Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (24)

Search Parameters:
Keywords = apparent molecular weight distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 2313 KiB  
Article
Ultrasound-Assisted Melt Extrusion of Polymers with the Main Harmonics of 10–60 kHz
by Diana Agüero-Valdez, Alain González-Sánchez, María Teresa Rodríguez-Hernández, Heidi Andrea Fonseca-Florido, Juan Guillermo Martínez-Colunga, Janett Anaid Valdez-Garza, Gilberto Francisco Hurtado-López, Víctor Javier Cruz-Delgado and Carlos Alberto Ávila-Orta
Fluids 2025, 10(6), 150; https://doi.org/10.3390/fluids10060150 - 5 Jun 2025
Viewed by 598
Abstract
Using a digital oscilloscope, the main harmonics resulting from the application of different frequencies and power levels of ultrasonic waves during the polymer extrusion process were identified. The primary harmonics are located between 10 and 60 kHz and exhibit unique characteristics, such as [...] Read more.
Using a digital oscilloscope, the main harmonics resulting from the application of different frequencies and power levels of ultrasonic waves during the polymer extrusion process were identified. The primary harmonics are located between 10 and 60 kHz and exhibit unique characteristics, such as shape, crest, and trough, the latter being associated with voltage and current. The crest-to-trough distance (height) observed during processing at 34 kHz and 375 W shows the highest value, which correlates with the highest melt flow index and the lowest apparent viscosity. It is well known that the application of ultrasonic waves can randomly break C-C bonds in hydrocarbon compounds, leading to a decrease in molecular weight. However, the application of ultrasonic waves at different frequencies and power levels can promote chain scission in both high- and medium-molecular-weight polymer chains, thereby increasing the molecular weight distribution. This phenomenon can lead to chain disentanglement, along with chain scission, as evidenced by a decrease in molecular weight at medium power and frequency intensities. Finally, a schematic representation of the interaction between polymer chains and ultrasonic waves is proposed. Full article
Show Figures

Figure 1

13 pages, 1689 KiB  
Article
Enhancement of Emulsifying Activity in Soy-Protein-Based Products by Partial Substitution with Zein Hydrolysates and Transglutaminase Addition
by Zhihao Guo, Weiyu Li, Yuan Xue, Liying Bo, Jian Ren and Chunli Song
Foods 2025, 14(8), 1353; https://doi.org/10.3390/foods14081353 - 14 Apr 2025
Viewed by 565
Abstract
Partially substituting other proteins in soy-protein-based products is an effective method to meet nutritional and application requirements. However, the emulsifying properties of soybean protein isolates (SPI) when partially substituted with zein hydrolysates (ZH) remain unknown. In the present work, protein blend (0 h-SPI/ZH) [...] Read more.
Partially substituting other proteins in soy-protein-based products is an effective method to meet nutritional and application requirements. However, the emulsifying properties of soybean protein isolates (SPI) when partially substituted with zein hydrolysates (ZH) remain unknown. In the present work, protein blend (0 h-SPI/ZH) from SPI and ZH with a ratio of 3.5: 1 (w/w) was treated by transglutaminase (TGase) for 0, 0.5, 1.0, and 1.5 h, respectively. SDS-PAGE analysis results indicate protein polymers were generated in SPI/ZH conjugates. Emulsifying activity of the conjugates (1.5 h-SPI/ZH) was significantly increased from 23.69 to 28.13 m2 g−1 in comparison with SPI, and there was no statistically significant difference (p < 0.05) in emulsion stability. The apparent viscosity, surface hydrophobicity of the SPI/ZH conjugates were significantly increased. Emulsion droplet size and zeta potential stabilized by 1.5 h-SPI/ZH were also increased; the values were 64.73 to 80.79 r.nm and −21.8 to −29.9 mV, respectively. CLSM results indicate that 1.5 h-SPI/ZH conjugates stabilized the emulsion and had a thicker adsorption layer. Overall, high values of negative zeta potential and suitable molecular weight distribution of the SPI/ZH conjugates might be responsible for the improved emulsifying property. This study provides insights for the preparation of soy-protein-based products as a promising food emulsifier. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

