Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (40)

Search Parameters:
Keywords = antitussive activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
33 pages, 3792 KiB  
Article
Regulation of Steroidal Alkaloid Biosynthesis in Bulbs of Fritillaria thunbergii Miq. By Shading and Potassium Application: Integrating Transcriptomics and Metabolomics Analyses
by Jia Liu, Zixuan Zhu, Leran Wang, Qiang Yuan, Honghai Zhu, Xiaoxiao Sheng, Kejie Zhang, Bingbing Liang, Huizhen Jin, Shumin Wang, Wenjun Weng, Hui Wang and Ning Sui
Biology 2025, 14(6), 633; https://doi.org/10.3390/biology14060633 - 29 May 2025
Viewed by 708
Abstract
Fritillaria thunbergii Miq., a medicinal plant rich in steroidal alkaloids, produces bulbs that clear heat, resolve phlegm, and detoxify. However, excessive yield-oriented cultivation has reduced the number of F. thunbergii plants that meet commercial standards. This study explored the effects of potassium application [...] Read more.
Fritillaria thunbergii Miq., a medicinal plant rich in steroidal alkaloids, produces bulbs that clear heat, resolve phlegm, and detoxify. However, excessive yield-oriented cultivation has reduced the number of F. thunbergii plants that meet commercial standards. This study explored the effects of potassium application and shading on the bulb biomass and medicinal substance content of F. thunbergii. Shading increased the active ingredient content in bulbs by approximately 20.71% but reduced biomass by approximately 17.24%. Fertilization with different potassium concentrations under shading (K1S–K3S) alleviated shading-induced biomass reduction and increased active ingredient accumulation, with the K2S and K3S groups yielding significantly better results than the K1S group. Pharmacological experiments showed that the K2S group exerted the best antitussive, expectorant, and anti-inflammatory effects. Metabolome analysis showed that compared with those in the controls, peiminine, peimine, imperialine, solasodine, and cyclopamine were the most abundant steroidal alkaloids under K2S treatment. Transcriptome analysis identified key genes and biosynthetic pathways for major steroidal alkaloids, namely, farnesyl pyrophosphate synthase (FtFPS) involved in steroidal alkaloid biosynthesis. Transcription factor analysis revealed that nine transcription factors predominantly expressed under the K2S treatment might regulate steroidal alkaloid biosynthesis. Furthermore, FtFPS was identified as a hub gene in the co-expression network and was verified to catalyze the biosynthesis of farnesyl pyrophosphate. The interaction between FtFPS and FtAP2/ERF was verified through yeast two-hybrid experiments. These findings offer new insights into the steroidal alkaloid biosynthesis mechanism triggered in F. thunbergii by potassium application and shading, supporting ecological strategies to enhance steroidal alkaloid levels in this species. Full article
(This article belongs to the Section Physiology)
Show Figures

Figure 1

18 pages, 3519 KiB  
Article
PAR2 Participates in the Development of Cough Hypersensitivity in Guinea Pigs by Regulating TRPA1 Through PKC
by Yiqing Zhu, Tongyangzi Zhang, Haodong Bai, Wanzhen Li, Shengyuan Wang, Xianghuai Xu and Li Yu
Biomolecules 2025, 15(2), 208; https://doi.org/10.3390/biom15020208 - 1 Feb 2025
Viewed by 1054
Abstract
Objective: This study was conducted to validate the involvement of the PAR2-PKC-TRPA1 pathway in cough hypersensitivity (CHS) development. Methods: Guinea pigs were divided into a blank control, a citric acid-induced enhanced cough model, and drug intervention groups. The effects of the drugs on [...] Read more.
Objective: This study was conducted to validate the involvement of the PAR2-PKC-TRPA1 pathway in cough hypersensitivity (CHS) development. Methods: Guinea pigs were divided into a blank control, a citric acid-induced enhanced cough model, and drug intervention groups. The effects of the drugs on capsaicin-induced cough responsiveness in a cough model were observed. The effects of individual and combined treatments (including PAR2 agonists, TRPA1 agonists, PAR2 antagonists, TRPA1 antagonists, PKC agonists, and PKC antagonists) on PAR2, phospho-PKC (pPKC), and TRPA1 expression in bronchial tissues and the vagus ganglion (jugular and nodose) in the cough model and control groups were assessed. Additionally, whole-cell patch-clamp recordings were conducted to evaluate the effects of the drugs on vagus ganglion neuron electrophysiological activity. Results: ① Both PAR2 antagonists and TRPA1 antagonists significantly reduced cough frequency in guinea pigs with a cough, and the PAR2 antagonist inhibited coughing induced by the TRPA1 agonist. ② Western blotting and multiplex immunohistochemistry (mIHC) indicated that PAR2, pPKCα, PKCα, and TRPA1 expression in bronchial and vagus ganglion tissues was elevated in the cough model compared with the control, with TRPA1 expression being regulated by PAR2 and PKC being involved in this regulatory process. ③ Whole-cell patch-clamp recordings demonstrated that TRPA1 agonists induced an inward current in nodose ganglion neurons, which was further amplified by PAR2 agonists; this amplification effect was blocked by PKC antagonist. Additionally, PAR2 antagonists inhibited the inward current induced by TRPA1 agonists. ④ At various concentrations, including the optimal antitussive concentration, PAR2 antagonists did not significantly affect pulse amplitude, arterial oxygen saturation, heart rate, body temperature, or respiratory rate in guinea pigs. Conclusion: PAR2 regulates TRPA1 through PKC in cough syndrome (CHS) pathogenesis, making targeting PAR2 a safe and effective therapeutic strategy for CHS. Full article
(This article belongs to the Special Issue TRP Channels in Cardiovascular and Inflammatory Disease)
Show Figures

