Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (113)

Search Parameters:
Keywords = appliances energy prediction

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 201
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

23 pages, 1154 KiB  
Article
Assessing a Measurement-Oriented Data Management Framework in Energy IoT Applications
by Hariom Dhungana, Francesco Bellotti, Matteo Fresta, Pragya Dhungana and Riccardo Berta
Energies 2025, 18(13), 3347; https://doi.org/10.3390/en18133347 - 26 Jun 2025
Viewed by 249
Abstract
The Internet of Things (IoT) has enabled the development of various applications for energy, exploiting unprecedented data collection, multi-stage data processing, enhanced awareness, and control of the physical environment. In this context, the availability of tools for efficient development is paramount. This paper [...] Read more.
The Internet of Things (IoT) has enabled the development of various applications for energy, exploiting unprecedented data collection, multi-stage data processing, enhanced awareness, and control of the physical environment. In this context, the availability of tools for efficient development is paramount. This paper explores and validates the use of a generic, flexible, open-source measurement-oriented data collection framework for the energy field, namely Measurify, in the Internet of Things (IoT) context. Based on a literature analysis, we have spotted three domains (namely, vehicular batteries, low voltage (LV) test feeder, and home energy-management system) and defined for each one of them an application (namely: range prediction, power flow analysis, and appliance scheduling), to verify the impact given by the use of the proposed IoT framework. We modeled each one of them with Measurify, mapping the energy field items into the abstract resources provided by the framework. From our experience in the three applications, we highlight the generality of Measurify, with straightforward modeling capabilities and rapid deployment time. We thus argue for the importance for practitioners of using powerful big data management development tools to improve efficiency and effectiveness in the life-cycle of IoT applications, also in the energy domain. Full article
(This article belongs to the Special Issue Tiny Machine Learning for Energy Applications)
Show Figures

Figure 1

15 pages, 1479 KiB  
Article
Occupant-Centric Load Optimization in Smart Green Townhouses Using Machine Learning
by Seyed Morteza Moghimi, Thomas Aaron Gulliver, Ilamparithi Thirumarai Chelvan and Hossen Teimoorinia
Energies 2025, 18(13), 3320; https://doi.org/10.3390/en18133320 - 24 Jun 2025
Viewed by 439
Abstract
This paper presents an occupant-centric load optimization framework for Smart Green Townhouses (SGTs). A hybrid Long Short-Term Memory and Convolutional Neural Network (LSTM-CNN) model is combined with real-time Internet of Things (IoT) data to predict and optimize energy usage based on occupant behavior [...] Read more.
This paper presents an occupant-centric load optimization framework for Smart Green Townhouses (SGTs). A hybrid Long Short-Term Memory and Convolutional Neural Network (LSTM-CNN) model is combined with real-time Internet of Things (IoT) data to predict and optimize energy usage based on occupant behavior and environmental conditions. Multi-Objective Particle Swarm Optimization (MOPSO) is applied to balance energy efficiency, cost reduction, and occupant comfort. This approach enables intelligent control of HVAC systems, lighting, and appliances. The proposed framework is shown to significantly reduce load demand, peak consumption, costs, and carbon emissions while improving thermal comfort and lighting adequacy. These results highlight the potential to provide adaptive solutions for sustainable residential energy management. Full article
(This article belongs to the Special Issue Environmental Sustainability and Energy Economy)
Show Figures

