Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (542)

Search Parameters:
Keywords = apparent volume

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 4720 KiB  
Review
Changes in Thermodynamic Parameters Induced by Pyrimidine Nucleic Bases Forming Complexes with Amino Acids and Peptides in a Buffer Solution at pH = 7.4
by Elena Yu. Tyunina, Vladimir P. Barannikov and Igor N. Mezhevoi
Liquids 2025, 5(3), 19; https://doi.org/10.3390/liquids5030019 - 22 Jul 2025
Abstract
This article presents a mini-review of the available data on the thermodynamics of the complexation of amino acids and peptides with some nucleic bases in a buffer medium. Data on changes in thermodynamic parameters (binding constants, Gibbs energy, enthalpy, entropy) during the complexation [...] Read more.
This article presents a mini-review of the available data on the thermodynamics of the complexation of amino acids and peptides with some nucleic bases in a buffer medium. Data on changes in thermodynamic parameters (binding constants, Gibbs energy, enthalpy, entropy) during the complexation of nucleic bases with amino acids and peptides as a function of physicochemical properties are given at T = 298.15 K. The effects of complexation on the volumetric properties of nucleic bases, including apparent molar volumes, standard molar volumes, and limiting molar expansibility, over a temperature range of 288.15 to 313.15 K are considered in detail. Differences in the behavior of amino acids and peptides caused by different modes of coordination with nucleic bases are noted. These manifest in the stoichiometry of the formed complexes, the relationship with the acid dissociation constants of carboxyl and amino groups, enthalpy–entropy compensation in the complexation process, the temperature dependence of the transfer volumes, and the effect of hydrophobicity on volumetric characteristics. Full article
Show Figures

Figure 1

13 pages, 7783 KiB  
Article
Enhancing Metakaolin-Based Geopolymer Mortar with Eggshell Powder and Fibers for Improved Sustainability
by Demet Yavuz
Buildings 2025, 15(14), 2526; https://doi.org/10.3390/buildings15142526 - 18 Jul 2025
Viewed by 173
Abstract
This research explores the effectiveness of eggshell powder (ESP) and polypropylene (PP) fiber in geopolymer (GP) mortars. It examines how various doses of ESP, ranging from 0% to 25%, and two volumes of PP fibers, at 0.1% and 0.2% (by volume), impact the [...] Read more.
This research explores the effectiveness of eggshell powder (ESP) and polypropylene (PP) fiber in geopolymer (GP) mortars. It examines how various doses of ESP, ranging from 0% to 25%, and two volumes of PP fibers, at 0.1% and 0.2% (by volume), impact the workability, mechanical and physical characteristics, and microstructure of GP mortars. Assessments were made for workability, apparent porosity, water absorption, and flexural and compressive strengths, along with microstructural evaluations. Using ESP as a substitute for metakaolin (MK) at 15% and 25% (by weight) improved the flexural and compressive strengths by 22.9%, 22.5%, 37.1%, and 50.7%, respectively. Using PP fiber resulted in flexural strength improvements of up to 97%. These findings deepen the understanding of ESP’s potential as a partial replacement for MK in geopolymer mortar, provide insights on material enhancement, and demonstrate superior mechanical and durability properties. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