Figure 1

17 pages, 5400 KiB  
Article
Spatial Metabolomic Profiling of Pinelliae Rhizoma from Different Leaf Types Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging
by Jiemin Wang, Xiaowei Han, Yuguang Zheng, Yunsheng Zhao, Wenshuai Wang, Donglai Ma and Huigai Sun
Molecules 2024, 29(17), 4251; https://doi.org/10.3390/molecules29174251 - 7 Sep 2024
Viewed by 1558
Abstract
Pinelliae Rhizoma (PR), a highly esteemed traditional Chinese medicinal herb, is widely applied in clinical settings due to its diverse pharmacological effects, including antitussive, expectorant, antiemetic, sedative-hypnotic, and antitumor activities. Pinellia ternata exhibits morphological variation in its leaves, with types resembling peach, bamboo, [...] Read more.
Pinelliae Rhizoma (PR), a highly esteemed traditional Chinese medicinal herb, is widely applied in clinical settings due to its diverse pharmacological effects, including antitussive, expectorant, antiemetic, sedative-hypnotic, and antitumor activities. Pinellia ternata exhibits morphological variation in its leaves, with types resembling peach, bamboo, and willow leaves. However, the chemical composition differences among the corresponding rhizomes of these leaf phenotypes remain unelucidated. This pioneering research employed Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging (MALDI-MSI) to conduct the in situ identification and spatial profiling of 35 PR metabolites in PR, comprising 12 alkaloids, 4 organic acids, 12 amino acids, 5 flavonoids, 1 sterol, and 1 anthraquinone. Our findings revealed distinct spatial distribution patterns of secondary metabolites within the rhizome tissues of varying leaf types. Orthogonal Partial Least Squares Discriminant Analysis (OPLS-DA) effectively differentiated between rhizomes associated with different leaf morphologies. Furthermore, this study identified five potential differential biomarkers—methylophiopogonanone B, inosine, cytidine, adenine, and leucine/isoleucine—that elucidate the biochemical distinctions among leaf types. The precise tissue-specific localization of these secondary metabolites offers compelling insights into the specialized accumulation of bioactive compounds in medicinal plants, thereby enhancing our comprehension of PR’s therapeutic potential. Full article
Show Figures