Figure 1

26 pages, 9618 KiB  
Article
Predicting Energy Consumption and Time of Use of Home Appliances in an HEMS Using LSTM Networks and Smart Meters: A Case Study in Sincelejo, Colombia
by Zurisaddai Severiche-Maury, Carlos Uc-Ríos, Javier E. Sierra and Alejandro Guerrero
Sustainability 2025, 17(11), 4749; https://doi.org/10.3390/su17114749 - 22 May 2025
Cited by 1 | Viewed by 609
Abstract
Rising household electricity consumption, driven by technological advances and increased indoor activity, has led to higher energy costs and an increased reliance on non-renewable sources, exacerbating the carbon footprint. Home energy management systems (HEMS) are positioning themselves as an efficient alternative by integrating [...] Read more.
Rising household electricity consumption, driven by technological advances and increased indoor activity, has led to higher energy costs and an increased reliance on non-renewable sources, exacerbating the carbon footprint. Home energy management systems (HEMS) are positioning themselves as an efficient alternative by integrating artificial intelligence to improve their accuracy. Predictive algorithms that provide accurate data on the future behavior of energy consumption and appliance usage time are required in these HEMS to achieve this goal. This study presents a predictive model based on recurrent neural networks with long short-term memory (LSTM), known to capture nonlinear relationships and long-term dependencies in time series data. The model predicts individual and total household energy consumption and appliance usage time. Training data were collected for 12 months from an HEMS installed in a typical Colombian house, using smart meters developed in this research. The model’s performance is evaluated using the mean squared error (MSE), reaching a value of 0.0168 kWh2. The results confirm the effectiveness of HEMS and demonstrate that the integration of LSTM-based predictive models can significantly improve energy efficiency and optimize household energy consumption. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Graphical abstract

28 pages, 9195 KiB  
Article
Enhancing Sealing Performance Predictions: A Comprehensive Study of XGBoost and Polynomial Regression Models with Advanced Optimization Techniques
by Weiru Zhou and Zonghong Xie
Materials 2025, 18(10), 2392; https://doi.org/10.3390/ma18102392 - 20 May 2025
Viewed by 509
Abstract
Motors, as the core carriers of pollution-free power, realize efficient electric energy conversion in clean energy systems such as electric vehicles and wind power generation, and are widely used in industrial automation, smart home appliances, and rail transit fields with their low-noise and [...] Read more.
Motors, as the core carriers of pollution-free power, realize efficient electric energy conversion in clean energy systems such as electric vehicles and wind power generation, and are widely used in industrial automation, smart home appliances, and rail transit fields with their low-noise and zero-emission operating characteristics, significantly reducing the dependence on fossil energy. As the requirements of various application scenarios become increasingly complex, it becomes particularly important to accurately and quickly design the sealing structure of motors. However, traditional design methods show many limitations when facing such challenges. To solve this problem, this paper proposes hybrid models of machine learning that contain polynomial regression and optimization XGBOOST models to rapidly and accurately predict the sealing performance of motors. Then, the hybrid model is combined with the simulated annealing algorithm and multi-objective particle swarm optimization algorithm for optimization. The reliability of the results is verified by the mutual verification of the results of the simulated annealing algorithm and the particle swarm optimization algorithm. The prediction accuracy of the hybrid model for data outside the training set is within 2.881%. Regarding the prediction speed of this model, the computing time of ML is less than 1 s, while the computing time of FEA is approximately 9 h, with an efficiency improvement of 32,400 times. Through the cross-validation of single-objective optimization and multi-objective optimization algorithms, the optimal design scheme is a groove depth of 0.8–0.85 mm and a pre-tightening force of 80 N. The new method proposed in this paper solves the limitations in the design of motor sealing structures, and this method can be extended to other fields for application. Full article
(This article belongs to the Section Materials Simulation and Design)
Show Figures