15 pages, 6686 KiB  
Article
Characterization and Comparison of Structure and Physicochemical Properties of Highland Barley Starch of Different Colors
by Mengru Han, Xiongying Zhang, Honglu Wang, Jiayue Zhou, Meijin Liu, Xirong Zhou, Aliaksandr Ivanistau, Qinghua Yang and Baili Feng
Foods 2025, 14(2), 186; https://doi.org/10.3390/foods14020186 - 9 Jan 2025
Cited by 1 | Viewed by 1117
Abstract
Domesticated highland barley is an important starch reserve and has differently colored grains, owing to different genotype backgrounds and cultivation environments. In this study, black, purple, blue, and yellow highland barley varieties were planted under the same cultivation conditions, and their starch distribution, [...] Read more.
Domesticated highland barley is an important starch reserve and has differently colored grains, owing to different genotype backgrounds and cultivation environments. In this study, black, purple, blue, and yellow highland barley varieties were planted under the same cultivation conditions, and their starch distribution, structural characteristics, and physicochemical properties were analyzed. The apparent amylose content was highest in the purple variety (20.26%) and lowest in the yellow variety (18.58%). The different varieties had three subgroups and A-type crystalline structures, but the particle size and relative crystallinity (25.67–27.59%) were significantly different. In addition, the weight average molecular weight (6.72 × 107 g/mol), area ratio of APs to APL (2.88), relative crystallinity (27.59%), and 1045/1022 (0.730 cm−1) of starch were higher in yellow highland barley (YHB), forming a stable particle structure and increasing the Tp and PV of its starch. A cluster heat map showed that starches from differently colored highland barley vary in fine structure, water solubility, swelling power, and thermal and pasting properties. This study provides a reference for the high-quality breeding of colored highland barley and its utilization in food and non-food industries. Full article
(This article belongs to the Section Food Physics and (Bio)Chemistry)
Show Figures

Figure 1

17 pages, 7044 KiB  
Article
Rheological and Structural Characterization of Carrageenans during Depolymerization Conducted by a Marine Bacterium Shewanella sp. LE8
by Xiong Li, Chuyi Li, Yizhou Liu, Gang Han, Congyu Lin, Xiaoli Chen and Jian Mao
Gels 2024, 10(8), 502; https://doi.org/10.3390/gels10080502 - 28 Jul 2024
Cited by 4 | Viewed by 1964
Abstract
Carrageenans were widely utilized as thickening and gelling agents in the food and cosmetic industries, and their oligosaccharides have been proven to possess enhanced physicochemical and biological properties. In this study, Shewanella sp. LE8 was utilized for the depolymerization of κ-, ι-, and [...] Read more.
Carrageenans were widely utilized as thickening and gelling agents in the food and cosmetic industries, and their oligosaccharides have been proven to possess enhanced physicochemical and biological properties. In this study, Shewanella sp. LE8 was utilized for the depolymerization of κ-, ι-, and λ-carrageenan under conditions of fermentation. During a 24-h fermentation at 28 °C, the apparent viscosity of κ-, ι-, and λ-carrageenan decreased by 53.12%, 84.10%, and 59.33%, respectively, accompanied by a decrease in storage modulus, and loss modulus. After a 72-h fermentation, the analysis of methylene blue and molecular weight distribution revealed that ι-carrageenan was extensively depolymerized into smaller polysaccharides by Shewanella sp. LE8, while exhibiting partial degradation on κ- and λ-carrageenan. However, the impact of Shewanella sp. LE8 on total sugars was found to be limited; nevertheless, a significant increase in reduced sugar content was observed. The ESIMS analysis results revealed that the purified components obtained through ι-carrageenan fermentation for 72 h were identified as tetrasaccharides, while the two purified components derived from λ-carrageenan fermentation consisted of a hexasaccharide and a tetrasaccharide, respectively. Overall, the present study first reported the depolymerization of ι-and λ-carrageenan by Shewanella and suggested that the Shewanella could be used to depolymerize multiple carrageenans, as well as complex polysaccharides derived from red algae, to further obtain their oligosaccharides. Full article
(This article belongs to the Special Issue Food Gels: Structure and Function)
Show Figures

