hui-Lian Xu
Water 2025, 17(13), 1952; https://doi.org/10.3390/w17131952 - 29 Jun 2025
Viewed by 410
Abstract
There is a lack of research on screening new strains of high-efficiency ammonia nitrogen degrading bacteria and treating high-concentration ammonia nitrogen aquaculture wastewater using immobilized composite bacteria. In this study, two strains capable of degrading ammonia nitrogen and nitrite were isolated from surface [...] Read more.
There is a lack of research on screening new strains of high-efficiency ammonia nitrogen degrading bacteria and treating high-concentration ammonia nitrogen aquaculture wastewater using immobilized composite bacteria. In this study, two strains capable of degrading ammonia nitrogen and nitrite were isolated from surface water. The species of the strains were accurately identified using ITS sequencing technology. Scp1 was identified as Pseudomonas and Scr1 as Rhodococcus erythropolis. Both strains were preserved. When the initial concentration of ammonia nitrogen was 1.50 mg/L, the degradation efficiency of ammonia nitrogen after 4 days of inoculation with Scp1, Scr1, and a combination of Scp1 and Scr1 was 90%, 93.3%, and 99.99%, respectively. Similarly, when the initial concentration of nitrite was 0.25 mg/L, the degradation efficiency after 4 days of inoculation with Scp1, Scr1, and a combination of Scp1 and Scr1 was 60%, 82%, and 97.2%, respectively. In addition, when the initial concentration of COD was 20 mg/L, the degradation efficiency after 6 days of inoculation with Scp1, Scr1, and a combination of Scp1 and Scr1 was 59%, 59.4%, and 93.75%, respectively. The results demonstrated that the combined bacteria, Scp1 and Scr1, had a better degradation effect on ammonia nitrogen, nitrite, and COD. Furthermore, a degradation test was conducted in a Penaeus vannamei breeding base, which showed good degradation effects. These findings provide theoretical support for the treatment of high ammonia nitrogen wastewater in aquaculture and have important practical applications. Full article
(This article belongs to the Section Water and One Health)
Show Figures

Figure 1

19 pages, 1111 KiB  
Article
Valorization of Low-Nitrogen, High-Organic-Load Shrimp Aquaculture Wastewater by Dunaliella salina: Pollutant Removal and High-Value-Biomass Production
by Alvaro Barreto, Victor Manuel Luna-Pabello, Manuel Sacristán de Alva, Iveth Gabriela Palomino Albarrán, Martín Arenas and Gabriela Gaxiola
Microorganisms 2025, 13(7), 1484; https://doi.org/10.3390/microorganisms13071484 - 26 Jun 2025
Viewed by 398
Abstract
The rapid expansion of shrimp aquaculture has led to the generation of nutrient-rich effluents, which contribute to environmental degradation if inadequately managed. This study evaluated the potential of Dunaliella salina for the reuse of shrimp aquaculture wastewater (SAW) in biofloc production systems under [...] Read more.
The rapid expansion of shrimp aquaculture has led to the generation of nutrient-rich effluents, which contribute to environmental degradation if inadequately managed. This study evaluated the potential of Dunaliella salina for the reuse of shrimp aquaculture wastewater (SAW) in biofloc production systems under varying dilution levels (0%, 25%, and 50%) and the simultaneous production of high-value biomass. Growth kinetics were modeled using a four-parameter logistic model, and nutrient removal, biochemical composition, and fatty acid profile were assessed. D. salina exhibited substantial growth in undiluted SAW, achieving over 80% removal of total nitrogen and reducing the organic load, as measured by a chemical oxygen demand reduction of more than 79%. In SAW treatments, the protein content ranged from 24.7% to 26.3%, while the lipid content reached up to 67.1% in a 25% SAW dilution. Chlorophyll a and total carotenoids were measured at 5.3–7 µg/mL and 4.1–5.7 µg/mL, respectively, in SAW treatments. The polyunsaturated fatty acid content in undiluted SAW was 34.5%, with α-linolenic acid (C18:3n3) and linoleic acid (C18:2n6) comprising 12% and 7.5%, respectively. This study demonstrates the ability of D. salina to valorize shrimp aquaculture wastewater in biofloc systems into lipid-rich, bioactive biomass, supporting its use in integrated aquaculture biotechnology systems for sustainable wastewater management and bioproduct generation. Full article
(This article belongs to the Special Issue Aquatic Microorganisms and Their Application in Aquaculture)
Show Figures