21 pages, 8827 KiB  
Article
Nano-Biochar Enhanced Adsorption of NO3-N and Its Role in Mitigating N2O Emissions: Performance and Mechanisms
by Weimin Xing, Tao Zong, Yidi Sun, Wenhao Fang, Tong Shen and Yuhao Zhou
Agronomy 2025, 15(7), 1723; https://doi.org/10.3390/agronomy15071723 - 17 Jul 2025
Viewed by 310
Abstract
Biochar (BC) demonstrates considerable potential for reducing nitrogen emissions. However, it frequently exhibits a limited capacity for the adsorption of NO3-N, thereby reducing its effectiveness in mitigating N2O emissions. Nano-biochar (NBC) is attracting attention due to its higher [...] Read more.
Biochar (BC) demonstrates considerable potential for reducing nitrogen emissions. However, it frequently exhibits a limited capacity for the adsorption of NO3-N, thereby reducing its effectiveness in mitigating N2O emissions. Nano-biochar (NBC) is attracting attention due to its higher surface energy, but there is a lack of information on enhancing NO3-N adsorption and reducing N2O emissions. Accordingly, this study conducted batch adsorption experiments for NO3-N and simulated N2O emissions experiments. The NO3-N adsorption experiments included two treatments: bulk BC and NBC; the N2O emissions experiments involved three treatments: a no-biochar control, BC, and NBC. N2O emissions experiments were incorporated into the soil at mass ratios of 0.3%, 0.6%, 1%, and 3%. The results demonstrate that NBC exhibits nearly twice the NO3-N adsorption capacity compared to bulk biochar (BC), with adsorption behavior best described by a physical adsorption model. The enhanced adsorption performance was primarily attributed to NBC’s significantly increased specific surface area, pore volume, abundance of surface acidic functional groups, and higher aromaticity, which collectively strengthened multiple sorption mechanisms, including physical adsorption, electrostatic interactions, π–π interactions, and apparent ion exchange. In addition, NBC application (0.3–3%) reduced cumulative N2O emissions by 11.60–54.77%, outperforming BC (9.16–32.65%). NBC treatments also increased soil NH4+-N and NO3-N concentrations by 2.4–8.2% and 7.3–59.0%, respectively, indicating improved inorganic N retention. Overall, NBC demonstrated superior efficacy over bulk BC in mitigating N2O emissions and conserving soil nitrogen, highlighting its promise as a sustainable amendment for integrated nutrient management and greenhouse gas reduction in soil. Full article
(This article belongs to the Special Issue Safe and Efficient Utilization of Water and Fertilizer in Crops)
Show Figures

Figure 1

25 pages, 5753 KiB  
Article
Effect of New Mesh Fins on the Heat Storage Performance of a Solar Phase Change Heat Accumulator
by Zihan Zhao, Jingzhi Jiang and Jingzhou An
Energies 2025, 18(14), 3718; https://doi.org/10.3390/en18143718 - 14 Jul 2025
Viewed by 227
Abstract
In view of the problems of slow heat storage process and uneven temperature distribution in the existing phase change heat accumulator, a new type of mesh fin heat accumulator was designed and developed which increased the contact area between the phase change material [...] Read more.
In view of the problems of slow heat storage process and uneven temperature distribution in the existing phase change heat accumulator, a new type of mesh fin heat accumulator was designed and developed which increased the contact area between the phase change material (PCM) and the fins, enhanced the apparent thermal conductivity of the PCM, improved the heat storage efficiency of the heat accumulator, blocked the PCM, improved the natural convection erosion of the PCM on the upper and lower parts of the heat accumulator, and melted the PCM in each area more evenly. Fluent15.0 was used to numerically simulate the heat storage process of the mesh fins heat accumulator with the finite volume method. The composite PCM prepared by adding 10% mass fraction of expanded graphite to paraffin wax was used as the heat storage material. A 2D, non-steady-state model, incompressible fluid, and the pressure-based solution method were selected. The energy model and the solidification and melting model based on the enthalpy method were used to simulate and calculate the phase change process of PCM. The PISO algorithm was used. The influences of the structural parameters of the mesh fins on the heat storage condition of the heat accumulator were investigated by numerical simulation. The results showed that with the increase in the radius R of the mesh fin, the heat storage time decreased first and then increased. With the increases in vertical fin thickness c, mesh fins thickness δ, and vertical fins number N, the heat storage time decreased. The optimal mesh fin structure parameters were R = 33.5 mm, c = 3 mm, δ = 3 mm, and N = 8, and the heat storage time was 8086 s, which is 47.8% shorter than that of the concentric tube heat accumulator. Otherwise, with the increases in vertical fin thickness c, mesh fins thickness δ, and vertical fins number N, the PCM volume decreased, which shortened PCM melting time. Full article
Show Figures