Figure 1

12 pages, 2173 KiB  
Article
Comparative Analysis of Gracilaria chouae Polysaccharides Derived from Different Geographical Regions: Focusing on Their Chemical Composition, Rheological Properties, and Gel Characteristics
by Xiong Li, Wanzi Yao, Cebin Hu, Congyu Lin, Lijun You and Jian Mao
Gels 2024, 10(7), 454; https://doi.org/10.3390/gels10070454 - 11 Jul 2024
Cited by 4 | Viewed by 1758
Abstract
Polysaccharides derived from diverse sources exhibit distinct rheological and gel properties, exerting a profound impact on their applicability in the food industry. In this study, we collected five Gracilaria chouae samples from distinct geographical regions, namely Rizhao (RZ), Lianyungang (LYG), Ningde (ND), Beihai [...] Read more.
Polysaccharides derived from diverse sources exhibit distinct rheological and gel properties, exerting a profound impact on their applicability in the food industry. In this study, we collected five Gracilaria chouae samples from distinct geographical regions, namely Rizhao (RZ), Lianyungang (LYG), Ningde (ND), Beihai (BH), and a wild source from Beihai (BHW). We conducted analyses on the chemical composition, viscosity, and rheological properties, as well as gel properties, to investigate the influence of chemical composition on variations in gel properties. The results revealed that the total sugar, sulfate content, and monosaccharide composition of G. chouae polysaccharides exhibit similarity; however, their anhydrogalactose content varies within a range of 15.31% to 18.98%. The molecular weight distribution of G. chouae polysaccharides ranged from 1.85 to 2.09 × 103 kDa. The apparent viscosity of the LYG and BHW polysaccharides was relatively high, whereas that of RZ and ND was comparatively low. The gel strength displayed a similar trend. BHW and LYG exhibited solid-like behavior, while ND, RZ, and BH demonstrated liquid-like characteristics at low frequencies. The redundancy analysis (RDA) analysis revealed a positive correlation between the texture profile analysis (TPA) characteristics and anhydrogalactose. The study could provide recommendations for the diverse applications of G. chouae polysaccharides derived from different geographical regions. Full article
(This article belongs to the Special Issue Food Gels: Structure and Function)
Show Figures

Figure 1

14 pages, 3501 KiB  
Article
The Property of a Key Amino Acid Determines the Function of Farnesyl Pyrophosphate Synthase in Sporobolomyces pararoseus NGR
by Yunjiao Wang, Ning Zhang, Jianyu Yan, Chunwang Li, Nan Zeng, Dandan Wang, Zijing Li, Bingxue Li and Yingfeng An
Curr. Issues Mol. Biol. 2024, 46(4), 3108-3121; https://doi.org/10.3390/cimb46040195 - 3 Apr 2024
Viewed by 2159
Abstract
Farnesyl pyrophosphate synthase (FPPS) catalyzes the synthesis of C15 farnesyl diphosphate (FPP) from C5 dimethylallyl diphosphate (DMAPP) and two or three C5 isopentenyl diphosphates (IPPs). FPP is an important precursor for the synthesis of isoprenoids and is involved in multiple metabolic pathways. Here, [...] Read more.
Farnesyl pyrophosphate synthase (FPPS) catalyzes the synthesis of C15 farnesyl diphosphate (FPP) from C5 dimethylallyl diphosphate (DMAPP) and two or three C5 isopentenyl diphosphates (IPPs). FPP is an important precursor for the synthesis of isoprenoids and is involved in multiple metabolic pathways. Here, farnesyl pyrophosphate synthase from Sporobolomyces pararoseus NGR (SpFPPS) was isolated and expressed by the prokaryotic expression system. The SpFPPS full-length genomic DNA and cDNA are 1566 bp and 1053 bp, respectively. This gene encodes a 350-amino acid protein with a predicted molecular mass of 40.33 kDa and a molecular weight of 58.03 kDa (40.33 kDa + 17.7 kDa), as detected by SDS-PAGE. The function of SpFPPS was identified by induction, purification, protein concentration and in vitro enzymatic activity experiments. Structural analysis showed that Y90 was essential for chain termination and changing the substrate scope. Site-directed mutation of Y90 to the smaller side-chain amino acids alanine (A) and lysine (K) showed in vitro that wt-SpFPPS catalyzed the condensation of the substrate DMAPP or geranyl diphosphate (GPP) with IPP at apparent saturation to synthesize FPP as the sole product and that the mutant protein SpFPPS-Y90A synthesized FPP and C20 geranylgeranyl diphosphate (GGPP), while SpFPPS-Y90K hydrolyzed the substrate GGPP. Our results showed that FPPS in S. pararoseus encodes the SpFPPS protein and that the amino acid substitution at Y90 changed the distribution of SpFPPS-catalyzed products. This provides a baseline for potentially regulating SpFPPS downstream products and improving the carotenoid biosynthesis pathway. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