Figure 1

22 pages, 5141 KiB  
Article
Maifanstone Powder-Modified PE Filler for Enhanced MBBR Start-Up in Treating Marine RAS Wastewater
by Rubina Altaf, Tianyu Xiao, Kai Wang, Jianlin Guo, Qian Li, Jing Zou, Neemat Jaafarzadeh, Daoji Wu and Dezhao Liu
Water 2025, 17(13), 1888; https://doi.org/10.3390/w17131888 - 25 Jun 2025
Viewed by 455
Abstract
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia [...] Read more.
The recirculating aquaculture system (RAS) has been rapidly adopted worldwide in recent years due to its high productivity, good stability, and good environmental controllability (and therefore friendliness to environment and ecology). Nevertheless, the effluent from seawater RAS contains a high level of ammonia nitrogen which is toxic to fish, so it is necessary to overcome the salinity conditions to achieve rapid and efficient nitrification for recycling. The moving bed biofilm reactor (MBBR) has been widely applied often by using PE fillers for efficient wastewater treatment. However, the start-up of MBBR in seawater environments has remained a challenge due to salinity stress and harsh inoculation conditions. This study investigated a new PE-filler surface modification method towards the enhanced start-up of mariculture MBBR by combining liquid-phase oxidation and maifanstone powder. The aim was to obtain a higher porous surface and roughness and a strong adsorption and alkalinity adjustment for the MBBR PE filler. The hydrophilic properties, surface morphology, and chemical structure of a raw polyethylene filler (an unmodified PE filler), liquid-phase oxidation modified filler (LO-PE), and liquid-phase oxidation combined with a coating of a maifanstone-powder-surface-modified filler (LO-SCPE) were first investigated and compared. The results showed that the contact angle was reduced to 45.5° after the optimal liquid-phase oxidation modification for LO-PE, 49.8% lower than that before modification, while SEM showed increased roughness and surface area by modification. Moreover, EDS presented the relative content of carbon (22.75%) and oxygen (42.36%) on the LO-SCPE surface with an O/C ratio of 186.10%, which is 177.7% higher than that of the unmodified filler. The start-up experiment on MBBRs treating simulated marine RAS wastewater (HRT = 24 h) showed that the start-up period was shortened by 10 days for LO-SCPE compared to the PE reactor, with better ammonia nitrogen removal observed for LO-SCPE (95.8%) than the PE reactor (91.7%). Meanwhile, the bacterial community composition showed that the LO-SCPE reactor had a more diverse and abundant AOB and NOB. The Nitrospira has a more significant impact on nitrification because it would directly oxidize NH4⁺-N to NO3⁻-N (comammox pathway) as mediated by AOB and NOB. Further, the LO-SCPE reactor showed a higher NH4+-N removal rate (>99%), less NO2-N accumulation, and a shorter adaption period than the PE reactor. Eventually, the NH4+-N concentrations of the three reactors (R1, R2, and R3) reached <0.1 mg/L within 3 days, and their NH4+-N removal efficiencies achieved 99.53%, 99.61%, and 99.69%, respectively, under ammonia shock load. Hence, the LO-SCPE media have a higher marine wastewater treatment efficiency. Full article
Show Figures

Figure 1

13 pages, 914 KiB  
Article
Natural Coagulants as an Efficient Alternative to Chemical Ones for Continuous Treatment of Aquaculture Wastewater
by Isabella T. Tomasi, Rui A. R. Boaventura and Cidália M. S. Botelho
Appl. Sci. 2025, 15(12), 6908; https://doi.org/10.3390/app15126908 - 19 Jun 2025
Viewed by 394
Abstract
Aquaculture effluents are a growing source of water pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into aquatic environments. Recirculating aquaculture systems (RASs) have emerged as a more sustainable solution, allowing water to be continuously treated and reused. Within RASs, coagulation–flocculation is [...] Read more.
Aquaculture effluents are a growing source of water pollution, releasing suspended solids, organic matter, nitrogen, and phosphorus into aquatic environments. Recirculating aquaculture systems (RASs) have emerged as a more sustainable solution, allowing water to be continuously treated and reused. Within RASs, coagulation–flocculation is a key treatment step due to its simplicity and effectiveness. Tannin-based coagulants have gained attention as natural alternatives to traditional chemical agents. Although natural coagulants have been studied in aquaculture, only a few works explore their use in continuous-flow systems. This study evaluates a chestnut shell-based (CS) coagulant applied in continuous mode for the post-treatment of aquaculture effluent. The performance of CS was compared with Tanfloc, aluminum sulfate, and ferric chloride in removing color and dissolved organic carbon (DOC). At natural pH (6.5) and 50 mg·L−1, CS and Tanfloc achieved color removal of 61.0% and 65.5%, respectively, outperforming chemical coagulants. For DOC, Tanfloc and chemical coagulants removed 45–50%, while CS removed 32%. All coagulants removed over 90% of phosphorus, but nitrogen removal was limited (30–40%). These results highlight the potential of tannin-derived coagulants, particularly from agro-industrial residues, as sustainable solutions for aquaculture wastewater treatment in continuous systems. Full article
Show Figures