Figure 1

25 pages, 3012 KiB  
Article
Exploring Influencing Factors of Energy Efficiency and Curtailment: Approaches to Promoting Sustainable Behavior in Residential Context
by Stelian Stancu, Anca Maria Hristea, Camelia Kailani, Anca Cruceru, Denisa Bălă and Andreea Pernici
Sustainability 2025, 17(10), 4641; https://doi.org/10.3390/su17104641 - 19 May 2025
Viewed by 574
Abstract
The global energy crisis, driven by economic and political disruptions, has intensified efforts to transition toward a more competitive and sustainable society. This study, framed within the context of SDG 7, examines the influence of knowledge, psychological factors, and sociodemographic characteristics on two [...] Read more.
The global energy crisis, driven by economic and political disruptions, has intensified efforts to transition toward a more competitive and sustainable society. This study, framed within the context of SDG 7, examines the influence of knowledge, psychological factors, and sociodemographic characteristics on two dimensions of sustainable residential energy consumption: energy efficiency and energy curtailment behavior. A quantitative survey was conducted with 1410 Romanian participants, using a structured questionnaire and convenience sampling. Descriptive and inferential statistical analyses reveal that knowledge of energy issues and the importance attributed to sustainable development goals positively influence intentions to conserve energy at home. Notably, perceived importance significantly influences the purchase of energy-efficient appliances (F = 23.01, p < 0.001) and moderately supports curtailment behaviors, as evidenced by higher adoption rates of actions such as disconnecting appliances and using natural lighting among participants with stronger pro-saving attitudes. Attitudes toward voluntary energy-saving measures also predict purchasing and curtailment behaviors, with intention playing a mediating role. Sociodemographic variables impact energy-saving behavior to varying degrees. While perceptions may differ across countries due to historical contexts, the findings provide a valuable benchmark for informing national policies and promoting voluntary energy-saving and production measures at the residential level, supporting the transition to sustainable energy. Full article
(This article belongs to the Special Issue Consumption Innovation and Consumer Behavior in Sustainable Marketing)
Show Figures

Figure 1

23 pages, 1402 KiB  
Article
Adaptive Scheduling in Cognitive IoT Sensors for Optimizing Network Performance Using Reinforcement Learning
by Muhammad Nawaz Khan, Sokjoon Lee and Mohsin Shah
Appl. Sci. 2025, 15(10), 5573; https://doi.org/10.3390/app15105573 - 16 May 2025
Viewed by 484
Abstract
Cognitive sensors are embedded in home appliances and other surrounding devices to create a connected, intelligent environment for providing pervasive and ubiquitous services. These sensors frequently create massive amounts of data with many redundant and repeating bit values. Cognitive sensors are always restricted [...] Read more.
Cognitive sensors are embedded in home appliances and other surrounding devices to create a connected, intelligent environment for providing pervasive and ubiquitous services. These sensors frequently create massive amounts of data with many redundant and repeating bit values. Cognitive sensors are always restricted in resources, and if careful strategy is not applied at the time of deployment, the sensors become disconnected, degrading the system’s performance in terms of energy, reconfiguration, delay, latency, and packet loss. To address these challenges and to establish a connected network, there is always a need for a system to evaluate the contents of detected data values and dynamically switch sensor states based on their function. Here in this article, we propose a reinforcement learning-based mechanism called “Adaptive Scheduling in Cognitive IoT Sensors for Optimizing Network Performance using Reinforcement Learning (ASC-RL)”. For reinforcement learning, the proposed scheme uses three types of parameters: internal parameters (states), environmental parameters (sensing values), and history parameters (energy levels, roles, number of switching states) and derives a function for the state-changing policy. Based on this policy, sensors adjust and adapt to different energy states. These states minimize extensive sensing, reduce costly processing, and lessen frequent communication. The proposed scheme reduces network traffic and optimizes network performance in terms of network energy. The main factors evaluated are joint Gaussian distributions and event correlations, with derived results of signal strengths, noise, prediction accuracy, and energy efficiency with a combined reward score. Through comparative analysis, ASC-RL enhances the overall system’s performance by 3.5% in detection and transition probabilities. The false alarm probabilities are reduced to 25.7%, the transmission success rate is increased by 6.25%, and the energy efficiency and reliability threshold are increased by 35%. Full article
(This article belongs to the Collection Trends and Prospects in Multimedia)
Show Figures