Figure 1

40 pages, 1910 KiB  
Review
Anthriscus sylvestris—Noxious Weed or Sustainable Source of Bioactive Lignans?
by Sanja Berežni, Neda Mimica-Dukić, Gianniantonio Domina, Francesco Maria Raimondo and Dejan Orčić
Plants 2024, 13(8), 1087; https://doi.org/10.3390/plants13081087 - 12 Apr 2024
Cited by 3 | Viewed by 2421
Abstract
Anthriscus sylvestris (L.) Hoffm. (Apiaceae), commonly known as wild chervil, has gained scientific interest owing to its diverse phytochemical profile and potential therapeutic applications. The plant, despite being categorized as a noxious weed, is traditionally used in treating various conditions like headaches, dressing [...] Read more.
Anthriscus sylvestris (L.) Hoffm. (Apiaceae), commonly known as wild chervil, has gained scientific interest owing to its diverse phytochemical profile and potential therapeutic applications. The plant, despite being categorized as a noxious weed, is traditionally used in treating various conditions like headaches, dressing wounds, and as a tonic, antitussive, antipyretic, analgesic, and diuretic. Its pharmacological importance stems from containing diverse bioactive lignans, especially aryltetralins and dibenzylbutyrolactones. One of the main compounds of A. sylvestris, deoxypodophyllotoxin, among its wide-ranging effects, including antitumor, antiproliferative, antiplatelet aggregation, antiviral, anti-inflammatory, and insecticidal properties, serves as a pivotal precursor to epipodophyllotoxin, crucial in the semisynthesis of cytostatic agents like etoposide and teniposide. The main starting compound for these anticancer medicines was podophyllotoxin, intensively isolated from Sinopodophyllum hexandrum, now listed as an endangered species due to overexploitation. Since new species are being investigated as potential sources, A. sylvestris emerges as a highly promising candidate owing to its abundant lignan content. This review summarizes the current knowledge on A. sylvestris, investigating its biological and morphological characteristics, and pharmacological properties. Emphasizing the biological activities and structure–activity relationship, this review underscores its therapeutic potential, thus encouraging further exploration and utilization of this valuable plant resource. Full article
Show Figures

Figure 1

15 pages, 2895 KiB  
Article
Pharmacokinetic Analysis of Levodropropizine and Its Potential Therapeutic Advantages Considering Eosinophil Levels and Clinical Indications
by Ji-Hun Jang, Young-Jin Cho and Seung-Hyun Jeong
Pharmaceuticals 2024, 17(2), 234; https://doi.org/10.3390/ph17020234 - 10 Feb 2024
Cited by 2 | Viewed by 4606
Abstract
Levodropropizine is a non-narcotic, non-centrally acting antitussive that inhibits the cough reflex triggered by neuropeptides. Despite the active clinical application of levodropropizine, the exploration of its inter-individual pharmacokinetic diversity and of factors that can interpret it is lacking. The purpose of this study [...] Read more.
Levodropropizine is a non-narcotic, non-centrally acting antitussive that inhibits the cough reflex triggered by neuropeptides. Despite the active clinical application of levodropropizine, the exploration of its inter-individual pharmacokinetic diversity and of factors that can interpret it is lacking. The purpose of this study was to explore effective covariates associated with variation in the pharmacokinetics of levodropropizine within the population and to perform an interpretation of covariate correlations from a therapeutic perspective. The results of a levodropropizine clinical trial conducted on 40 healthy Korean men were used in this pharmacokinetic analysis, and the calculated pharmacokinetic and physiochemical parameters were screened for effective correlations between factors through heatmap and linear regression analysis. Along with basic compartmental modeling, a correlation analysis was performed between the model-estimated parameter values and the discovered effective candidate covariates for levodropropizine, and the degree of toxicity and safety during the clinical trial of levodropropizine was quantitatively monitored, targeting the hepatotoxicity screening panel. As a result, eosinophil level and body surface area (BSA) were explored as significant (p-value < 0.05) physiochemical parameters associated with the pharmacokinetic diversity of levodropropizine. Specifically, it was confirmed that as eosinophil level and BSA increased, levodropropizine plasma exposure increased and decreased, respectively. Interestingly, changes in an individual’s plasma exposure to levodropropizine depending on eosinophil levels could be interpreted as a therapeutic advantage based on pharmacokinetic benefits linked to the clinical indications for levodropropizine. This study presents effective candidate covariates that can explain the inter-individual pharmacokinetic variability of levodropropizine and provides a useful perspective on the first-line choice of levodropropizine in the treatment of inflammatory respiratory diseases. Full article
(This article belongs to the Section Biopharmaceuticals)
Show Figures