Figure 1

18 pages, 2194 KiB  
Article
Stability Enhancement of Microalgae–Fungal Pellets
by Guang Zhang, Kai Cheng and Hong Mei
Water 2025, 17(12), 1766; https://doi.org/10.3390/w17121766 - 12 Jun 2025
Viewed by 580
Abstract
Microalgae–fungal pellets (MFPs) effectively degrade pollutants in high-density aquaculture wastewater; however, their structural instability limits their long-term applicability. This study evaluated the effects of three crosslinking agents, sodium alginate (SA), chitosan (CTS), and polyvinyl alcohol (PVA), on enhancing the stability of MFPs. The [...] Read more.
Microalgae–fungal pellets (MFPs) effectively degrade pollutants in high-density aquaculture wastewater; however, their structural instability limits their long-term applicability. This study evaluated the effects of three crosslinking agents, sodium alginate (SA), chitosan (CTS), and polyvinyl alcohol (PVA), on enhancing the stability of MFPs. The results demonstrated that the initial 20 g/L SA-crosslinked MFP sample (SMFP0) exhibited significantly improved structural stability, maintaining superior mechanical hardness (57.05 g) after 9 days. Further analysis revealed that SMFP0 exhibited a more negative absolute Zeta potential (−13.05 mV), increased fluorescence intensity (0.020) in its tightly bound extracellular polymeric substances (TB-EPSs), and significantly higher protein (PN, 64.22 mg/L) and polysaccharide (PS, 56.99 mg/L) concentrations compared with the control (p < 0.05). These findings suggest that SMFP0 possesses physicochemical properties that are conducive to microalgae–fungal aggregation. A scanning electron microscopy (SEM) analysis confirmed that the SA gel network enhanced the system’s stability by strengthening the microalgae–fungal interfacial adhesion and maintaining a porous, light-permeable structure. In practical wastewater treatment, SMFP0 achieved superior removal rates for COD (84.19%), ammonia nitrogen (95.29%), total nitrogen (89.50%), and total phosphorus (93.46%) compared with non-crosslinked MFPs (p < 0.05). After 9 days of continuous operation (SMFP9), the pollutant removal efficiencies remained comparable to those observed in the initial stage of the non-crosslinked system, indicating improved structural durability for extended practical application. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

14 pages, 1526 KiB  
Article
A Cold-Resistant Aerobic Denitrifying Bacterium Rhizobium pusense N7 for Aquaculture Wastewater Treatment and Its Denitrifying Characteristics
by Siwei Lyu, Meiying Song, Zhiying Kan, Yuhao Fu, Yang Liu, Yixiang Zhang and Rongfei Zhang
Water 2025, 17(11), 1592; https://doi.org/10.3390/w17111592 - 24 May 2025
Viewed by 552
Abstract
Aerobic denitrifying bacteria can effectively cope with the challenge of dissolving nitrogen in wastewater. High-performance aerobic denitrifying bacteria were isolated using the plate streaking method and subsequently evaluated and identified based on nitrate removal efficiency, nitrite accumulation, growth characteristics, morphological analysis, and 16S [...] Read more.
Aerobic denitrifying bacteria can effectively cope with the challenge of dissolving nitrogen in wastewater. High-performance aerobic denitrifying bacteria were isolated using the plate streaking method and subsequently evaluated and identified based on nitrate removal efficiency, nitrite accumulation, growth characteristics, morphological analysis, and 16S rRNA sequencing. Results showed that strain N7 achieved a nitrate removal rate of 92.53% at 15 °C, with a maximum removal rate of 28.15 mg·L−1·h−1. Molecular identification confirmed this strain as Rhizobium pusense N7. Optimization experiments established the ideal conditions for Rhizobium pusense N7: sodium succinate as the carbon source, C/N ratio of 15:1, temperature at 30 °C, shaking speed at 100 rpm·min−1, and initial pH of 7.0. During the application process, Rhizobium pusense N7 demonstrated efficient nitrogen removal, eliminating 18.3% of nitrate, 71.5% of ammonia nitrogen, and 26.9% of total nitrogen (TN) from aquaculture wastewater within 24 h. This study offers a promising solution for the biological treatment of wastewater under low-temperature conditions. Full article
(This article belongs to the Section Wastewater Treatment and Reuse)
Show Figures