Figure 1

26 pages, 48882 KiB  
Article
TiO2 Nanoparticles Obtained by Laser Sintering When Added to Methacrylate Photopolymer Resin Improve Its Physicochemical Characteristics and Impart Antibacterial Properties
by Aleksandr V. Simakin, Dmitriy E. Burmistrov, Ilya V. Baimler, Ann V. Gritsaeva, Dmitriy A. Serov, Maxim E. Astashev, Pavel Chapala, Shamil Z. Validov, Fatikh M. Yanbaev and Sergey V. Gudkov
Inorganics 2025, 13(7), 233; https://doi.org/10.3390/inorganics13070233 - 10 Jul 2025
Viewed by 354
Abstract
In this paper, titanium oxide nanoparticles (TiO2-NPs) with complex surface topologies were obtained for the first time using simple procedures applied in laser sintering. Based on the obtained nanoparticles and polymethyl methacrylate-like photopolymer resin, a composite material (MPR/TiO2-NPs) for [...] Read more.
In this paper, titanium oxide nanoparticles (TiO2-NPs) with complex surface topologies were obtained for the first time using simple procedures applied in laser sintering. Based on the obtained nanoparticles and polymethyl methacrylate-like photopolymer resin, a composite material (MPR/TiO2-NPs) for 3D printing was created using the MSLA technology. Products made of the material containing from 0.001 to 0.1% wt. TiO2-NPs didn’t contain internal defects and were less brittle than the resin without nanoparticles. Products made of the MPR/TiO2-NPs material were well polished; after polishing, areas with a variation in the surface profile height of less than 10 nm were found on the surfaces. Nanoparticles in the volume of products made of the material are apparently unevenly distributed; there are alternating areas of micrometer sizes with slightly higher and slightly lower concentrations of nanoparticles. Spectroscopy showed that adding the developed nanoparticles promoted better polymerization of the MPR resin. The addition of nanoparticles to the material slightly increased its ability to generate active forms of oxygen and damage biomacromolecules. At the same time, the resulting material exhibits significant antibacterial properties and doen’t affect the growth and reproduction of animal cells. The created material can be a very effective basis for the additive manufacturing of products with improved physical and chemical properties and balanced biological activity. Full article
Show Figures

Figure 1

25 pages, 2976 KiB  
Article
Dual Opioid–Neuropeptide FF Small Molecule Ligands Demonstrate Analgesia with Reduced Tolerance Liabilities
by Marco Mottinelli, V. Blair Journigan, Samuel Obeng, Victoria L. C. Pallares, Christophe Mѐsangeau, Coco N. Kapanda, Stephen J. Cutler, Janet A. Lambert, Shainnel O. Eans, Michelle L. Ganno, Wanhui Sheng, Tamara King, Abhisheak Sharma, Catherine Mollereau, Bonnie A. Avery, Jay P. McLaughlin and Christopher R. McCurdy
Molecules 2025, 30(13), 2851; https://doi.org/10.3390/molecules30132851 - 3 Jul 2025
Viewed by 312
Abstract
Neuropeptide FF (NPFF) receptor antagonists prevent morphine-mediated antinociceptive tolerance, and compounds with dual mu opioid receptor (MOR) agonist and NPFF antagonist activity produce antinociception without tolerance. Compounds synthesized showed affinities in radioligand competition binding assays in the nM and µM range at the [...] Read more.
Neuropeptide FF (NPFF) receptor antagonists prevent morphine-mediated antinociceptive tolerance, and compounds with dual mu opioid receptor (MOR) agonist and NPFF antagonist activity produce antinociception without tolerance. Compounds synthesized showed affinities in radioligand competition binding assays in the nM and µM range at the opioid and NPFF receptors, respectively, and displayed substitution-dependent functional profiles in the [35S]GTPγS functional assay. From six compounds screened in vivo for antinociception and ability to prevent NPFF-induced hyperalgesia in mouse warm water tail withdrawal tests, compound 22b produced dose-dependent MOR-mediated antinociception with an ED50 value (and 95% confidence interval) of 6.88 (4.71–9.47) nmol, i.c.v., and also prevented NPFF-induced hyperalgesia. Meanwhile, 22b did not demonstrate the respiratory depression, hyperlocomotion, or impaired intestinal transit of morphine. Moreover, repeated treatment with 22b produced a 1.6-fold rightward shift in antinociceptive dose response, significantly less acute antinociceptive tolerance than morphine. Evaluated for microsomal stability in vitro and in vivo pharmacokinetic profile, 22b showed suitable microsomal stability paired in vivo with a large apparent volume of distribution and a clearance smaller than the hepatic flow in rats, suggesting no extra-hepatic metabolism. In conclusion, the present study confirms that dual-action opioid–NPFF ligands may offer therapeutic promise as analgesics with fewer liabilities of use. Full article
(This article belongs to the Special Issue New Strategies for Drug Development)
Show Figures