11 pages, 3025 KiB  
Article
A New Essential Oil from the Native Andean Species Nectandra laurel Klotzsch ex Nees of Southern Ecuador: Chemical and Enantioselective Analyses
by Gianluca Gilardoni, Aníbal A. Enríquez, Yessenia E. Maldonado, Nixon Cumbicus and Omar Malagón
Plants 2023, 12(18), 3331; https://doi.org/10.3390/plants12183331 - 21 Sep 2023
Cited by 3 | Viewed by 1574
Abstract
The leaves of Nectandra laurel Klotzsch ex Nees, belonging to the family, Lauraceae, were collected in the province of Loja (Ecuador), dried, and analytically steam-distilled. An unprecedented essential oil was obtained, with a 0.03% yield by weight of dry plant material. The volatile [...] Read more.
The leaves of Nectandra laurel Klotzsch ex Nees, belonging to the family, Lauraceae, were collected in the province of Loja (Ecuador), dried, and analytically steam-distilled. An unprecedented essential oil was obtained, with a 0.03% yield by weight of dry plant material. The volatile fraction was submitted to qualitative (GC-MS) and quantitative (GC-FID) chemical analysis, on two orthogonal stationary phases. Seventy-eight compounds were detected and quantified on at least one column. The essential oil was dominated by sesquiterpene hydrocarbons (53.0–53.8% on the non-polar and polar stationary phase, respectively), followed by oxygenated sesquiterpenoids (18.9–19.0%). A third group was constituted by metabolites of other origins, mainly aliphatic compounds, apparently derived from the acetate pathway (11.7–8.5%). The major components of the EO (≥3.0% with at least one column) were δ-selinene (30.5–28.8%), δ-cadinene (5.4–6.4%), epi-α-cadinol (4.9–5.2%), an undetermined compound with a molecular weight of 204 (3.4–4.2%), α-pinene (3.3–2.9%), and α-cadinol (2.9–3.0%). Finally, the essential oil was submitted to enantioselective analysis, on two β-cyclodextrin-based chiral selectors, determining the enantiomeric distribution of seven chiral terpenes. Among them, (1R,5R)-(+)-α-pinene, (1R,5R)-(+)-β-pinene, and (R)-(−)-α-phellandrene were enantiomerically pure, whereas camphene, borneol, α-copaene, and α-terpineol were present as scalemic mixtures. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

12 pages, 2369 KiB  
Article
Forced Gradient Copolymer for Rational Design of Mussel-Inspired Adhesives and Dispersants
by Takehiro Fujita, Masami Shuta, Mika Mano, Shinnosuke Matsumoto, Atsushi Nagasawa, Akihiro Yamada and Masanobu Naito
Materials 2023, 16(1), 266; https://doi.org/10.3390/ma16010266 - 27 Dec 2022
Cited by 2 | Viewed by 3010
Abstract
In recent years, there has been considerable research into functional materials inspired by living things. Much attention has been paid to the development of adhesive materials that mimic the adhesive proteins secreted by a mussel’s foot. These mussel-inspired materials have superior adhesiveness to [...] Read more.
In recent years, there has been considerable research into functional materials inspired by living things. Much attention has been paid to the development of adhesive materials that mimic the adhesive proteins secreted by a mussel’s foot. These mussel-inspired materials have superior adhesiveness to various adherents owing to the non-covalent interactions of their polyphenolic moieties, e.g., hydrogen bonding, electrostatic interactions, and even hydrophobic interactions. Various factors significantly affect the adhesiveness of mussel-inspired polymers, such as the molecular weight, cross-linking density, and composition ratio of the components, as well as the chemical structure of the polyphenolic adhesive moieties, such as l-3,4-dihydroxyphenylalanine (l-Dopa). However, the contributions of the position and distribution of the adhesive moiety in mussel-inspired polymers are often underestimated. In the present study, we prepared a series of mussel-inspired alkyl methacrylate copolymers by controlling the position and distribution of the adhesive moiety, which are known as “forced gradient copolymers”. We used a newly designed gallic-acid-bearing methacrylate (GMA) as the polyphenolic adhesive moiety and copolymerized it with 2-ethylhexyl methacrylate (EHMA). The resulting forced gradient adhesive copolymer of GMA and EHMA (poly(GMA-co-EHMA), Poly1) was subjected to adhesion and dispersion tests with an aluminum substrate and a BaTiO3 nanoparticle in organic solvents, respectively. In particular, this study aims to clarify how the monomer position and distribution of the adhesive moiety in the mussel-inspired polymer affect its adhesion and dispersion behavior on a flat metal oxide surface and spherical inorganic oxide surfaces of several tens of nanometers in diameter, respectively. Here, forced gradient copolymer Poly1 consisted of a homopolymer moiety of EHMA (Poly3) and a random copolymer moiety of EHMA and GMA (Poly4). The composition ratio of GMA and the molecular weight were kept constant among the Poly1 series. Simultaneous control of the molecular lengths of Poly3 and Poly4 allowed us to discuss the effects on the distribution of GMA in Poly1. Poly1 exhibited apparent distribution dependency with regard to the adhesiveness and the dispersibility of BaTiO3. Poly1 showed the highest adhesion strength when the composition ratio of GMA was approximately 9 mol% in the portion of the Poly4 segment. In contrast, the block copolymer consisting of the Poly3 segment and Poly4 segment with only adhesive moiety 1 showed the lowest viscosity for dispersion of BaTiO3 nanoparticles. These results indicate that copolymers with mussel-inspired adhesive motifs require the proper design of the monomer position and distribution in Poly1 according to the shape and characteristics of the adherend to maximize their functionality. This research will facilitate the rational design of bio-inspired adhesive materials derived from plants that outperform natural materials, and it will eventually contribute to a sustainable circular economy. Full article
(This article belongs to the Special Issue Advanced Polymeric Materials: Synthesis, Properties, and Applications)
Show Figures