Figure 1

25 pages, 4700 KiB  
Article
Silver and Zinc Oxide Nanoparticles for Effective Aquaculture Wastewater Treatment
by Mahmoud Abou-Okada, Mansour El-Matbouli and Mona Saleh
Nanomaterials 2025, 15(7), 559; https://doi.org/10.3390/nano15070559 - 5 Apr 2025
Viewed by 991
Abstract
This study explores the use of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs), either singly or in combination, for the nanoremediation of aquaculture wastewater. Aquaculture wastewater was treated with varying doses of Ag NPs and ZnO NPs across the following [...] Read more.
This study explores the use of silver nanoparticles (Ag NPs) and zinc oxide nanoparticles (ZnO NPs), either singly or in combination, for the nanoremediation of aquaculture wastewater. Aquaculture wastewater was treated with varying doses of Ag NPs and ZnO NPs across the following six groups: Group 1 (0.05 mg Ag NPs/L), Group 2 (1 mg ZnO NPs/L), Group 3 (0.05 mg Ag NPs/L + 1 mg ZnO NPs/L), Group 4 (0.025 Ag NPs/L + 0.5 mg ZnO NPs/L), Group 5 (0.1 mg Ag NPs/L + 2 mg ZnO NPs/L), and a control group. Water quality, microbial loads and nanomaterial concentrations were assessed over ten days. Transmission electron microscopy (TEM) showed average particle sizes of 102.5 nm for Ag NPs and 110.27 nm for ZnO NPs. The removal efficiencies of NH4-N were over 98% across treatment groups. In addition, COD removal efficiencies were 33.33%, 68.82%, 49.59%, 61.49%, and 37.65%. The log-reductions in aerobic plate counts for the nanoparticle-treated wastewater were 1.191, 1.947, 1.133, 1.071, and 0.087, compared to a reduction of 0.911 in untreated wastewater. Silver concentrations ranged from 0.0079 to 0.0192 mg/L, while zinc concentrations ranged from 0.3040 to 0.9740 mg/L, indicating that ZnO-NPs represent a sustainable treatment method for aquaculture wastewater. Full article
Show Figures

Graphical abstract

29 pages, 2739 KiB  
Review
Role of Microbial Communities and Their Functional Gene in Anammox Process for Biodegradation of Bisphenol A and S in Pharmaceutical Wastewater
by Ruili Yang, Yonghao Sha, Zhuqiu Sun, Bairen Yang and Farheen Solangi
Toxics 2025, 13(4), 252; https://doi.org/10.3390/toxics13040252 - 28 Mar 2025
Cited by 1 | Viewed by 750
Abstract
Substantial amounts of nitrogenous (N) compounds, as well as bisphenol A (BPA) and bisphenol S (BPS), contribute to the impurities of pharmaceutical contamination (PC) in wastewater, which have detrimental effects on the environment, humans, and aquaculture. The anammox processes is primarily used to [...] Read more.
Substantial amounts of nitrogenous (N) compounds, as well as bisphenol A (BPA) and bisphenol S (BPS), contribute to the impurities of pharmaceutical contamination (PC) in wastewater, which have detrimental effects on the environment, humans, and aquaculture. The anammox processes is primarily used to treat wastewater contamination, in which certain microbial communities play a crucial role. In this regard, the present study focuses on microbial communities and the functional genes involved in the anammox process. Further, the current study highlights the secondary (biological) and tertiary (advanced) methods; these techniques are more effective solutions for PC treatment. Anammox bacteria are the primary drivers of the wastewater’s ammonium and nitrite removal process. However, overall, 25 anammox species have been recognized between five important genera, including Anammoxoglobus, Anammoximicrobium, Brocadia, Kuenenia, and Jettenia, which are mainly found in activated sludge and marine environments. The group of bacteria called anammox has genes that encode enzymes such as hydrazine synthase (HZS), hydrazine dehydrogenase (HDH), nitrite oxidoreductase reductase (NIR), hydroxylamine oxidoreductase (HAO), and ammonium monooxygenase (AMO). The anammox process is responsible for developing about 30% to 70% N gases worldwide, making it a critical component of the nitrogen cycle as well. Therefore, this review paper also investigates the pathways of hydrazine, an intermediate in the anammox process, and discusses the potential way to significantly decrease the N-compound contamination from wastewater systems and the environmental effects of determined organic contaminants of BPA and BPS. Full article
Show Figures

