Ultrasound-Assisted Melt Extrusion of Polymers with the Main Harmonics of 10–60 kHz
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Sample Preparation
2.3. Characterization Techniques
2.3.1. Oscillograms
2.3.2. Molecular Weight Analysis
2.3.3. Melt Flow Index (MFI)
2.3.4. Capillary Rheometry
3. Results
3.1. Collection of Oscillograms
3.2. Molecular Weight Analysis
3.3. Effect of Ultrasonic Waves on the MFI
3.4. Rheological Analysis
3.5. Polymer Chain Interactions and Ultrasonic Wave Model
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Leighton, T.G. What is ultrasound? Prog. Biophys. Mol. Biol. 2007, 93, 3–83. [Google Scholar] [CrossRef] [PubMed]
- Saha, A.; Mathur, M. Ultrasound Physics & Overview. In Ultrasound Fundamentals; Springer International Publishing: Cham, Switzerland, 2021; pp. 3–16. [Google Scholar]
- Ensminger, D.; Bond, L.J. Ultrasonics; CRC Press: Boca Raton, FL, USA, 2023; ISBN 9780429286964. [Google Scholar]
- Dengaev, A.V.; Khelkhal, M.A.; Getalov, A.A.; Baimukhametov, G.F.; Kayumov, A.A.; Vakhin, A.V.; Gafurov, M.R. Innovations in Oil Processing: Chemical Transformation of Oil Components through Ultrasound Assistance. Fluids 2023, 8, 108. [Google Scholar] [CrossRef]
- Poinern, G.E.; Brundavanam, R.K.; Mondinos, N.; Jiang, Z.-T. Synthesis and characterisation of nanohydroxyapatite using an ultrasound assisted method. Ultrason. Sonochem. 2009, 16, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Muthoosamy, K.; Manickam, S. State of the art and recent advances in the ultrasound-assisted synthesis, exfoliation and functionalization of graphene derivatives. Ultrason. Sonochem. 2017, 39, 478–493. [Google Scholar] [CrossRef]
- Krishnaveni, M.; Asiri, A.M.; Anandan, S. Ultrasound-assisted synthesis of unzipped multiwalled carbon nanotubes/titanium dioxide nanocomposite as a promising next-generation energy storage material. Ultrason. Sonochem. 2020, 66, 105105. [Google Scholar] [CrossRef]
- Bhanvase, B.A.; Sonawane, S.H. Ultrasound assisted in situ emulsion polymerization for polymer nanocomposite: A review. Chem. Eng. Process. Process Intensif. 2014, 85, 86–107. [Google Scholar] [CrossRef]
- Soman, V.; Vishwakarma, K.; Poddar, M.K. Ultrasound assisted synthesis of polymer nanocomposites: A review. J. Polym. Res. 2023, 30, 406. [Google Scholar] [CrossRef]
- Bagheri, A.R.; Ghaedi, M.; Asfaram, A.; Jannesar, R.; Goudarzi, A. Design and construction of nanoscale material for ultrasonic assisted adsorption of dyes: Application of derivative spectrophotometry and experimental design methodology. Ultrason. Sonochem. 2017, 35, 112–123. [Google Scholar] [CrossRef]
- Zorgani, M.A.; Zaoui, F.; Zorgani, R.N.E.H.; Elhadj Daouadji, B.; Sebba, F.Z.; Choukchou-Braham, E.; Bounaceur, B.; Ma, Y.; Bhardwaj, M.; Ma, H. Ultrasonic-assisted adsorption of heavy copper and lead metal ions by g-C3N4, application of g-C3N4@MNPs (M: Pb, Cu) in the catalytic photoreduction of organic pollutants. J. Water Process Eng. 2024, 58, 104724. [Google Scholar] [CrossRef]
