Spatial Metabolomic Profiling of Pinelliae Rhizoma from Different Leaf Types Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging
Abstract
:1. Introduction
2. Results
2.1. Comparative Analysis of Main Agronomic Traits and MALDI-TOF MS Investigation of PR
2.2. MALDI-MSI Analysis of Alkaloid Distribution in PRs
2.3. Distribution of Organic Acids in PRs
2.4. MALDI-MSI Imaging of Amino Acids in PRs
2.5. MALDI-MSI Imaging of Flavonoids and Other Metabolites in PRs
2.6. Chemical Composition Analysis of PRs with Various Leaf Types
2.7. Heat Map Analysis of PR Compounds
2.8. Quantitative Analysis of PRs
2.9. OPLS-DA Analysis of Eight Alkaloidal Components in PRs
3. Discussion
4. Materials and Methods
4.1. Reagents and Materials
4.2. Determination of Rhizome Rresh Weight and Leaf Area Measurement
4.3. Tissue Sectioning
4.4. Matrix Application
4.5. MALDI-MSI Analysis
4.6. Data Analysis
4.7. Extraction and Quantification of Eight Alkaloids by HPLC
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Chinese Pharmacopoeia Commission. Pharmacopoeia of the People’s Republic of China; China Medical Science Press: Beijing, China, 2020; Volume I, p. 123. [Google Scholar]
- Zhang, C.; Zhang, Q.H.; Luo, M.; Wang, Q.P.; Wu, X.M. Bacillus cereus WL08 immobilized on tobacco stem charcoal eliminates butylated hydroxytoluene in soils and alleviates the continuous cropping obstacle of Pinellia ternata. J. Hazard. Mater. 2023, 450, 131091. [Google Scholar] [CrossRef] [PubMed]
- Chen, C.; Sun, Y.T.; Wang, Z.J.; Huang, Z.H.; Zou, Y.Q.; Yang, F.F.; Hu, J.; Cheng, H.J.; Shen, C.J.; Wang, S.L. Pinellia genus: A systematic review of active ingredients, pharmacological effects and action mechanism, toxicological evaluation, and multi-omics application. Gene 2023, 870, 147426. [Google Scholar] [CrossRef] [PubMed]
- Zou, T.; Wang, J.; Wu, X.; Yang, K.; Zhang, Q.; Wang, C.L.; Wang, X.; Zhao, C.B. A review of the research progress on Pinellia ternata (Thunb.) Breit.: Botany, traditional uses, phytochemistry, pharmacology, toxicity and quality control. Heliyon 2023, 9, e22153. [Google Scholar] [CrossRef] [PubMed]
- Yang, X. Study on the Influence on the Quality of Different Processing Methods of Pinellia ternate and Genetic Diversity and Quality of Pinellia ternata of Different Leaf Types. Master’s Thesis, Chengdu University of Traditional Chinese Medicine, Chengdu, China, May 2013. [Google Scholar]
- Jing, Y. Study on Three Standards of Pinellia ternate and the Correlation between Genetic Material and Quality of Different Leaf Types. Ph.D. Thesis, Chengdu University of Traditional Chinese Medicine, Chengdu, China, May 2019. [Google Scholar]
- Chen, P.; Li, C.; Liang, S.P.; Song, G.Q.; Sun, Y.; Shi, Y.H.; Xu, S.L.; Zhang, J.W.; Sheng, S.Q.; Yang, Y.M.; et al. Characterization and quantification of eight water-soluble constituents in tubers of Pinellia ternata and in tea granules from the Chinese multiherb remedy Xiaochaihu-tang. J. Chromatogr. 2006, 843, 183–193. [Google Scholar] [CrossRef]