Graphical abstract

21 pages, 3291 KiB  
Review
The Noscapine Saga: Unravelling a Valuable Jewel from a Poppy Pod—Past, Present and Future
by Anjali Priyadarshani, Rishit Bhatia and Muniba Shan
Psychoactives 2024, 3(1), 1-21; https://doi.org/10.3390/psychoactives3010001 - 10 Jan 2024
Cited by 2 | Viewed by 4585
Abstract
Noscapine is a naturally occurring alkaloid isolated from Papaver somniferum, commonly known as opium poppy or bread seed poppy. It edges over other opioids as it lacks addictive, sedative or euphoric effects. This review chronicles the saga of endeavours with noscapine, from [...] Read more.
Noscapine is a naturally occurring alkaloid isolated from Papaver somniferum, commonly known as opium poppy or bread seed poppy. It edges over other opioids as it lacks addictive, sedative or euphoric effects. This review chronicles the saga of endeavours with noscapine, from modest efforts in the mid-1950s to its present anticancer potential and futuristic hope in combating COVID-19. We comprehensively searched for publications including noscapine- and noscapinoid-relevant keywords in different electronic databases such as PubMed, Google Scholars, Elsevier, Springer Link and Science Direct up to June 2023. We excluded those in a language other than English. Noscapine has long been used as an antitussive and suppresses coughing by reducing the activity of the cough centre in the brain. A great number of water-soluble noscapine analogues have been found to be impressive microtubule-interfering agents with a superior antiproliferative activity, inhibiting the proliferation of cancer cell lines with more potency than noscapine and bromo-noscapine. With enhanced drug delivery systems, noscapine has exerted significant therapeutic efficacy in animal models of Parkinson’s disease, polycystic ovary syndrome, multiple sclerosis and other disorders. Furthermore, the merit of noscapine in crossing the blood–brain barrier makes it a putative candidate agent against neurodegenerative and psychiatric diseases. Its long safety record, widespread availability and ease of administration make it an ideal candidate for fighting several life-threatening conditions. Recent promising docking studies onnoscapine with main protease (Mpro) of SARS-CoV-2 paves the way for combinatorial drug therapy with anti-viral drugs and is hopeful in fighting and triumphing over any future COVID-19 pandemic. Full article
Show Figures

Figure 1

16 pages, 2955 KiB  
Article
Identification of Anti-Inflammatory Compounds from Peucedanum praeruptorum Roots by Using Nitric Oxide-Producing Rat Hepatocytes Stimulated by Interleukin 1β
by Hiromu Ozaki, Yuto Nishidono, Airi Fujii, Tetsuya Okuyama, Kaito Nakamura, Takanori Maesako, Saki Shirako, Richi Nakatake, Ken Tanaka, Yukinobu Ikeya and Mikio Nishizawa
Molecules 2023, 28(13), 5076; https://doi.org/10.3390/molecules28135076 - 28 Jun 2023
Cited by 11 | Viewed by 2161
Abstract
The roots of Peucedanum praeruptorum Dunn and Angelica decursiva Franchet et Savatier are designated Zenko, which is a crude drug defined by the Japanese Pharmacopoeia. This crude drug is used as an antitussive and an expectorant and is included in the Kampo [...] Read more.
The roots of Peucedanum praeruptorum Dunn and Angelica decursiva Franchet et Savatier are designated Zenko, which is a crude drug defined by the Japanese Pharmacopoeia. This crude drug is used as an antitussive and an expectorant and is included in the Kampo formula Jinsoin, which improves cough, fever, and headache. Although the anti-inflammatory effects of this crude drug have been determined, the constituents responsible for this effect remain unknown. To investigate biologically active compounds, rat hepatocytes were used, which produce proinflammatory mediator nitric oxide (NO) in response to proinflammatory cytokine interleukin 1β (IL-1β). A methanol extract of P. praeruptorum roots, which suppressed IL-1β-induced NO production, was fractionated into three crude fractions (ethyl acetate (EtOAc)-soluble, n-butanol-soluble, and water-soluble fractions) based on hydrophobicity. The EtOAc-soluble fraction markedly inhibited NO production. After this fraction was purified, three biologically active compounds were identified as praeruptorins A, B, and E, the contents of which were high. A comparison of their activities indicated that praeruptorin B exhibited the highest potency to inhibit NO production by decreasing inducible NO synthase expression and suppressed the expression of mRNAs encoding proinflammatory cytokines. Collectively, the three praeruptorins may primarily contribute to the anti-inflammatory effects of P. praeruptorum roots. Full article
Show Figures