Figure 1

31 pages, 2108 KiB  
Article
Evaluating the Impact of Frequency Decomposition Techniques on LSTM-Based Household Energy Consumption Forecasting
by Maissa Taktak and Faouzi Derbel
Energies 2025, 18(10), 2507; https://doi.org/10.3390/en18102507 - 13 May 2025
Viewed by 441
Abstract
Accurate energy consumption forecasting is essential for efficient power grid management, yet existing deep learning models struggle with the multi-scale nature of energy consumption patterns. Contemporary approaches like LSTM and GRU networks process raw time series directly, failing to distinguish between distinct frequency [...] Read more.
Accurate energy consumption forecasting is essential for efficient power grid management, yet existing deep learning models struggle with the multi-scale nature of energy consumption patterns. Contemporary approaches like LSTM and GRU networks process raw time series directly, failing to distinguish between distinct frequency components that represent different physical phenomena in household energy usage. This study presents a novel methodological method that systematically decomposes energy consumption signals into low-frequency components representing gradual trends and daily routines and high-frequency components capturing transient events, such as appliance switching, before applying predictive modeling. Our approach employs computationally efficient convolution-based filters—uniform and binomial—with varying window sizes to separate these components for specialized processing. Experiments on two real-world datasets at different temporal resolutions (1 min and 15 min) demonstrate significant improvements over state-of-the-art methods. For the Smart House dataset, our optimal configuration achieved an R² of 0.997 and RMSE of 0.034, substantially outperforming previous models with R² values of 0.863. Similarly, for the Mexican Household dataset, our approach yielded an R² of 0.994 and RMSE of 13.278, compared to previous RMSE values exceeding 82.488. These findings establish frequency decomposition as a crucial preprocessing step for energy forecasting as it significantly improve the prediction in smart grid applications. Full article
(This article belongs to the Special Issue Renewable Energy System Technologies: 2nd Edition)
Show Figures

Figure 1

23 pages, 1783 KiB  
Article
Day-Ahead Scheduling of IES Containing Solar Thermal Power Generation Based on CNN-MI-BILSTM Considering Source-Load Uncertainty
by Kun Ding, Yalu Sun, Boyang Chen, Jing Chen, Lixia Sun, Yingjun Wu and Yusheng Xia
Energies 2025, 18(9), 2160; https://doi.org/10.3390/en18092160 - 23 Apr 2025
Viewed by 356
Abstract
The fluctuating uncertainty of load demand as an influencing factor for day-ahead scheduling of an integrated energy system with photovoltaic (PV) power generation may cause an imbalance between supply and demand, and to solve this problem, this paper proposes a day-ahead optimal scheduling [...] Read more.
The fluctuating uncertainty of load demand as an influencing factor for day-ahead scheduling of an integrated energy system with photovoltaic (PV) power generation may cause an imbalance between supply and demand, and to solve this problem, this paper proposes a day-ahead optimal scheduling model considering uncertain loads and electric heating appliance (EH)–PV energy storage. The model fuses the multi-interval uncertainty set with the CNN-MI-BILSTM neural network prediction technique, which significantly improves the accuracy and reliability of load prediction and overcomes the limitations of traditional methods in dealing with load volatility. By integrating the EH–photothermal storage module, the model achieves efficient coupled power generation and thermal storage operation, aiming to optimize economic targets while enhancing the grid’s peak-shaving and valley-filling capabilities and utilization of renewable energy. The validity of the proposed model is verified by algorithm prediction simulation and day-ahead scheduling experiments under different configurations. Full article
(This article belongs to the Special Issue Renewable Energy Power Generation and Power Demand Side Management)
Show Figures