Figure 1

17 pages, 4553 KiB  
Article
Study on Properties of Regenerated Fluorinated Polyurethane Rigid Foam Prepared by Degrading Waste Polyurethane
by Da-Sheng Zhang, Xiao-Hua Gu, Si-Wen Liu, Yan Liu, Qing-Yun Zhou, Shang-Wen Zhu and Yan-Wei Zhu
Sustainability 2022, 14(23), 15685; https://doi.org/10.3390/su142315685 - 25 Nov 2022
Cited by 8 | Viewed by 2223
Abstract
Polyurethane (PU) has become one of the most widely used materials in the industrial field due to its excellent performance and wide range of applications. The increasing consumption of polyurethane materials has resulted in significant polyurethane waste. We can recycle waste polyurethane to [...] Read more.
Polyurethane (PU) has become one of the most widely used materials in the industrial field due to its excellent performance and wide range of applications. The increasing consumption of polyurethane materials has resulted in significant polyurethane waste. We can recycle waste polyurethane to obtain recycled polyurethane, but to make the recycled polyurethane meet different performance requirements in terms of utility and cost and enable the recycled polyether polyol to be further applied to high-end applications, it is necessary to improve the use value of recycled polyether polyol. In this paper, self-made Fluorodiol was added to the degradation process of waste polyurethane to obtain fluorinated regenerated polyether polyol. Recycled fluorinated polyurethane with excellent performance was prepared using fluorine-containing recycled polyether polyol. The regenerated fluorinated polyether polyols were characterized by infrared spectroscopy, viscosity, hydroxyl value, and GPC molecular weight distribution. The density, apparent morphology, water absorption, mechanical strength, thermal conductivity, and thermal stability of RFPU rigid foams with different fluorine contents were studied by scanning electron microscopy. The results show that when the addition of Fluorodiol was 8% of the mass of waste polyurethane, the density was 41.2 kg/m3, the immersion loss rate was 2.125%, the compressive strength was 0.315 Mpa, and the thermal conductivity was 0.0227 W/m·K. The RFPU prepared by Fluorodiol has low surface energy, good compressive strength, hydrolysis resistance, and is expected to be widely used in special insulation materials. Thus, the sustainable recycling of polyurethane is achieved. Full article
(This article belongs to the Topic Clean and Low Carbon Energy)
Show Figures