Figure 1

15 pages, 2200 KiB  
Article
Post-Ripening and Key Glycosyltransferase Catalysis to Promote Sweet Mogrosides Accumulation of Siraitia grosvenorii Fruits
by Shengrong Cui, Yimei Zang, Lei Xie, Changming Mo, Jiaxian Su, Xunli Jia, Zuliang Luo and Xiaojun Ma
Molecules 2023, 28(12), 4697; https://doi.org/10.3390/molecules28124697 - 11 Jun 2023
Cited by 7 | Viewed by 2657
Abstract
Sweet mogrosides are not only the primary bioactive ingredient in Siraitia grosvenorii fruits that exhibit anti-tussive properties and expectorate phlegm, but they are also responsible for the fruit’s sweetness. Increasing the content or proportion of sweet mogrosides in Siraitia grosvenorii fruits is significant [...] Read more.
Sweet mogrosides are not only the primary bioactive ingredient in Siraitia grosvenorii fruits that exhibit anti-tussive properties and expectorate phlegm, but they are also responsible for the fruit’s sweetness. Increasing the content or proportion of sweet mogrosides in Siraitia grosvenorii fruits is significant for improving their quality and industrial production. Post-ripening is an essential step in the post-harvest processing of Siraitia grosvenorii fruits, but the underlying mechanism and condition of post-ripening on Siraitia grosvenorii quality improvement need to be studied systematically. Therefore, this study analyzed the mogroside metabolism in Siraitia grosvenorii fruits under different post-ripening conditions. We further examined the catalytic activity of glycosyltransferase UGT94-289-3 in vitro. The results showed that the post-ripening process of fruits could catalyze the glycosylation of bitter-tasting mogroside IIE and III to form sweet mogrosides containing four to six glucose units. After ripening at 35 °C for two weeks, the content of mogroside V changed significantly, with a maximum increase of 80%, while the increase in mogroside VI was over twice its initial amount. Furthermore, under the suitable catalytic condition, UGT94-289-3 could efficiently convert the mogrosides with less than three glucose units into structurally diverse sweet mogrosides, i.e., with mogroside III as the substrate, 95% of it can converted into sweet mogrosides. These findings suggest that controlling the temperature and related catalytic conditions may activate UGT94-289-3 and promote the accumulation of sweet mogrosides. This study provides an effective method for improving the quality of Siraitia grosvenorii fruits and the accumulation of sweet mogrosides, as well as a new economical, green, and efficient method for producing sweet mogrosides. Full article
Show Figures

Figure 1

22 pages, 2380 KiB  
Review
Extraction, Purification, Structural Characteristics, Biological Activities, and Applications of the Polysaccharides from Zingiber officinale Roscoe. (Ginger): A Review
by Wenjing Hu, Aiqi Yu, Shuang Wang, Qianxiang Bai, Haipeng Tang, Bingyou Yang, Meng Wang and Haixue Kuang
Molecules 2023, 28(9), 3855; https://doi.org/10.3390/molecules28093855 - 2 May 2023
Cited by 30 | Viewed by 7811
Abstract
Zingiber officinale Roscoe. (ginger) is a widely distributed plant with a long history of cultivation and consumption. Ginger can be used as a spice, condiment, food, nutrition, and as an herb. Significantly, the polysaccharides extracted from ginger show surprising and satisfactory biological activity, [...] Read more.
Zingiber officinale Roscoe. (ginger) is a widely distributed plant with a long history of cultivation and consumption. Ginger can be used as a spice, condiment, food, nutrition, and as an herb. Significantly, the polysaccharides extracted from ginger show surprising and satisfactory biological activity, which explains the various benefits of ginger on human health, including anti-influenza, anti-colitis, anti-tussive, anti-oxidant, anti-tumor effects. Here, we systematically review the major studies on the extraction and purification of polysaccharides from ginger in recent years, the characterization of their chemical structure, biological activity, and structure–activity relationships, and the applications of ginger polysaccharides in different fields. This article will update and deepen the understanding of ginger polysaccharide and provide a theoretical basis for its further research and application in human health and product development. Full article
(This article belongs to the Special Issue Food Polysaccharides: Structure, Properties and Application II)
Show Figures