Figure 1

25 pages, 4434 KiB  
Article
Transforming Building Energy Management: Sparse, Interpretable, and Transparent Hybrid Machine Learning for Probabilistic Classification and Predictive Energy Modelling
by Yiping Meng, Yiming Sun, Sergio Rodriguez and Binxia Xue
Architecture 2025, 5(2), 24; https://doi.org/10.3390/architecture5020024 - 31 Mar 2025
Viewed by 772
Abstract
The building sector, responsible for 40% of global energy consumption, faces increasing demands for sustainability and energy efficiency. Accurate energy consumption forecasting is essential to optimise performance and reduce environmental impact. This study introduces a hybrid machine learning framework grounded in Sparse, Interpretable, [...] Read more.
The building sector, responsible for 40% of global energy consumption, faces increasing demands for sustainability and energy efficiency. Accurate energy consumption forecasting is essential to optimise performance and reduce environmental impact. This study introduces a hybrid machine learning framework grounded in Sparse, Interpretable, and Transparent (SIT) modelling to enhance building energy management. Leveraging the REFIT Smart Home Dataset, the framework integrates occupancy pattern analysis, appliance-level energy prediction, and probabilistic uncertainty quantification. The framework clusters occupancy-driven energy usage patterns using K-means and Gaussian Mixture Models, identifying three distinct household profiles: high-energy frequent occupancy, moderate-energy variable occupancy, and low-energy irregular occupancy. A Random Forest classifier is employed to pinpoint key appliances influencing occupancy, with a drop-in accuracy analysis verifying their predictive power. Uncertainty analysis quantifies classification confidence, revealing ambiguous periods linked to irregular appliance usage patterns. Additionally, time-series decomposition and appliance-level predictions are contextualised with seasonal and occupancy dynamics, enhancing interpretability. Comparative evaluations demonstrate the framework’s superior predictive accuracy and transparency over traditional single machine learning models, including Support Vector Machines (SVM) and XGBoost in Matlab 2024b and Python 3.10. By capturing occupancy-driven energy behaviours and accounting for inherent uncertainties, this research provides actionable insights for adaptive energy management. The proposed SIT hybrid model can contribute to sustainable and resilient smart energy systems, paving the way for efficient building energy management strategies. Full article
Show Figures

Figure 1

19 pages, 6529 KiB  
Article
Forecasting Residential Energy Consumption with the Use of Long Short-Term Memory Recurrent Neural Networks
by Zurisaddai Severiche-Maury, Carlos Eduardo Uc-Rios, Wilson Arrubla-Hoyos, Dora Cama-Pinto, Juan Antonio Holgado-Terriza, Miguel Damas-Hermoso and Alejandro Cama-Pinto
Energies 2025, 18(5), 1247; https://doi.org/10.3390/en18051247 - 4 Mar 2025
Cited by 3 | Viewed by 1134
Abstract
In the quest to improve energy efficiency in residential environments, home energy management systems (HEMSs) have emerged as an effective solution, leveraging artificial intelligence (AI) technologies to improve energy efficiency. This study proposes a deep learning-based approach employing Long Short-Term Memory (LSTM) neural [...] Read more.
In the quest to improve energy efficiency in residential environments, home energy management systems (HEMSs) have emerged as an effective solution, leveraging artificial intelligence (AI) technologies to improve energy efficiency. This study proposes a deep learning-based approach employing Long Short-Term Memory (LSTM) neural networks to predict household energy usage based on power consumption data from common appliances, such as lamps, fans, air conditioners, televisions, and computers. The model comprises two interrelated submodels: one predicts the individual energy consumption and usage time of each device, while the other estimates the total energy consumption of connected appliances. This dual structure enhances accuracy by capturing both device-specific consumption patterns and overall household energy use, facilitating informed decision-making at multiple levels. Following a systematic methodology that includes model building, training, and evaluation, the LSTM model achieved a low test set loss and mean squared error (MSE), with values of 0.0163 for individual consumption and usage time and 0.0237 for total consumption. Additionally, the predictive performance was strong, with MSE values of 1.0464 × 10−6 for usage time, 0.0163 for individual consumption, and 0.0168 for total consumption. The analysis of scatter plots and residuals revealed a high degree of correspondence between predicted and actual values, validating the model’s accuracy and reliability in energy forecasting. This study represents a significant advancement in intelligent home energy management, contributing to improved efficiency and promoting sustainable consumption practices. Full article
Show Figures