Figure 1

10 pages, 719 KiB  
Article
Effect of Grafted Insect Protein with Palatinose on Quality Properties of Phosphate-Free Meat Emulsion
by Tae-Kyung Kim, Yea-Ji Kim, Jake Kim, Hyun-Jung Yun, Min-Cheol Kang and Yun-Sang Choi
Foods 2022, 11(21), 3354; https://doi.org/10.3390/foods11213354 - 25 Oct 2022
Cited by 4 | Viewed by 2135
Abstract
Due to concerns about the negative effects of phosphate on human health, the development of phosphate substitutes is an active area of research. Among the various methods, the structural modification of proteins has previously been established. In this study, we used grafting technology. [...] Read more.
Due to concerns about the negative effects of phosphate on human health, the development of phosphate substitutes is an active area of research. Among the various methods, the structural modification of proteins has previously been established. In this study, we used grafting technology. Extracted insect protein was grafted with palatinose (GI), and 0.1 and 0.15% of GI were added to a phosphate-free meat emulsion mixed with 0.1% of eggshell powder (ES). The pH, myofibrillar protein solubility, and apparent viscosity increased with the addition of GI and ES (p < 0.05). Color values were also affected by GI and ES addition (decreased CIE L* and CIE a* and increased CIE b*; p < 0.05), while cooking loss was only improved by the addition of ES and not GI. Although the total fluid separated more than negative control (p < 0.05), the addition of ES improved emulsion stability and total expressible fluid separation and the fat separation reduced with addition of GI and ES (p < 0.05). Lipid oxidation was inhibited by the addition of GI and ES (p < 0.05). Moreover, the protein molecular weight distribution under 20 kDa was modified by the addition of GI, and the hardness and springiness of treatments decreased. In conclusion, the addition of GI and ES might be used to improve cooking loss, emulsion stability, and antioxidants, while the textural properties should be further researched. Full article
(This article belongs to the Special Issue Future Challenges in Meat and Meat Products Technology)
Show Figures

Graphical abstract

12 pages, 1447 KiB  
Article
Poly(Styrene-Co-Maleic Acid)-Conjugated 6-Aminofluorescein and Rhodamine Micelle as Macromolecular Fluorescent Probes for Micro-Tumors Detection and Imaging
by Gahininath Y. Bharate, Haibo Qin and Jun Fang
J. Pers. Med. 2022, 12(10), 1650; https://doi.org/10.3390/jpm12101650 - 4 Oct 2022
Cited by 3 | Viewed by 1888
Abstract
Styrene-co-maleic acid (SMA) copolymer was evaluated as a polymer platform to conjugate with two fluorescent dyes, i.e., 6-aminofluorescein (AF) and Rhodamine (Rho); which spontaneously self-assembles in an aqueous medium and forms a micelle through a non-covalent interaction. These SMA-dye conjugates showed the nanosized [...] Read more.
Styrene-co-maleic acid (SMA) copolymer was evaluated as a polymer platform to conjugate with two fluorescent dyes, i.e., 6-aminofluorescein (AF) and Rhodamine (Rho); which spontaneously self-assembles in an aqueous medium and forms a micelle through a non-covalent interaction. These SMA-dye conjugates showed the nanosized micelle formation through dynamic light scattering (DLS) with discrete distributions having mean particle sizes of 135.3 nm, and 190.9 nm for SMA-AF, and SMA-Rho, respectively. The apparent molecular weight of the micelle was evaluated using Sephadex G-100 gel chromatography and it was found that the 49.3 kDa, and 28.7 kDa for SMA-AF, and SMA-Rho, respectively. Moreover, the biodistribution study showed the selective accumulation of the SMA-dye conjugates in the tumor of mice. Taken together, the SMA-dye conjugated micelles appear in high concentrations in the tumor by utilizing the enhanced permeability and retention (EPR) effect of the tumor-targeted delivery. These results indicate that SMA-dye conjugates have the advanced potential as macromolecular fluorescent probes for microtumor imaging by means of a photodynamic diagnosis. Full article
Show Figures