- Wu, Y.Y.; Huang, X.X.; Zhang, M.Y.; Zhou, L.; Li, D.Q.; Cheng, Z.Y.; Li, L.Z.; Peng, Y.; Song, S.J. Chemical constituents from the tubers of Pinellia ternata (Araceae) and their chemotaxonomic interest. Biochem. Syst. Ecol. 2015, 62, 236–240. [Google Scholar] [CrossRef]
- Du, J.; Ding, J.; Mu, Z.Q.; Guan, S.H.; Cheng, C.R.; Liu, X.; Guo, D.A. Three new alkaloids isolated from the stem tuber of Pinellia pedatisecta. Chin. J. Nat. Med. 2018, 16, 139–142. [Google Scholar] [CrossRef]
- Peng, W.; Li, N.; Jiang, E.C.; Zhang, C.; Huang, Y.L.; Tan, L.; Chen, R.Y.; Wu, C.J.; Huang, Q.W. A review of traditional and current processing methods used to decrease the toxicity of the rhizome of Pinellia ternata in traditional Chinese medicine. J. Ethnopharmacol. 2022, 299, 115696. [Google Scholar] [CrossRef]
- Li, S.P.; Chen, Y.; Liu, X.H.; Zhao, C.J.; Ya, H. Comparative analysis of the metabolites in Pinellia ternata from two producing regions using ultra-high-performance liquid chromatography-electrospray ionization-tandem mass spectrometry. Open Chem. 2023, 21, 20220287. [Google Scholar] [CrossRef]
- Sun, L.M.; Zhang, B.; Wang, Y.C.; He, H.K.; Chen, X.G.; Wang, S.J. Metabolomic analysis of raw Pinelliae Rhizoma and its alum-processed products via UPLC-MS and their cytotoxicity. Biomed. Chromatogr. 2019, 33, e4411. [Google Scholar] [CrossRef]
- Seo, C.S.; Shin, H.K. Quality assessment of traditional herbal formula, Hyeonggaeyeongyo-tang through simultaneous determination of twenty marker components by HPLC-PDA and LC-MS/MS. Saudi Pharm. J. 2020, 28, 427–439. [Google Scholar] [CrossRef]
- Savych, A.; Marchyshyn, S.; Basaraba, R.; Kryskiw, L. Determination of carboxylic acids content in the herbal mixtures by HPLC. Pharm. Sci. 2021, 2, 33–39. [Google Scholar] [CrossRef]
- Wang, S.J.; Bai, H.R.; Cai, Z.W.; Gao, D.; Jiang, Y.Y.; Liu, J.J.; Liu, H.X. MALDI imaging for the localization of saponins in root tissues and rapid differentiation of three Panax herbs. Electrophoresis 2016, 37, 1956–1966. [Google Scholar] [CrossRef]
- Nie, L.X.; Dong, J.; Huang, L.Y.; Qian, X.Y.; Lian, C.J.; Kang, S.; Dai, Z.; Ma, S.C. Microscopic mass spectrometry imaging reveals the distribution of phytochemicals in the dried root of Isatis tinctoria. Front. Pharmacol. 2021, 12, 685575. [Google Scholar] [CrossRef] [PubMed]
- Nie, L.X.; Huang, L.Y.; Wang, X.P.; Lv, L.F.; Yang, X.X.; Jia, X.F.; Kang, S.; Yao, L.W.; Dai, Z.; Ma, S.C. Desorption electrospray ionization mass spectrometry imaging illustrates the quality characters of Isatidis radix. Front. Plant Sci. 2022, 13, 897528. [Google Scholar] [CrossRef]
- Hiraoka, K.; Sakai, Y.; Kubota, H.; Ninomiya, S.; Rankin-Turner, S. An investigation of the non-selective etching of synthetic polymers by electrospray droplet impact/secondary ion mass spectrometry (EDI/SIMS). Mass Spectrom. 2023, 12, A0114. [Google Scholar] [CrossRef] [PubMed]