Figure 1

15 pages, 741 KiB  
Article
Occupant-Aware Energy Consumption Prediction in Smart Buildings Using a LSTM Model and Time Series Data
by Muhammad Anan, Khalid Kanaan, Driss Benhaddou, Nidal Nasser, Basheer Qolomany, Hanaa Talei and Ahmad Sawalmeh
Energies 2024, 17(24), 6451; https://doi.org/10.3390/en17246451 - 21 Dec 2024
Cited by 6 | Viewed by 1622
Abstract
Accurate energy consumption prediction in commercial buildings is a challenging research task. Energy prediction plays a crucial role in energy efficiency, management, planning, sustainability, risk management, diagnosis, and demand response. Although many studies have been conducted on building energy predictions, the impact of [...] Read more.
Accurate energy consumption prediction in commercial buildings is a challenging research task. Energy prediction plays a crucial role in energy efficiency, management, planning, sustainability, risk management, diagnosis, and demand response. Although many studies have been conducted on building energy predictions, the impact of occupancy on energy prediction models for office-type commercial buildings remains insufficiently explored, despite its potential to improve energy efficiency by 20%. This study investigates energy prediction using a Long Short-Term Memory (LSTM) model that incorporates time-series power consumption data and considers occupancy. A real-world dataset containing the per-minute electricity consumption of various appliances in an office building in Houston, TX, USA, is utilized. The proposed machine learning models forecast future energy consumption based on hourly, 3-hourly, daily, and quarterly predictions for individual appliances and total energy usage. The model’s performance is evaluated using the following three metrics: Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE), and Root Mean Square Error (RMSE). The results demonstrate the superiority of the proposed system. Full article
(This article belongs to the Section G: Energy and Buildings)
Show Figures

Figure 1

33 pages, 8595 KiB  
Article
A Secure IIoT Environment That Integrates AI-Driven Real-Time Short-Term Active and Reactive Load Forecasting with Anomaly Detection: A Real-World Application
by Md. Ibne Joha, Md Minhazur Rahman, Md Shahriar Nazim and Yeong Min Jang
Sensors 2024, 24(23), 7440; https://doi.org/10.3390/s24237440 - 21 Nov 2024
Cited by 4 | Viewed by 2713
Abstract
The Industrial Internet of Things (IIoT) revolutionizes both industrial and residential operations by integrating AI (artificial intelligence)-driven analytics with real-time monitoring, optimizing energy usage, and significantly enhancing energy efficiency. This study proposes a secure IIoT framework that simultaneously predicts both active and reactive [...] Read more.
The Industrial Internet of Things (IIoT) revolutionizes both industrial and residential operations by integrating AI (artificial intelligence)-driven analytics with real-time monitoring, optimizing energy usage, and significantly enhancing energy efficiency. This study proposes a secure IIoT framework that simultaneously predicts both active and reactive loads while also incorporating anomaly detection. The system is optimized for real-time deployment on an edge server, such as a single-board computer (SBC), as well as on a cloud or centralized server. It ensures secure and reliable industrial operations by integrating smart data acquisition systems with real-time monitoring, control, and protective measures. We propose a Temporal Convolutional Networks-Gated Recurrent Unit-Attention (TCN-GRU-Attention) model to predict both active and reactive loads, which demonstrates superior performance compared to other conventional models. The performance metrics for active load forecasting are 0.0183 Mean Squared Error (MSE), 0.1022 Mean Absolute Error (MAE), and 0.1354 Root Mean Squared Error (RMSE), while for reactive load forecasting, the metrics are 0.0202 (MSE), 0.1077 (MAE), and 0.1422 (RMSE). Furthermore, we introduce an optimized Isolation Forest model for anomaly detection that considers the transient conditions of appliances when identifying irregular behavior. The model demonstrates very promising performance, with the average performance metrics for all appliances using this Isolation Forest model being 95% for Precision, 98% for Recall, 96% for F1 Score, and nearly 100% for Accuracy. To secure the entire system, Transport Layer Security (TLS) and Secure Sockets Layer (SSL) security protocols are employed, along with hash-encoded encrypted credentials for enhanced protection. Full article
(This article belongs to the Section Internet of Things)
Show Figures