Figure 1

14 pages, 6237 KiB  
Article
Statistical Analysis of the Mechanical Behavior of High-Performance Polymers: Weibull’s or Gaussian Distributions?
by Yuri Boiko, Vyacheslav Marikhin and Lyubov’ Myasnikova
Polymers 2022, 14(14), 2841; https://doi.org/10.3390/polym14142841 - 12 Jul 2022
Cited by 9 | Viewed by 2626
Abstract
This work addresses the following problem: which of the statistical approaches, Weibull’s or Gaussian, is more appropriate to correctly describe the statistical distributions of the mechanical properties of the high-performance polymer materials of different sample types (single or multifilament oriented fibers) and chain [...] Read more.
This work addresses the following problem: which of the statistical approaches, Weibull’s or Gaussian, is more appropriate to correctly describe the statistical distributions of the mechanical properties of the high-performance polymer materials of different sample types (single or multifilament oriented fibers) and chain architectures (ultra-high-molecular-weight polyethylene, polyamide 6, or polypropylene)? Along with the routine mechanical properties such as strength, strain at break, and Young’s modulus, an apparent viscoelastic modulus and an apparent strain at break found when differentiating the stress–strain curves have been considered for the first time. For this purpose, a large sample number (50 in each series) has been tested. It has been shown that the values of the Weibull’s modulus (m) characterizing the data scatter were dependent both on the chain architecture and the sample type for the five elastic, viscoelastic and fracture characteristics analyzed. The Weibull’s model has been found to be more correct as compared to the Gaussian one. The different statistical approaches used for the analysis of the large arrays of the data are important for a better understanding of the deformation and fracture mechanisms of quasi-brittle and quasi-ductile high-performance polymer materials. Full article
Show Figures

Figure 1

18 pages, 3145 KiB  
Review
Apparent Molecular Weight Distributions in Bituminous Binders
by Giovanni Polacco, Miriam Cappello, Giacomo Cuciniello and Sara Filippi
Materials 2022, 15(13), 4700; https://doi.org/10.3390/ma15134700 - 5 Jul 2022
Cited by 5 | Viewed by 2120
Abstract
Molecular weight distributions are widely used to evaluate the effects of aging or modifiers in bituminous binders. As with polymers, the most common techniques to obtain the distributions can be subdivided into two main groups, depending on whether or not they use a [...] Read more.
Molecular weight distributions are widely used to evaluate the effects of aging or modifiers in bituminous binders. As with polymers, the most common techniques to obtain the distributions can be subdivided into two main groups, depending on whether or not they use a solvent. In the first group, the dimension of the molecules is evaluated in a diluted unperturbed state, while, in the second, the dimension derives from the bulk, where aggregated or interacting molecules may behave as single entities. However, the calibration curves used in the bulk are tuned in order to homogenize the results derived from the two approaches. This sort of contradiction, plus the high number of experimental uncertainties, suggest that the term “apparent” should be used for both distributions. These aspects are well known in the field of polymers but have received less attention in the case of bitumens, which are even more complex. This paper pinpoints the advantages and disadvantages of the two techniques, thus highlighting the most appropriate use. Bulk methods are preferred when evaluating properties that are strictly dependent on the microstructure, such as the level of aging and the effects of additives or modifiers. Diluted methods should be used when the molecular size matters, such as in quantifying the presence of polymers or rejuvenators. Both techniques should be used for comparative studies only. Full article
(This article belongs to the Section Construction and Building Materials)
Show Figures