Graphical abstract

14 pages, 1284 KiB  
Review
Adansonia digitata L. (Baobab) Bioactive Compounds, Biological Activities, and the Potential Effect on Glycemia: A Narrative Review
by Maria Leonor Silva, Keyla Rita, Maria Alexandra Bernardo, Maria Fernanda de Mesquita, Ana Maria Pintão and Margarida Moncada
Nutrients 2023, 15(9), 2170; https://doi.org/10.3390/nu15092170 - 1 May 2023
Cited by 27 | Viewed by 8415
Abstract
Adansonia digitata L. fruit, also known as baobab, has been used traditionally throughout the world for its medicinal properties. Ethnopharmacological uses of various plant parts have been reported for hydration, antipyretic, antiparasitic, antitussive, and sudorific properties and also in the treatment of diarrhea [...] Read more.
Adansonia digitata L. fruit, also known as baobab, has been used traditionally throughout the world for its medicinal properties. Ethnopharmacological uses of various plant parts have been reported for hydration, antipyretic, antiparasitic, antitussive, and sudorific properties and also in the treatment of diarrhea and dysentery in many African countries. Several studies have revealed that in addition to these applications, baobab has antioxidant, anti-inflammatory, analgesic, and antimicrobial activities. The health benefits of baobab have been attributed to its bioactive compounds, namely phenols, flavonoids, proanthocyanins, tannins, catechins, and carotenoids. Baobab fruit is also an important source of vitamin C and micronutrients, including zinc, potassium, magnesium, iron, calcium, and protein, which may reduce nutritional deficiencies. Despite scientific studies revealing that this fruit has a wide diversity of bioactive compounds with beneficial effects on health, there is a gap in the review of information about their mechanisms of action and critical analysis of clinical trials exploring, in particular, their effect on glycemia regulation. This work aims to present a current overview of the bioactive compounds, biological activities, and effects of A. digitata fruit on blood glucose, highlighting their potential mechanisms of action and effects on glycemia regulation, evaluated in recent animal and human trials. Full article
(This article belongs to the Special Issue Personalized Nutrition for Older Adults)
Show Figures

Figure 1

19 pages, 4361 KiB  
Review
Biotransformation of Platycosides, Saponins from Balloon Flower Root, into Bioactive Deglycosylated Platycosides
by Kyung-Chul Shin and Deok-Kun Oh
Antioxidants 2023, 12(2), 327; https://doi.org/10.3390/antiox12020327 - 31 Jan 2023
Cited by 10 | Viewed by 3909
Abstract
Platycosides, saponins from balloon flower root (Platycodi radix), have diverse health benefits, such as antioxidant, anti-inflammatory, anti-tussive, anti-cancer, anti-obesity, anti-diabetes, and whitening activities. Deglycosylated platycosides, which show greater biological effects than glycosylated platycosides, are produced by the hydrolysis of glycoside moieties in glycosylated [...] Read more.
Platycosides, saponins from balloon flower root (Platycodi radix), have diverse health benefits, such as antioxidant, anti-inflammatory, anti-tussive, anti-cancer, anti-obesity, anti-diabetes, and whitening activities. Deglycosylated platycosides, which show greater biological effects than glycosylated platycosides, are produced by the hydrolysis of glycoside moieties in glycosylated platycosides. In this review, platycosides are classified according to the chemical structures of the aglycone sapogenins and also divided into natural platycosides, including major, minor, and rare platycosides, depending on the content in Platycodi radix extract and biotransformed platycosides. The biological activities of platycosides are summarized and methods for deglycosylation of saponins, including physical, chemical, and biological methods, are introduced. The biotransformation of glycosylated platycosides into deglycosylated platycosides was described based on the hydrolytic pathways of glycosides, substrate specificity of glycosidases, and specific productivities of deglycosylated platycosides. Methods for producing diverse and/or new deglycosylated platycosides are also proposed. Full article
(This article belongs to the Section Natural and Synthetic Antioxidants)
Show Figures