Graphical abstract

25 pages, 6129 KiB  
Article
Application of Mercury Intrusion Porosimetry in Coal Pore Structure Characterization: Conformance Effect and Compression Effect Correction
by Shiqi Liu, Yu Liang, Shuxun Sang, He Wang, Wenkai Wang, Jianbo Sun and Fukang Li
Energies 2025, 18(12), 3185; https://doi.org/10.3390/en18123185 - 17 Jun 2025
Viewed by 292
Abstract
Mercury intrusion porosimetry (MIP) is commonly used to characterize coal pore structures, but conformance effect and compression effect can overestimate pore volume. This study uses MIP data from coal with varying metamorphic degrees in China to compare existing correction methods and propose a [...] Read more.
Mercury intrusion porosimetry (MIP) is commonly used to characterize coal pore structures, but conformance effect and compression effect can overestimate pore volume. This study uses MIP data from coal with varying metamorphic degrees in China to compare existing correction methods and propose a new approach based on apparent and true density for pore volume correction under no confining pressure. The study also analyzes the impact of conformance and compression effects on MIP data. Correctly identifying the “actual initial intrusion pressure” and “closure pressure” is essential for accurate data correction. The fractal dimension method offers a more robust theoretical foundation, while the conformance and intrusion pressure identification method is simpler. The stage correction method is reliable but requires repeated MIP tests, adding to the workload. The new method, which corrects both coal matrix and mercury volume compression, provides a simpler and reliable solution. Results show that conformance volume accounts for 9.91–83.26% of the apparent mercury intrusion volume and increases with coal metamorphism. Coal matrix volume compression represents 99.86–99.90% of the corrected total volume, with mercury volume compression being negligible. The corrected pore volume decreases as coal metamorphism increases, indicating the effectiveness and simplicity of the proposed method. Full article
Show Figures

Figure 1

22 pages, 5617 KiB  
Article
Numerical Modeling of Micro-Mechanical Residual Stresses in Carbon–Epoxy Composites During the Curing Process
by Raffaele Verde, Alberto D’Amore and Luigi Grassia
Polymers 2025, 17(12), 1674; https://doi.org/10.3390/polym17121674 - 17 Jun 2025
Viewed by 334
Abstract
This article analyzes the residual stresses generated during the curing process of thermoset composites. Specifically, a numerical procedure is developed and implemented in Ansys 18.0 to evaluate, at the micromechanical level, the residual stresses in a carbon epoxy composite that undergoes the process [...] Read more.
This article analyzes the residual stresses generated during the curing process of thermoset composites. Specifically, a numerical procedure is developed and implemented in Ansys 18.0 to evaluate, at the micromechanical level, the residual stresses in a carbon epoxy composite that undergoes the process of curing. The viscoelastic behavior of the epoxy material is modeled using a formulation recently published by the same authors. It accounts for the concurrent effect of curing and structural relaxation on epoxy’s relaxation times, assuming thermo-rheological and thermo-chemical simplicities. The model validated for the neat epoxy matrix is now tested against the composite application. Various representative volume element (RVE) arrangements and fiber fractions are examined. The proposed procedure can predict the evolution of mechanical properties (apparent stiffness and creep compliance) and the residual stresses that develop in each composite constituent during the cure. It demonstrates that the residual stresses in the matrix are a consistent fraction of an epoxy’s nominal strength and significantly influence the transverse mechanical properties of the composite. Full article
(This article belongs to the Special Issue Epoxy Polymers and Composites)
Show Figures

Figure 1

15 pages, 1914 KiB  
Article
Derivatization of PVA into Polyols Suitable for Fabrication of Rigid Polyurethane Foams—Preliminary Studies and Perspectives
by Jacek Lubczak
Materials 2025, 18(12), 2780; https://doi.org/10.3390/ma18122780 - 12 Jun 2025
Viewed by 450
Abstract
Polyols derived from poly(vinyl alcohol) (PVA) have not been reported before. The hydroxyalkylation of PVA with oxiranes leads to powdered or gum-like products that are not miscible with isocyanates and therefore useless as sources of polyurethane foams. Glycidol and ethylene carbonates were used [...] Read more.
Polyols derived from poly(vinyl alcohol) (PVA) have not been reported before. The hydroxyalkylation of PVA with oxiranes leads to powdered or gum-like products that are not miscible with isocyanates and therefore useless as sources of polyurethane foams. Glycidol and ethylene carbonates were used to dissolve and convert PVA into liquid polyol. The physical properties of the PVA-derived polyol, such as the density, viscosity, and surface tension, were determined. The polyol was then used to obtain rigid polyurethane foams (PUFs). Foaming conditions were optimized, and the apparent density, volume water uptake, dimensional stability, heat conductance coefficient, pore size, thermal resistance, compressive strength, and glass transition temperature of the obtained PUFs were determined. The properties of the obtained PUFs were similar to those of classic rigid PUFs, but the thermal resistance of the former is better. Specifically, PVA-derived PUFs are thermally resistant at temperatures of up to 150 °C. Furthermore, they are ecologically safe; in standard soil conditions, 54.6% or 100% biodegradation of the foams in cube and powder form, respectively, was observed, as measured by BOD after 28 days of storage. Full article
(This article belongs to the Special Issue Advances in Development and Characterization of Polyurethane Foams)
Show Figures