Graphical abstract

19 pages, 3437 KiB  
Article
The Performance of a Multi-Stage Surface Flow Constructed Wetland for the Treatment of Aquaculture Wastewater and Changes in Epiphytic Biofilm Formation
by Chuanxin Chao, Shen Gong and Yonghong Xie
Microorganisms 2025, 13(3), 494; https://doi.org/10.3390/microorganisms13030494 - 22 Feb 2025
Cited by 1 | Viewed by 1129
Abstract
Constructed wetlands play a critical role in mitigating aquaculture wastewater pollution. However, the comprehensive treatment performance of aquatic plants and microorganisms under various water treatment processes remains insufficiently understood. Here, a multi-stage surface flow constructed wetland (SFCW) comprising four different aquatic plant species, [...] Read more.
Constructed wetlands play a critical role in mitigating aquaculture wastewater pollution. However, the comprehensive treatment performance of aquatic plants and microorganisms under various water treatment processes remains insufficiently understood. Here, a multi-stage surface flow constructed wetland (SFCW) comprising four different aquatic plant species, along with aeration and biofiltration membrane technologies, was investigated to explore the combined effects of aquatic plants and epiphytic biofilms on wastewater removal efficiency across different vegetation periods and treatment processes. The results demonstrated that the total removal efficiency consistently exceeded 60% in both vegetation periods, effectively intercepting a range of pollutants present in aquaculture wastewater. Changes in the vegetation period influenced the performance of the SFCW, with the system’s ability to treat total nitrogen becoming more stable over time. The removal efficiency of the treatment pond planted with submerged plants was highest in July, while the pond planted with emergent plants showed an increased removal rate in November. The aeration pond played a significant role in enhancing dissolved oxygen levels, thereby improving phosphorus removal in July and nitrogen removal in November. Additionally, the α-diversity of epiphytic bacteria in the aeration and biofiltration ponds was significantly higher compared to other ponds. In terms of bacterial composition, the abundance of Firmicutes was notably higher in July, whereas Nitrospirota and Acidobacteriota exhibited a significant increase in November. Furthermore, the functional genes associated with sulfur metabolism, nitrogen fixation, and oxidative phosphorylation displayed significant temporal variations in the aeration pond, highlighting that both growth period changes and treatment processes influence the expression of functional genes within biofilms. Our findings suggest that the integration of water treatment processes in SFCWs enhances the synergistic effects between aquatic plants and microorganisms, helping to mitigate the adverse impacts of vegetation period changes and ensuring stable and efficient wastewater treatment performance. Full article
Show Figures

Figure 1

30 pages, 2104 KiB  
Article
Achieving a Biocircular Economy in the Aquaculture Sector Through Waste Valorization
by Setyo Budi Kurniawan, Azmi Ahmad, Muhammad Fauzul Imron, Siti Rozaimah Sheikh Abdullah, Ahmad Razi Othman and Hassimi Abu Hasan
Toxics 2025, 13(2), 131; https://doi.org/10.3390/toxics13020131 - 11 Feb 2025
Cited by 5 | Viewed by 1642
Abstract
Aquaculture wastewater treatment not only assists in alleviating the scarcity of clean water for daily usage and environmental pollution, but also generates valuable byproducts. This paper aims to review the generation of wastewater from the aquaculture sector, its characteristics, and available treatment technologies, [...] Read more.
Aquaculture wastewater treatment not only assists in alleviating the scarcity of clean water for daily usage and environmental pollution, but also generates valuable byproducts. This paper aims to review the generation of wastewater from the aquaculture sector, its characteristics, and available treatment technologies, while comprehensively discussing the adoption of a biocircular economy approach through waste valorization. With rich nutrients, such as nitrogenous compounds, and the presence of phosphorus in the aquaculture effluent, these aspects could be explored and valorized into biofertilizers, broadening their application in aquaponics and hydroponics, as well as in algae and daphnid cultivation. Biofertilizer can also be used in agriculture because it contains essential elements needed by plants. Thus, methods of converting nutrients into biofertilizers in terms of sludge recovery can be accomplished via anaerobic and aerobic digestion, drying, composting, and vermicomposting. Moving forward, aquaculture effluent recovery is addressed under the biocircular economy by re-engaging aquaculture wastewater effluents into the production cycle. The enhancement of aquaculture effluents and biomass for uses such as aquaponics, hydroponics, algae cultivation, daphnid co-cultivation, and biofertilizers presents valuable opportunities for nutrient recovery while ensuring that non-toxic wastewater can be safely discharged into external water bodies. This approach has the potential to revolutionize wastewater treatment in aquaculture, shifting the economic model of wastewater management from a linear system to a circular, more sustainable one. Full article
Show Figures

Figure 1

Back to TopTop