Figure 1

15 pages, 2684 KiB  
Article
UHPLC-Q-Exactive Orbitrap MS/MS-Based Untargeted Metabolomics and Molecular Networking Reveal the Differential Chemical Constituents of the Bulbs and Flowers of Fritillaria thunbergii
by Xin Li, Pan Wang, Yingpeng Tong, Jie Liu and Guowei Shu
Molecules 2022, 27(20), 6944; https://doi.org/10.3390/molecules27206944 - 16 Oct 2022
Cited by 21 | Viewed by 4303
Abstract
Both the bulbs and flowers of Fritillaria thunbergii Miq. (BFT and FFT) are widely applied as expectorants and antitussives in traditional Chinese medicine, but few studies have been conducted to compare the chemical compositions of these plant parts. In this study, 50% methanol [...] Read more.
Both the bulbs and flowers of Fritillaria thunbergii Miq. (BFT and FFT) are widely applied as expectorants and antitussives in traditional Chinese medicine, but few studies have been conducted to compare the chemical compositions of these plant parts. In this study, 50% methanol extracts of BFT and FFT were analyzed via UHPLC-Q-Exactive Orbitrap MS/MS, and the feasibility of using non-targeted UHPLC-HRMS metabolomics and molecular networking to address the authentication of bulb and flower samples was evaluated. Principal component analysis (PCA), Orthogonal Partial Least Squares-Discriminant Analysis (OPLS-DA), and heat map analysis showed there were dissimilar metabolites in BFT and FFT. As a result, 252 and 107 peaks in positive ion mode and negative mode, respectively, were considered to represent significant difference variables between BFT and FFT. Then, MS/MS-based molecular networking of BFT and FFT was constructed to perform an in-depth characterization of the peaks using different variables. A total of 31 alkaloids with significant differences were annotated in this paper, including seven cis-D/E-vevanine without C20-OH and one trans-D/E-cevanine with C20-OH, thirteen trans-D/E-cevanine without C20-OH, five cevanine N-oxide, and five veratramine. Among the 31 alkaloids, eight alkaloids had higher FFT than BFT contents, while all the flavonoids identified in our work had greater FFT than BFT contents. The influence of different ingredients on the pharmacological activities of BFT and FFT should be investigated in future studies. Full article
Show Figures

Figure 1

21 pages, 2686 KiB  
Review
A Review of the Phytochemistry and Pharmacology of the Fruit of Siraitia grosvenorii (Swingle): A Traditional Chinese Medicinal Food
by Juanjiang Wu, Yuqing Jian, Huizhen Wang, Huaxue Huang, Liming Gong, Genggui Liu, Yupei Yang and Wei Wang
Molecules 2022, 27(19), 6618; https://doi.org/10.3390/molecules27196618 - 5 Oct 2022
Cited by 42 | Viewed by 7115
Abstract
Siraitia grosvenorii (Swingle) C. Jeffrey ex Lu et Z. Y. Zhang is a unique economic and medicinal plant of Cucurbitaceae in Southern China. For hundreds of years, Chinese people have used the fruit of S. grosvenorii as an excellent natural sweetener and traditional [...] Read more.
Siraitia grosvenorii (Swingle) C. Jeffrey ex Lu et Z. Y. Zhang is a unique economic and medicinal plant of Cucurbitaceae in Southern China. For hundreds of years, Chinese people have used the fruit of S. grosvenorii as an excellent natural sweetener and traditional medicine for lung congestion, sore throat, and constipation. It is one of the first species in China to be classified as a medicinal food homology, which has received considerable attention as a natural product with high development potential. Various natural products, such as triterpenoids, flavonoids, amino acids, and lignans, have been released from this plant by previous phytochemical studies. Phar- macological research of the fruits of S. grosvenorii has attracted extensive attention, and an increasing number of extracts and compounds have been demonstrated to have antitussive, expectorant, antiasthmatic, antioxidant, hypoglycemic, immunologic, hepatoprotective, antibacte- rial, and other activities. In this review, based on a large number of previous studies, we summarized the related research progress of the chemical components and pharmacological effects of S. grosvenorii, which provides theoretical support for further investigation of its biological functions and potential clinical applications. Full article
Show Figures