Graphical abstract

28 pages, 9411 KiB  
Article
Localization and Expression of Aquaporin 1 (AQP1) in the Tissues of the Spiny Dogfish (Squalus acanthias)
by Christopher P. Cutler and Bryce MacIver
Int. J. Mol. Sci. 2025, 26(12), 5593; https://doi.org/10.3390/ijms26125593 - 11 Jun 2025
Viewed by 287
Abstract
Aquaporin 1 is a membrane water channel protein, which was studied here in spiny dogfish (Squalus acanthias) osmoregulatory tissues using a variety of techniques. The cloning of aquaporin 1 (AQP1) in the spiny dogfish identified a splice variant version [...] Read more.
Aquaporin 1 is a membrane water channel protein, which was studied here in spiny dogfish (Squalus acanthias) osmoregulatory tissues using a variety of techniques. The cloning of aquaporin 1 (AQP1) in the spiny dogfish identified a splice variant version of the mRNA/protein (AQP1SV1/AQP1SV1). Polymerase chain reaction (PCR) in a range of tissues showed AQP1 to be expressed at very high levels in the rectal gland with ubiquitous mRNA expression at lower levels in other tissues. Northern blotting showed that AQP1 had a mRNA size of 5.3 kb in kidney total RNA. The level of AQP1 mRNA was significantly lower in the rectal glands of fish acclimated to 120% seawater (SW; vs. 75% SW (p = 0.0007) and 100% SW (p = 0.0025)) but was significantly higher in those fish in the kidney (vs. 100% SW (p = 0.0178)) and intestine (vs. 75% SW (p= 0.0355) and 100% SW (p = 0.0285)). Quantitative PCR determined that AQP1SV1 mRNA levels were also significantly lower in the rectal glands of both 120% (p = 0.0134) and 100% SW (p = 0.0343) fish in comparison to 75% SW-acclimated dogfish. Functional expression in Xenopus oocytes showed that AQP1 exhibited significant apparent membrane water permeability (p = 0.000008–0.0158) across a range of pH values, whereas AQP1SV1 showed no similar permeability. Polyclonal antibodies produced against AQP1 (AQP1 and AQP1/2 antibodies) and AQP1SV1 had bands at the expected sizes of 28 kDa and 24 kDa, respectively, as well as some other banding. The weak AQP1 antibody and the stronger AQP1/2 antibody exhibited staining in the apical membranes of rectal gland secretory tubules, particularly towards the periphery of the gland. In the gill, the AQP1/2 antibody in particular showed staining in secondary-lamellar pavement-cell basal membranes, and in blood vessels and connective tissue in the gill arch. In the spiral valve intestine side wall and valve flap, the AQP1/2 antibody stained muscle tissue and blood vessel walls and, after tyramide signal amplification, showed some staining in the apical membranes of epithelial cells at the ends of the luminal surface of epithelial folds. In the rectum/colon, there was also some muscle and blood vessel staining, but the AQP1 and AQP1/2 antibodies both stained a layer of cells at the base of the surface epithelium. In the kidney convoluted bundle zone, all three antibodies stained bundle sheath membranes to variable extents, and the AQP1/2 antibody also showed staining in the straight bundle zone bundle sheath. In the kidney sinus zone, the AQP1/2 antibody stained the apical membranes of late distal tubule (LDT) nephron loop cells most strongly, with the strongest staining in the middle of the LDT loop and in patches towards the start of the LDT loop. There was also a somewhat less strong staining of segments of the first sinus zone nephron loop, particularly in the intermediate I (IS-I) tubule segment. Some tubules appeared to show no or only low levels of staining. The results suggest that AQP1 plays a role in rectal gland fluid secretion, kidney fluid reabsorption and gill pavement-cell volume regulation and probably a minor role in intestinal/rectal/colon fluid absorption. Full article
(This article belongs to the Special Issue New Insights into Aquaporins: 2nd Edition)
Show Figures