Figure 1

23 pages, 5521 KiB  
Article
Investigation on Oil Physical States of Hybrid Shale Oil System: A Case Study on Cretaceous Second White Speckled Shale Formation from Highwood River Outcrop, Southern Alberta
by Hong Zhang, Haiping Huang and Mengsha Yin
Minerals 2022, 12(7), 802; https://doi.org/10.3390/min12070802 - 24 Jun 2022
Cited by 6 | Viewed by 2546
Abstract
Nine samples collected from the Upper Cretaceous Second White Speckled Shale Formation at the Highwood River outcrop in southern Alberta were geochemically characterized for their oil contents, physical states, and chemical compositions. Cold extraction was performed on 8–10 mm and 2–5 mm chips [...] Read more.
Nine samples collected from the Upper Cretaceous Second White Speckled Shale Formation at the Highwood River outcrop in southern Alberta were geochemically characterized for their oil contents, physical states, and chemical compositions. Cold extraction was performed on 8–10 mm and 2–5 mm chips sequentially to obtain the first and second extractable organic matter (EOM-1 and EOM-2), while Soxhlet extraction was performed on powder from previously extracted chips to obtain the third extract (EOM-3). EOM-1 can be roughly regarded as free oil and EOM-2 is weakly adsorbed on mineral surfaces, while EOM-3 may represent the oil strongly adsorbed on kerogen. While both extraction yields and Rock-Eval pyrolysates differed from their original values due to the evaporative loss during outcropping, there was a generally positive correlation between the total EOM and total oil derived from Rock-Eval pyrolysis. EOM-1 was linearly correlated with Rock-Eval S1, while the extractable S2 content was well correlated with the loss of TOC, suggesting that TOC content was the main constraint for adsorbed oils. A bulk composition analysis illustrated that EOM-1 contained more saturated hydrocarbons, while EOM-3 was enriched in resins and asphaltenes. More detailed fractionation between the free and adsorbed oils was demonstrated by molecular compositions of each extract using quantitative GC-MS analysis. Lower-molecular-weight n-alkanes and smaller-ring-number aromatic compounds were preferentially concentrated in EOM-1 as compared to their higher-molecular or greater-ring-number counterparts and vice versa for EOM-3. Fractionation between isoprenoids and adjacent eluted n-alkanes, isomers of steranes, hopanes, alkylnaphthalenes, alkylphenanthrenes and alkyldibenzothiophenes was insignificant, suggesting no allogenic charge from deep strata. Strong chemical fractionation between saturated and aromatic hydrocarbon fractions was observed with EOM-1 apparently enriched in n-alkanes, while EOM-3 retained more aromatic hydrocarbons. However, the difference between free and adsorbed state oils was less dramatic than the variation from shales and siltstones. Lithological heterogeneities controlled both the amount and composition of retained fluids. Oil that resided in shales (source rock) behaved more similar to the EOM-3, with diffusive expulsion leading to the release of discrete molecules from a more adsorbed or occluded phase to a more free phase in siltstones with more connected pores and/or fractures (reservoir). Under current technical conditions, only the free oil can flow and will be the recoverable resource. Therefore, the highest potential can be expected from intervals adjacent to organic-rich beds. The compositional variations due to expulsion and primary migration from source rocks to reservoirs illustrated in the present study will contribute to a better understanding of the distribution of hydrocarbons generated and stored within the shale plays. Full article
(This article belongs to the Special Issue Shale and Tight Reservoir Characterization and Resource Assessment)
Show Figures

Figure 1

80 pages, 6146 KiB  
Review
Multi-Scale Modeling of Plastic Waste Gasification: Opportunities and Challenges
by Sepehr Madanikashani, Laurien A. Vandewalle, Steven De Meester, Juray De Wilde and Kevin M. Van Geem
Materials 2022, 15(12), 4215; https://doi.org/10.3390/ma15124215 - 14 Jun 2022
Cited by 31 | Viewed by 6521
Abstract
Among the different thermo-chemical recycling routes for plastic waste valorization, gasification is one of the most promising, converting plastic waste into syngas (H2+CO) and energy in the presence of an oxygen-rich gas. Plastic waste gasification is associated with many different complexities [...] Read more.
Among the different thermo-chemical recycling routes for plastic waste valorization, gasification is one of the most promising, converting plastic waste into syngas (H2+CO) and energy in the presence of an oxygen-rich gas. Plastic waste gasification is associated with many different complexities due to the multi-scale nature of the process, the feedstock complexity (mixed polyolefins with different contaminations), intricate reaction mechanisms, plastic properties (melting behavior and molecular weight distribution), and complex transport phenomena in a multi-phase flow system. Hence, creating a reliable model calls for an extensive understanding of the phenomena at all scales, and more advanced modeling approaches than those applied today are required. Indeed, modeling of plastic waste gasification (PWG) is still in its infancy today. Our review paper shows that the thermophysical properties are rarely properly defined. Challenges in this regard together with possible methodologies to decently define these properties have been elaborated. The complexities regarding the kinetic modeling of gasification are numerous, compared to, e.g., plastic waste pyrolysis, or coal and biomass gasification, which are elaborated in this work along with the possible solutions to overcome them. Moreover, transport limitations and phase transformations, which affect the apparent kinetics of the process, are not usually considered, while it is demonstrated in this review that they are crucial in the robust prediction of the outcome. Hence, possible approaches in implementing available models to consider these limitations are suggested. Finally, the reactor-scale phenomena of PWG, which are more intricate than the similar processes—due to the presence of molten plastic—are usually simplified to the gas-solid systems, which can result in unreliable modeling frameworks. In this regard, an opportunity lies in the increased computational power that helps improve the model’s precision and allows us to include those complexities within the multi-scale PWG modeling. Using the more accurate modeling methodologies in combination with multi-scale modeling approaches will, in a decade, allow us to perform a rigorous optimization of the PWG process, improve existing and develop new gasifiers, and avoid fouling issues caused by tar. Full article
(This article belongs to the Special Issue Catalysts and Catalytic Processes)
Show Figures

Figure 1

Back to TopTop