- Zaoui, F.; Sebba, F.Z.; Liras, M.; Sebti, H.; Hachemaoui, M.; Mokhtar, A.; Beldjilali, M.; Bounaceur, B.; Boukoussa, B. Ultrasonic preparation of a new composite poly(GMA)@Ru/TiO2@Fe3O4: Application in the catalytic reduction of organic pollutants. Mater. Chem. Phys. 2021, 260, 124146. [Google Scholar] [CrossRef]
- Kim, K.-B.; Lee, S.; Kim, M.-S.; Cho, B.-K. Determination of apple firmness by nondestructive ultrasonic measurement. Postharvest Biol. Technol. 2009, 52, 44–48. [Google Scholar] [CrossRef]
- Gunes, K.; Isayev, A.I.; Li, X.; Wesdemiotis, C. Fast in situ copolymerization of PET/PEN blends by ultrasonically-aided extrusion. Polymer 2010, 51, 1071–1081. [Google Scholar] [CrossRef]
- Mata-Padilla, J.M.; Ávila-Orta, C.A.; Medellín-Rodríguez, F.J.; Hernández-Hernández, E.; Jiménez-Barrera, R.M.; Crúz-Delgado, V.J.; Valdéz-Garza, J.; Solís-Rosales, S.G.; Torres-Martínez, A.; Lozano-Estrada, M.; et al. Structural and morphological studies on the deformation behavior of polypropylene/multi-walled carbon nanotubes nanocomposites prepared through ultrasound-assisted melt extrusion process. J. Polym. Sci. Part B Polym. Phys. 2015, 53, 475–491. [Google Scholar] [CrossRef]
- Isayev, A.I.; Jung, C.; Gunes, K.; Kumar, R. Ultrasound assisted single screw extrusion process for dispersion of carbon nanofibers in polymers. Int. Polym. Process. 2008, 23, 395–405. [Google Scholar] [CrossRef]
- Kim, K.Y.; Nam, G.J.; Lee, J.W. Continuous extrusion of long-chain-branched polypropylene/clay nanocomposites with high-intensity ultrasonic waves. Compos. Interfaces 2007, 14, 533–544. [Google Scholar] [CrossRef]
- Gallego-Juárez, J.A. Power ultrasonics: New technologies and applications for fluid processing. In Ultrasonic Transducers; Elsevier: Amsterdam, The Netherlands, 2012; pp. 476–516. [Google Scholar]
- Dias Pereira, J.M. The history and technology of oscilloscopes. IEEE Instrum. Meas. Mag. 2006, 9, 27–35. [Google Scholar] [CrossRef]
- Kumar, V.; Chandrasekhar, N.; Albert, S.K.; Jayapandian, J. Analysis of arc welding process using Digital Storage Oscilloscope. Measurement 2016, 81, 1–12. [Google Scholar] [CrossRef]
- Savyasachi, N.; Chandrasekar, N.; Albert, S.K.; Surendranathan, A.O. Evaluation of Arc Welding Process Using Digital Storage Oscilloscope and High Speed Camera. Indian Weld. J. 2015, 48, 35. [Google Scholar] [CrossRef]
- Hamidi, H.; Sharifi Haddad, A.; Wisdom Otumudia, E.; Rafati, R.; Mohammadian, E.; Azdarpour, A.; Giles Pilcher, W.; Wilhelm Fuehrmann, P.; Ricardo Sosa, L.; Cota, N.; et al. Recent applications of ultrasonic waves in improved oil recovery: A review of techniques and results. Ultrasonics 2021, 110, 106288. [Google Scholar] [CrossRef]
- Mohammadian, E.; Parak, M.; Babakhani, P. The Effects of Properties of Waves on the Recovery of Ultrasonic Stimulated Waterflooding. Pet. Sci. Technol. 2014, 32, 1000–1008. [Google Scholar] [CrossRef]