Graphical abstract

20 pages, 3957 KiB  
Article
Selective Blockade of Two Aquaporin Channels, AQP3 and AQP9, Impairs Human Leukocyte Migration
by Sabino Garra, Charlotte Mejlstrup Hymøller, Daria Di Molfetta, Nicola Zagaria, Patrizia Gena, Rosa Angela Cardone, Michael Rützler, Svend Birkelund and Giuseppe Calamita
Cells 2025, 14(12), 880; https://doi.org/10.3390/cells14120880 - 11 Jun 2025
Cited by 1 | Viewed by 485
Abstract
Peripheral blood leukocytes are able to migrate to the inflamed tissue, and to engulf and kill invading microbes. This requires rapid modifications of cell morphology and volume through fast movements of osmotic water into or out of the cell. In this process, membrane [...] Read more.
Peripheral blood leukocytes are able to migrate to the inflamed tissue, and to engulf and kill invading microbes. This requires rapid modifications of cell morphology and volume through fast movements of osmotic water into or out of the cell. In this process, membrane water channels, aquaporins (AQPs), are critical for cell shape changes as AQP-mediated water movement indirectly affects the cell cytoskeleton and, thereby, the signaling cascades. Recent studies have shown that the deletion or gating of two immune cell AQPs, AQP3 and AQP9, impairs inflammation and improves survival in microbial sepsis. Here, we assessed the expression and distribution of AQP3 and AQP9 in human leukocytes and investigated their involvement in the phagocytosis and killing of the Gram-negative pathogenic bacterium Klebsiella pneumoniae, and their role in lipopolysaccharide (LPS)-induced cell migration. By RT-qPCR, AQP3 mRNA was found in peripheral blood mononuclear cells (PBMCs) but it was undetectable in polymorphonuclear white blood cells (PMNs). AQP9 was found both in PBMCs and PMNs, particularly in neutrophil granulocytes. Immunofluorescence confirmed the AQP3 expression in monocytes and, to a lesser degree, in lymphocytes. AQP9 was expressed both in PBMCs and neutrophils. Specific inhibitors of AQP3 (DFP00173) and AQP9 (HTS13286 and RG100204) were used for bacterial phagocytosis and killing studies. No apparent involvement of individually blocked AQP3 or AQP9 was observed in the phagocytosis of K. pneumoniae by neutrophils or monocytes after 10, 30, or 60 min of bacterial infection. A significant impairment in the phagocytic capacity of monocytes but not neutrophils was observed only when both AQPs were inhibited simultaneously and when the infection lasted for 60 min. No impairment in bacterial clearance was found when AQP3 and AQP9 were individually or simultaneously blocked. PBMC migration was significantly impaired after exposure to the AQP9 blocker RG100204 in the presence or absence of LPS. The AQP3 inhibitor DFP00173 reduced PBMC migration only under LPS exposure. Neutrophil migration was considerably reduced in the presence of RG100204 regardless of whether there was an LPS challenge or not. Taken together, these results indicate critical but distinct involvements for AQP3 and AQP9 in leukocyte motility, while no roles are played in bacterial killing. Further studies are needed in order to understand the precise ways in which these two AQPs intervene during bacterial infections. Full article
Show Figures