Figure 1

6 pages, 282 KiB  
Proceeding Paper
Effect of the Type of Thermal Treatment on the Nutritional and Nutraceutical Characteristics of Pacaya Inflorescences (Chamaedorea tepejilote Liebm)
by Pedro Mancera-Castro, Aurea Bernardino-Nicanor, José Mayolo Simitrio Juárez-Goiz, Gerardo Teniente-Martínez and Leopoldo González-Cruz
Biol. Life Sci. Forum 2022, 18(1), 36; https://doi.org/10.3390/Foods2022-13015 - 30 Sep 2022
Cited by 4 | Viewed by 1275
Abstract
Chamaedorea tepejilote Liebm is a palm native to the south of Mexico and Central America. In Mexico, the male inflorescences are roasted, fried, boiled, or accompanied by other ingredients to decrease their bitter aftertaste, and they can be consumed by the inhabitants. However, [...] Read more.
Chamaedorea tepejilote Liebm is a palm native to the south of Mexico and Central America. In Mexico, the male inflorescences are roasted, fried, boiled, or accompanied by other ingredients to decrease their bitter aftertaste, and they can be consumed by the inhabitants. However, it has been observed that raw inflorescences have hypoglycemic, antitussive, and antimicrobial potentials, but the thermal treatment effect in these activities has not been studied; for this reason, this study evaluated the impact of three thermal treatments (hydrothermal (HP), steaming at elevated pressure (SEP), and microwave (MW)) on the nutritional and nutraceutical characteristics of Pacaya inflorescences; inflorescences without thermal treatment (WTT) were considered as the control. In the nutritional characterization, only the protein content was the fraction that increased significantly (p < 0.05) when thermal treatment was applied. On the other hand, all thermal treatments significantly modified (p < 0.05) the chlorophyll “a” content (HP reduced 0.59-fold; SEP and MW increased 0.07-0.25-fold), and chlorophyll “b” decreased. A significant (p < 0.05) carotenoids content increase in all thermally treated samples (between 0.80-fold and 8.73-fold) and total phenolic compounds (between 7.75-fold and 8.16-fold) compared to the WTT samples was observed. Microwave cooking was the only thermal treatment that significantly (p < 0.05) increased (0.97-fold) the antioxidant activity in the DPPH radical. HP (14.11%) and SEP (18.20%) significantly (p < 0.05) reduced the dipeptidyl peptidase-IV enzyme inhibition when compared to WTT (24.42%). These changes have been associated with the partial loss, destruction, or denaturalization of cell walls’ proteins, lipids, or cellulose, causing the liberating or creation of compounds with nutritional and nutraceutical activity. Full article
19 pages, 1957 KiB  
Article
Polyphenolic Profiling, Antioxidant, and Antimicrobial Activities Revealed the Quality and Adaptive Behavior of Viola Species, a Dietary Spice in the Himalayas
by Rishabh Kaundal, Manish Kumar, Subhash Kumar, Dharam Singh and Dinesh Kumar
Molecules 2022, 27(12), 3867; https://doi.org/10.3390/molecules27123867 - 16 Jun 2022
Cited by 23 | Viewed by 3744
Abstract
Background: Himalayan Viola species (Banksha) are traditionally important herbs with versatile therapeutic benefits such as antitussive, analgesic, antipyretic, antimalarial, anti-inflammatory, and anticancerous ones. The current investigation was focused on exploring polyphenolic profiles, antioxidant, and antimicrobial potentials of wild viola species at 15 gradient [...] Read more.
Background: Himalayan Viola species (Banksha) are traditionally important herbs with versatile therapeutic benefits such as antitussive, analgesic, antipyretic, antimalarial, anti-inflammatory, and anticancerous ones. The current investigation was focused on exploring polyphenolic profiles, antioxidant, and antimicrobial potentials of wild viola species at 15 gradient locations (375–1829 m). Methods: Morphological, physiochemical, and proximate analyses were carried out as per WHO guidelines for plant drug standardization. Total polyphenolic and flavonoid content were carried out using gallic acid and rutin equivalent. UPLC-DAD was used to profile the targeted polyphenols (gallic acid, vanillic acid, syringic acid, p-coumaric acid, ferulic acid, rutin, quercetin, luteolin, caffeic acid, and epicatechin). Similarly, all samples were screened for antioxidant and antimicrobial activity. Statistical analysis was used to correlate polyphenolic and targeted activities to assess Viola species adaptation behavior patterns. Results: Viola canescens (V. canescens) and Viola pilosa (V. pilosa) were found abundantly at their respective sites. Among flowers and leaves, flowers of V. canescens and V. pilosa showed higher total polyphenolic and flavonoid content (51.4 ± 1.13 mg GAE/g and 65.05 ± 0.85 mg RE/g, and 33.26 ± 0.62 mg GAE/g and 36.10 ± 1.41 mg RE/g, respectively). Furthermore, UPLC-DAD showed the uppermost content of p-coumaric acid in flowers and ferulic acid in leaves, while rutin was significant in both the tissues. Conclusions: The adaptive behavior of Viola species showed variability in morphological characters with the altitudes, while targeted polyphenols and activities were significant at mid-altitudes. This research helps in the selection of right chemotype for agrotechnological interventions and the development of nutraceutical products. Full article
Show Figures

Graphical abstract

Back to TopTop