- Dengaev, A.V.; Kayumov, A.A.; Getalov, A.A.; Aliev, F.A.; Baimukhametov, G.F.; Sargin, B.V.; Maksimenko, A.F.; Vakhin, A.V. Chemical Viscosity Reduction of Heavy Oil by Multi-Frequency Ultrasonic Waves with the Main Harmonics of 20–60 kHz. Fluids 2023, 8, 136. [Google Scholar] [CrossRef]
- Chen, J.; Chen, Y.; Li, H.; Lai, S.-Y.; Jow, J. Physical and chemical effects of ultrasound vibration on polymer melt in extrusion. Ultrason. Sonochem. 2010, 17, 66–71. [Google Scholar] [CrossRef] [PubMed]
- Zhong, J.; Isayev, A.I.; Huang, K.Y. Influence of ultrasonic treatment in PP/CNT composites using masterbatch dilution method. Polymer 2014, 55, 1745–1755. [Google Scholar] [CrossRef]
- Li, Y.; Li, J.; Guo, S.; Li, H. Mechanochemical degradation kinetics of high-density polyethylene melt and its mechanism in the presence of ultrasonic irradiation. Ultrason. Sonochem. 2005, 12, 183–189. [Google Scholar] [CrossRef]
- Espinoza-Gonzalez, C.; Avila-Orta, C.; Martinez-Colunga, G.; Lionetto, F.; Maffezzoli, A. A Measure of CNTs Dispersion in Polymers With Branched Molecular Architectures by UDMA. IEEE Trans. Nanotechnol. 2016, 15, 731–737. [Google Scholar] [CrossRef]
- Martínez-Colunga, J.G.; Cruz-Delgado, V.J.; Sánchez-Valdés, S.; Mata-Padilla, J.M.; Ramos-de Valle, L.F.; Espinoza-Martínez, A.B.; Benavides, R.; Ramírez-Vargas, E.; Rodriguez-Gonzalez, J.A.; Lara-Sanchez, J.F.; et al. Application of ultrasonic radiation for the development of polypropylene/multi-walled carbon nanotubes nanocomposites and its effect on the PP chemical degradation. Iran. Polym. J. 2024, 33, 1751–1764. [Google Scholar] [CrossRef]
- Ávila Orta, C.A.; Martínez Colunga, J.G.; Bueno Baqués, D.; Raudry López, C.E.; Cruz Delgado, V.J.; González Morones, P.; Valdez Garza, J.A.; Esparza Juárez, M.E.; Espinoza González, C.J.; Rodríguez González, J.A. Proceso Continuo Asistido Por Ultrasonido de Frecuencia y Amplitud Variable, Para la Preparación de Nanocompuestos a Base de Polímeros y Nanopartículas. MX Patent 323756, 19 September 2014. [Google Scholar]
- ASTM D1238-10; Test Method for Melt Flow Rates of Thermoplastics by Extrusion Plastometer. ASTM: West Conshohocken, PA, USA, 2010. [CrossRef]
- ASTM D3835-16; Test Method for Determination of Properties of Polymeric Materials by Means of a Capillary Rheometer. ASTM: West Conshohocken, PA, USA, 2016. [CrossRef]
- Francucci, G.; Rodriguez, E.; Rodriguez, M.E. Ultrasound-Assisted Extrusion Compounding of Nano Clay/Polypropylene Nano Compounds. Polymers 2024, 16, 2426. [Google Scholar] [CrossRef]
- Medellín Rodríguez, F.J.; Gudiño Rivera, J.; Rodríguez Velázquez, J.G.; Lara Sánchez, J.F.; Salinas Hernández, M. Gradually modified fibers of Yucca Filifera (Asparagaceae) as biodegradable and mechanical reinforcement of polypropylene composites. Polym. Compos. 2024, 45, 751–762. [Google Scholar] [CrossRef]
- Lin, H.; Isayev, A.I. Ultrasonic treatment of polypropylene, polyamide 6, and their blends. J. Appl. Polym. Sci. 2006, 102, 2643–2653. [Google Scholar] [CrossRef]