Figure 1

31 pages, 2338 KiB  
Article
Simulation of Malfunctions in Home Appliances’ Power Consumption
by Alexios Papaioannou, Asimina Dimara, Christoforos Papaioannou, Ioannis Papaioannou, Stelios Krinidis, Christos-Nikolaos Anagnostopoulos, Christos Korkas, Elias Kosmatopoulos, Dimosthenis Ioannidis and Dimitrios Tzovaras
Energies 2024, 17(17), 4529; https://doi.org/10.3390/en17174529 - 9 Sep 2024
Viewed by 1554
Abstract
Predicting errors in home appliances is crucial for maintaining the reliability and efficiency of smart homes. However, there is a significant lack of such data on appliance malfunctions that can be used in developing effective anomaly detection models. This research paper presents a [...] Read more.
Predicting errors in home appliances is crucial for maintaining the reliability and efficiency of smart homes. However, there is a significant lack of such data on appliance malfunctions that can be used in developing effective anomaly detection models. This research paper presents a novel approach for simulating errors of heterogeneous home appliance power consumption patterns. The proposed model takes normal consumption patterns as input and employs advanced algorithms to produce labeled anomalies, categorizing them based on the severity of malfunctions. One of the main objectives of this research involves developing models that can accurately reproduce anomaly power consumption patterns, highlighting anomalies related to major, minor, and specific malfunctions. The resulting dataset may serve as a valuable resource for training algorithms specifically tailored to detect and diagnose these errors in real-world scenarios. The outcomes of this research contribute significantly to the field of anomaly detection in smart home environments. The simulated datasets facilitate the development of predictive maintenance strategies, allowing for early detection and mitigation of appliance malfunctions. This proactive approach not only improves the reliability and lifespan of home appliances but also enhances energy efficiency, thereby reducing operational costs and environmental impact. Full article
Show Figures

Figure 1

19 pages, 3559 KiB  
Article
LSTM Networks for Home Energy Efficiency
by Zurisaddai Severiche-Maury, Wilson Arrubla-Hoyos, Raul Ramirez-Velarde, Dora Cama-Pinto, Juan Antonio Holgado-Terriza, Miguel Damas-Hermoso and Alejandro Cama-Pinto
Designs 2024, 8(4), 78; https://doi.org/10.3390/designs8040078 - 9 Aug 2024
Cited by 4 | Viewed by 2007
Abstract
This study aims to develop and evaluate an LSTM neural network for predicting household energy consumption. To conduct the experiment, a testbed was created consisting of five common appliances, namely, a TV, air conditioner, fan, computer, and lamp, each connected to individual smart [...] Read more.
This study aims to develop and evaluate an LSTM neural network for predicting household energy consumption. To conduct the experiment, a testbed was created consisting of five common appliances, namely, a TV, air conditioner, fan, computer, and lamp, each connected to individual smart meters within a Home Energy Management System (HEMS). Additionally, a meter was installed on the distribution board to measure total consumption. Real-time data were collected at 15-min intervals for 30 days in a residence that represented urban energy consumption in Sincelejo, Sucre, inhabited by four people. This setup enabled the capture of detailed and specific energy consumption data, facilitating data analysis and validating the system before large-scale implementation. Using the detailed power consumption information of these devices, an LSTM model was trained to identify temporal connections in power usage. Proper data preparation, including normalisation and feature selection, was essential for the success of the model. The results showed that the LSTM model was effective in predicting energy consumption, achieving a mean squared error (MSE) of 0.0169. This study emphasises the importance of continued research on preferred predictive models and identifies areas for future research, such as the integration of additional contextual data and the development of practical applications for residential energy management. Additionally, it demonstrates the potential of LSTM models in smart-home energy management and serves as a solid foundation for future research in this field. Full article
(This article belongs to the Special Issue Smart Home Design, 2nd Edition)
Show Figures

Figure 1

Back to TopTop