- Kompauer, M.; Heiles, S.; Spengler, B. Atmospheric pressure MALDI mass spectrometry imaging of tissues and cells at 1.4-μm lateral resolution. Nat. Methods 2017, 14, 90–96. [Google Scholar] [CrossRef]
- Lorensen, M.D.B.B.; Hayat, S.Y.; Wellner, N.; Bjarnholt, N.; Janfelt, C. Leaves of Cannabis sativa and their trichomes studied by DESI and MALDI mass spectrometry imaging for their contents of cannabinoids and flavonoids. Phytochem. Anal. 2023, 34, 269–279. [Google Scholar] [CrossRef]
- Zhang, G.H.; Liu, X.L.; Ma, C.X.; Li, W.H.; Wang, X. Spatial distribution characteristics of metabolites in rhizome of Paris polyphylla var. Yunnanensis: Based on MALDI-MSI. China J. Chin. Mater. Med. 2022, 47, 1222–1229. [Google Scholar] [CrossRef]
- Beck, S.; Stengel, J. Mass spectrometric imaging of flavonoid glycosides and biflavonoids in Ginkgo biloba L. Phytochemistry 2016, 130, 201–206. [Google Scholar] [CrossRef]
- Taira, S.; Ikeda, R.; Yokota, N.; Osaka, I.; Sakamoto, M.; Kato, M.; Sahashi, Y. Mass spectrometric imaging of ginsenosides localization in Panax ginseng root. Am. J. Chin. Med. 2010, 38, 485–493. [Google Scholar] [CrossRef]
- Li, M.R.; Wang, X.Y.; Han, L.F.; Jia, L.; Liu, E.W.; Li, Z.; Yu, H.H.; Wang, Y.C.; Gao, X.M.; Yang, W.Z. Integration of multicomponent characterization, untargeted metabolomics and mass spectrometry imaging to unveil the holistic chemical transformations and key markers associated with wine steaming of Ligustri lucidi Fructus. J. Chromatogr. A 2020, 1624, 461228. [Google Scholar] [CrossRef]
- Xu, N.X.; Huang, Z.H.; Watson, J.T.; Gage, D.A. Mercaptobenzothiazoles: A new class of matrices for laser desorption ionization mass spectrometry. J. Am. Soc. Mass Spectrom. 1997, 8, 116–124. [Google Scholar] [CrossRef]
- Huang, H.J.; Liu, H.Q.; Ma, W.W.; Qin, L.; Chen, L.L.; Guo, H.; Xu, H.L.; Li, J.R.; Yang, C.Y.; Hu, H.; et al. High-throughput MALDI-MSI metabolite analysis of plant tissue microarrays. Plant Biotechnol. J. 2023, 21, 2574–2584. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, S.A.; Reyzer, M.L.; Caprioli, R.M. Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: Practical aspects of sample preparation. Mass Spectrom. 2003, 38, 699–708. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Luo, M.; Miao, Y.H.; Xu, R.; Wang, M.X.; Xu, J.W.; Liu, D.H. Germplasm resources, genetic diversity, functional genes, genetic breeding, and prospects of Pinellia ternata (Thunb.) Breit: A review. Med. Plant Biol. 2023, 2, 13. [Google Scholar] [CrossRef]
- Xu, H.Y.; Wang, H.; Prentice, I.C.; Harrison, S.P.; Wang, G.X.; Sun, X.Y. Predictability of leaf traits with climate and elevation: A case study in Gongga Mountain, China. Tree Physiol. 2021, 41, 1336–1352. [Google Scholar] [CrossRef]