Figure 1

16 pages, 1667 KiB  
Article
Lactase-Treated A2 Milk as a Feasible Conventional Milk Alternative: Results of a Randomized Controlled Crossover Trial to Assess Tolerance, Gastrointestinal Distress, and Preference for Milks Varying in Casein Types and Lactose Content
by Laura A. Robinson, Aidan M. Cavanah, Sarah Lennon, Madison L. Mattingly, Derick A. Anglin, Melissa D. Boersma, Michael D. Roberts and Andrew Dandridge Frugé
Nutrients 2025, 17(12), 1946; https://doi.org/10.3390/nu17121946 - 6 Jun 2025
Viewed by 1045
Abstract
Background: Previous research indicates that gastrointestinal discomfort from milk consumption may be attributable to A1 β-casein, rather than lactose intolerance alone. A2 milk (free of A1 β-casein) consumption may result in fewer symptoms compared to conventional milk containing both A1/A2 β-casein. Objective: In [...] Read more.
Background: Previous research indicates that gastrointestinal discomfort from milk consumption may be attributable to A1 β-casein, rather than lactose intolerance alone. A2 milk (free of A1 β-casein) consumption may result in fewer symptoms compared to conventional milk containing both A1/A2 β-casein. Objective: In this five-week, double-blind, double-crossover study, we assessed the physiological responses to doses escalating in volume of lactose-free conventional milk (Lactaid), A2 milk, and lactose-free A2 milk in fluid milk-avoiding participants. Methods: Each milk type was consumed over three separate weeks with three increasing doses across five days per week, >one week washout. Gastrointestinal symptoms, blood glucose, and breath gases were monitored for twenty-four, two-, and three-hours post-consumption, respectively. Sensory evaluation was completed for each sample. Results: Fifty-three participants consented and were randomized, with forty-eight participants completing the study. Overall, symptoms were minimal. On Days 1 and 3, lower ratings of bloating and flatulence were observed in A2 compared to lactose-free A2. Breath hydrogen responses reflected lactose content, but were higher in lactose-free A2 than Lactaid on Day 5. Thirty-three participants were deemed lactose-intolerant and had higher fasting and average breath hydrogen for all samples. The only symptom corresponding to the increase in breath hydrogen among these participants was flatulence after A2 consumption. Surprisingly, flatulence was apparently higher for lactose-tolerant individuals when consuming Lactaid compared to A2. Conclusions: These findings suggest that adults who avoid conventional fluid milk consumption may experience minimal GI discomfort from lactose-free and/or A1-free milks. Full article
Show Figures

Figure 1

17 pages, 3989 KiB  
Article
Experimental Investigation on Physical and Mechanical Behaviors of Paraffin Microcapsule Phase-Change Energy-Storage Concrete
by Dongxue Wang, Zipeng Qin, Shixing Liu, Lefeng Chen, Guoxun Chen, Erjin Xu, Liangbin Zhang, Yan Tian, Zhengzheng Liu, Yifan Li, Saixuan Lei, Jiayi Pan, Peisheng Qiu and Xu Zhou
Buildings 2025, 15(11), 1907; https://doi.org/10.3390/buildings15111907 - 1 Jun 2025
Viewed by 463
Abstract
Phase-change materials (PCMs) are gradually being applied in the field of building energy conservation due to their ability to absorb and release heat through phase changes within a specific temperature range. This study prepared a paraffin-microencapsulated phase-change aggregate (PCA) and used the equal [...] Read more.
Phase-change materials (PCMs) are gradually being applied in the field of building energy conservation due to their ability to absorb and release heat through phase changes within a specific temperature range. This study prepared a paraffin-microencapsulated phase-change aggregate (PCA) and used the equal volume sand replacement method to replace standard sand with PCA under a fixed water–cement ratio and curing conditions. Five sets of concrete specimens with varying PCA content were designed and tested for their apparent densities, compressive strengths, water absorptions, thermal conductivities, and microstructures. The experimental results show that the apparent density, compressive strength, ultrasonic velocity, and thermal conductivity of phase-change energy-storage concrete (PCC) gradually decrease with the increasing PCA content. Its apparent density, compressive strength, ultrasonic velocity, and thermal conductivity all reach their minimum values when the PCA content reaches 40%; minimum values are 2.07 g/cm3, 42.461 MPa (56 days), 8.93 km/s, and 1.43 W/(m·K), respectively. The water-absorption rate of PCC specimens exhibits non monotonic response characteristics with the variation of PCA dosage. This study can provide a theoretical basis for the preparation of PCCs by the PCA method. Full article
Show Figures