Power (W) | Frequency (kHz) | Period (s) | Vmax (mV) | Imax (mV) | Phase Shift (°) |
---|---|---|---|---|---|
W_U | - | - | - | - | - |
225 | 20 | 5.0 × 10−5 | 1.6 | 3.2 | 133 |
25 | 4.0 × 10−5 | 1.2 | 3.8 | 0 | |
27 | 3.7 × 10−5 | 1.2 | 3.0 | 144 | |
34 | 2.9 × 10−5 | 0.5 | 4.6 | 75 | |
43 | 2.3 × 10−5 | 0.8 | 2.6 | 121 | |
52 | 1.9 × 10−5 | 0.7 | 2.2 | 151 | |
375 | 20 | 5.0 × 10−5 | 2.2 | 5.0 | 132 |
25 | 4.0 × 10−5 | 2.0 | 8.2 | 29 | |
27 | 3.7 × 10−5 | 2.2 | 5.5 | 139 | |
34 | 2.9 × 10−5 | 1.2 | 7.8 | 13 | |
43 | 2.3 × 10−5 | 1.6 | 4.7 | 108 | |
52 | 1.9 × 10−5 | 1.8 | 4.5 | 180 | |
450 | 20 | 5.0 × 10−5 | 2.4 | 5.6 | 134 |
25 | 4.0 × 10−5 | 2.0 | 8.8 | 35 | |
27 | 3.7 × 10−5 | 2.5 | 5.9 | 139 | |
34 | 2.9 × 10−5 | 0.9 | 11.6 | 2 | |
43 | 2.3 × 10−5 | 1.9 | 6.3 | 114 | |
52 | 1.9 × 10−5 | 1.4 | 5.4 | 155 |
Power (W) | Frequency (kHz) | Mw × 10−4 (g/g-mol) | Mn × 10−4 (g/g-mol) | Mw/Mn (Dimensionless) |
---|---|---|---|---|
W_U | - | 17.48 | 6.70 | 2.6 |
225 | 20 | 16.80 | 6.34 | 2.6 |
25 | 16.58 | 5.10 | 3.2 | |
27 | 17.06 | 6.01 | 2.8 | |
34 | 16.98 | 5.62 | 3.0 | |
43 | 16.84 | 5.33 | 3.2 | |
52 | 16.72 | 5.83 | 2.9 | |
375 | 20 | 17.16 | 5.97 | 2.9 |
25 | 16.82 | 5.45 | 3.1 | |
27 | 17.57 | 5.71 | 3.1 | |
34 | 17.84 | 4.86 | 3.7 | |
43 | 16.68 | 5.01 | 3.3 | |
52 | 16.70 | 5.26 | 3.2 | |
450 | 20 | 16.74 | 6.08 | 2.8 |
25 | 16.76 | 5.97 | 2.8 | |
27 | 17.02 | 5.22 | 3.3 | |
34 | 17.00 | 6.35 | 2.7 | |
43 | 16.66 | 5.58 | 3.0 | |
52 | 16.86 | 4.91 | 3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agüero-Valdez, D.; González-Sánchez, A.; Rodríguez-Hernández, M.T.; Fonseca-Florido, H.A.; Martínez-Colunga, J.G.; Valdez-Garza, J.A.; Hurtado-López, G.F.; Cruz-Delgado, V.J.; Ávila-Orta, C.A. Ultrasound-Assisted Melt Extrusion of Polymers with the Main Harmonics of 10–60 kHz. Fluids 2025, 10, 150. https://doi.org/10.3390/fluids10060150
Agüero-Valdez D, González-Sánchez A, Rodríguez-Hernández MT, Fonseca-Florido HA, Martínez-Colunga JG, Valdez-Garza JA, Hurtado-López GF, Cruz-Delgado VJ, Ávila-Orta CA. Ultrasound-Assisted Melt Extrusion of Polymers with the Main Harmonics of 10–60 kHz. Fluids. 2025; 10(6):150. https://doi.org/10.3390/fluids10060150
Chicago/Turabian StyleAgüero-Valdez, Diana, Alain González-Sánchez, María Teresa Rodríguez-Hernández, Heidi Andrea Fonseca-Florido, Juan Guillermo Martínez-Colunga, Janett Anaid Valdez-Garza, Gilberto Francisco Hurtado-López, Víctor Javier Cruz-Delgado, and Carlos Alberto Ávila-Orta. 2025. "Ultrasound-Assisted Melt Extrusion of Polymers with the Main Harmonics of 10–60 kHz" Fluids 10, no. 6: 150. https://doi.org/10.3390/fluids10060150
APA StyleAgüero-Valdez, D., González-Sánchez, A., Rodríguez-Hernández, M. T., Fonseca-Florido, H. A., Martínez-Colunga, J. G., Valdez-Garza, J. A., Hurtado-López, G. F., Cruz-Delgado, V. J., & Ávila-Orta, C. A. (2025). Ultrasound-Assisted Melt Extrusion of Polymers with the Main Harmonics of 10–60 kHz. Fluids, 10(6), 150. https://doi.org/10.3390/fluids10060150