- Zeng, S.; Li, S.Y.; Wu, Z.J.; Huang, Y.M.; Cheng, Y.F.; Yang, Q.; Cheng, W.M.; Su, L. Ingredients-effect relationship study on antitussive and expectorant of Pinelliae Rhizoma. Mod. Chin. Med. 2013, 15, 452–455. [Google Scholar]
- Zhang, Q.L.; Gong, L.L.; Li, G.S.; Du, J.; Nie, K. Effects of alkaloids of Pinellia ternata on 5-HT3 receptor and NK1 receptor in isolated Guinea-piglleum. J. Shandong Univ. Tradit. Chin. Med. 2017, 41, 466–468. [Google Scholar]
- Han, M.H.; Yang, X.W.; Zhang, M.; Zhong, G.Y. Phytochemical study of the Rhizome of Pinellia ternata and quantification of phenylpropanoids in commercial Pinellia tuber by RP-LC. Chromatographia 2006, 64, 647–653. [Google Scholar] [CrossRef]
- Zhang, Z.H.; Li, W.J.; Lin, R.C.; Dai, Z.; Li, X.F. Isolation and structure elucidation of alkaloids from Pinellia ternate. Heterocycles 2013, 87, 637–643. [Google Scholar] [CrossRef]
- Ji, X.; Huang, B.K.; Wang, G.W.; Zhang, C.Y. The ethnobotanical, phytochemical and pharmacological profile of the genus Pinellia. Fitoterapia 2014, 93, 1–17. [Google Scholar] [CrossRef] [PubMed]
- Bai, J.; Qi, J.B.; Yang, L.; Wang, Z.T.; Wang, R.; Shi, Y.H. A comprehensive review on ethnopharmacological, phytochemical, pharmacological and toxicological evaluation, and quality control of Pinellia ternata (Thunb.) Breit. J. Ethnopharmacol. 2020, 298, 115650. [Google Scholar] [CrossRef] [PubMed]
- Lange, B.M.; Fischedick, J.T.; Lange, M.F.; Srividya, N.; Šamec, D.; Poirier, B.C. Identification and localization of specialized metabolites in Tripterygium roots. Plant Physiol. 2016, 173, 456–469. [Google Scholar] [CrossRef]
- He, H.X.; Qin, L.; Zhang, Y.W.; Han, M.M.; Li, J.M.; Liu, Y.Q.; Qiu, K.D.; Dai, X.Y.; Li, Y.Y.; Zeng, M.M.; et al. 3,4-Dimethoxycinnamic acid as a novel matrix for enhanced in situ detection and imaging of low-molecular-weight compounds in biological tissues by MALDI-MSI. Anal. Chem. 2019, 91, 2634–2643. [Google Scholar] [CrossRef]
- Huang, B.M.; Zha, Q.L.; Chen, T.B.; Xiao, S.Y.; Xie, Y.; Luo, P.; Wang, Y.P.; Liu, L.; Zhou, H. Discovery of markers for discriminating the age of cultivated ginseng by using UHPLC-QTOF/MS coupled with OPLS-DA. Phytomedicine 2018, 45, 8–17. [Google Scholar] [CrossRef]
- Ye, S.T.; Lu, H.M. Determination of fatty acids in rice oil by gas chromatography-mass spectrometry (GC-MS) with geographic and varietal discrimination by supervised orthogonal partial least squares discriminant analysis (OPLS-DA). Anal. Lett. 2022, 55, 675–687. [Google Scholar] [CrossRef]
- Trovato, M.; Funck, D.; Forlani, G.; Okumoto, S.; Amir, R. Editorial: Amino acids in plants: Regulation and functions in development and stress defense. Front. Plant Sci. 2021, 12, 772810. [Google Scholar] [CrossRef]
- Wang, L.L.; Zhou, Y.F.; Qin, Y.C.; Wang, Y.B.; Liu, B.T.; Fang, R.; Bai, M.G. Methylophiopogonanone B of Radix Ophiopogonis protects cells from H2O2-induced apoptosis through the NADPH oxidase pathway in HUVECs. Mol. Med. Rep. 2019, 20, 3691–3700. [Google Scholar] [CrossRef]