Figure 1

16 pages, 3942 KiB  
Article
Utilization of Coal Ash for Production of Refractory Bricks
by Saniya Kaskataevna Arinova, Svetlana Sergeevna Kvon, Vitaly Yurevich Kulikov, Aristotel Zeynullinovich Issagulov and Asem Erikovna Altynova
J. Compos. Sci. 2025, 9(6), 275; https://doi.org/10.3390/jcs9060275 - 29 May 2025
Viewed by 413
Abstract
Coal combustion generates significant volumes of ash, a technogenic by-product that poses a serious threat to regional environmental sustainability (environmental chemical contamination and air pollution). This study aims to assess the feasibility of utilizing this type of ash as a raw material component [...] Read more.
Coal combustion generates significant volumes of ash, a technogenic by-product that poses a serious threat to regional environmental sustainability (environmental chemical contamination and air pollution). This study aims to assess the feasibility of utilizing this type of ash as a raw material component in the fabrication of refractory bricks and to investigate the fundamental properties of the resulting experimental products. Ash was incorporated into the batch composition at concentrations ranging from 10% to 40% by weight, blended with clay and water, then shaped through pressing and subjected to firing at 1000 °C and 1100 °C in an air atmosphere for 2 h. After complete cooling, the samples were subjected to compressive strength testing. Samples containing 40 wt% coal ash exhibited insufficient compressive strength and were therefore excluded from subsequent investigations. For the remaining samples, apparent density, open porosity and slag resistance were determined. The microstructural characterization was performed, and the phase composition of the samples was analyzed. The results revealed that the phase composition of the experimental samples differs significantly from that of the reference sample (ShA-grade chamotte brick in accordance with GOST 390-96, currently used as lining in metallurgical furnaces across the country), exhibiting a higher mullite content and the absence of muscovite. A small amount of kaolinite was detected in the experimental samples even after a 2-h firing process. This observation may be attributed to the effect of kaolinite crystallinity on the transformation process from kaolinite to metakaolinite. The mechanical strength of the experimental samples meets the relevant standards, while slag resistance demonstrated an improvement of approximately 15%. Open porosity was found to decrease in the experimental samples. In addition, a change in the pore size distribution was observed. Notably, the proportion of pores larger than 10,000 nm was significantly reduced. These findings confirm the feasibility of incorporating coal ash as a viable raw material component in the formulation of refractory materials. Full article
Show Figures

Figure 1

11 pages, 411 KiB  
Article
HD-OCT Angiography and SD-OCT in Patients with Mild or No Clinically Apparent Diabetic Retinopathy
by Maja Vinković, Andrijana Kopić, Tvrtka Benašić, Dubravka Biuk, Ivanka Maduna and Stela Vujosevic
Biomedicines 2025, 13(5), 1251; https://doi.org/10.3390/biomedicines13051251 - 20 May 2025
Cited by 1 | Viewed by 423
Abstract
Purpose: To analyze the retinal and choriocapillaris changes in diabetic patients with no or with early signs of diabetic retinopathy using high-definition (HD) angio optical coherence tomography angiography (OCTA) software and spectral-domain (SD) OCT. Methods: A total of 112 eyes (54 eyes from [...] Read more.
Purpose: To analyze the retinal and choriocapillaris changes in diabetic patients with no or with early signs of diabetic retinopathy using high-definition (HD) angio optical coherence tomography angiography (OCTA) software and spectral-domain (SD) OCT. Methods: A total of 112 eyes (54 eyes from 27 diabetic patients and 58 eyes from 29 control subjects) were included in this retrospective cross-sectional study of healthy and diabetic adults. Retinal microvascular changes were assessed by using HD-OCTA software to calculate vascular density (VD) and foveal avascular zone (FAZ). SD-OCT was used to assess retinal thickness and volume in parafovea as well as ganglion cell complex (GCC) parameters. Results: The VD-whole image was significantly higher in the healthy control group (MW z = 1109.5, p = 0.012; t = 2.611, p = 0.010). Also, VD-parafovea was significantly higher in the healthy subjects (MW z = 1053.5, p = 0.004; t = 3.207, p = 0.002). GCC focal loss volume (FLV) was significantly decreased in diabetic patients (p = 0.051). Non-flow FAZ did not show a statistically significant difference between groups, although the FAZ was larger in the diabetic patients. Conclusions: Diabetic patients with no or early signs of diabetic retinopathy have decreased VD compared to healthy individuals. They also present retinal changes at the GCC that are correlated with initial neurodegeneration. HD-OCTA and SD-OCT can detect vascular changes and structural signs of retinal neurodegeneration before clinically apparent diabetic retinopathy. Potentially, these methods may offer new biomarkers for monitoring disease progression and visual prognosis. Full article
(This article belongs to the Special Issue Emerging Issues in Retinal Degeneration)
Show Figures

Figure 1

Back to TopTop