- Wang, T.T.; Gnanaprakasam, J.N.R.; Chen, X.Y.; Kang, S.W.; Xu, X.Q.; Sun, H.; Liu, L.L.; Rodgers, H.; Miller, E.; Cassel, T.A.; et al. Inosine is an alternative carbon source for CD8+-T-cell function under glucose restriction. Nat. Metab. 2020, 2, 635–647. [Google Scholar] [CrossRef]
- Nakamura, J.; Morikawa-Ichinose, T.; Fujimura, Y.; Hayakawa, E.; Takahashi, K.; Ishii, T.; Miura, D.; Wariishi, H. Spatially resolved metabolic distribution for unraveling the physiological change and responses in tomato fruit using matrix-assisted laser desorption/ionization-mass spectrometry imaging (MALDI-MSI). Anal. Bioanal. Chem. 2017, 409, 1697–1706. [Google Scholar] [CrossRef]
- Qin, L.; Zhang, Y.W.; Liu, Y.Q.; He, H.X.; Han, M.M.; Li, Y.Y.; Zeng, M.M.; Wang, X.D. Recent advances in matrix-assisted laser desorption/ionisation mass spectrometry imaging (MALDI-MSI) for in situ analysis of endogenous molecules in plants. Phytochem. Anal. 2018, 29, 351–364. [Google Scholar] [CrossRef]
- Susniak, K.; Krysa, M.; Gieroba, B.; Komaniecka, I.; Sroka-Bartnicka, A. Recent developments of MALDI MSI application in plant tissues analysis. Acta Biochim. Pol. 2020, 67, 277–281. [Google Scholar] [CrossRef]
- Mandal, B.K.; Ling, Y.C. Analysis of chlorophylls/chlorophyllins in food products using HPLC and HPLC-MS methods. Molecules 2023, 28, 4012. [Google Scholar] [CrossRef] [PubMed]
- Richard-Dazeur, C.; Jacolot, P.; Niquet-Léridon, C.; Goethals, L.; Barbezier, N.; Anton, P.M. HPLC-DAD optimization of quantification of vescalagin, gallic and ellagic acid in chestnut tannins. Heliyon 2023, 9, e18993. [Google Scholar] [CrossRef]
- Suchareau, M.; Bordes, A.; Lemée, L. Improved quantification method of crocins in saffron extract using HPLC-DAD after qualification by HPLC-DAD-MS. Food Chem. 2021, 362, 130199. [Google Scholar] [CrossRef]
- Li, D.; Qian, Y.; Yao, H.M.; Yu, W.Y.; Ma, X.X. DeepS: Accelerating 3D mass spectrometry imaging via a deep neural network. Anal. Chem. 2023, 95, 10879–10886. [Google Scholar] [CrossRef] [PubMed]
Leaf Shape | Leaf Area (cm2) | Fresh Weight of Rhizome (g) | Fresh Weight/Leaf Area (g/cm2) |
---|---|---|---|
PT | 16.379 a ± 0.154 | 1.865 a ± 0.021 | 0.114 a ± 0.000 |
BT | 13.427 b ± 0.135 | 1.383 b± 0.019 | 0.103 b ± 0.000 |
WT | 10.204 c ± 0.104 | 1.033 c ± 0.019 | 0.101 c ± 0.001 |
Classes | Formula | Adduct | Calculated Value (m/z) | Measured Value (m/z) | Error (ppm) | Preliminary Annotation |
---|---|---|---|---|---|---|
Alkaloids | C4H4N2O2 | [M+H]+ | 113.0346 | 113.035 | 4 | Uracil |
C5H5N5 | [M+H]+ | 136.0618 | 136.062 | 1 | Adenine | |
C5H4N4O | [M+H]+ | 137.0458 | 137.045 | 6 | Hydroxypurine | |
C7H7NO2 | [M+H]+ | 138.0550 | 138.054 | 7 | Trigonelline | |
C10H15N | [M+Na]+ | 172.1097 | 172.110 | 2 | 2-Pentylpyridine | |
C10H14N2O5 | [M+H]+ | 243.0975 | 243.097 | 2 | Thymidine | |
C9H13N3O5 | [M+H]+ | 244.0928 | 244.093 | 1 | Cytidine | |
C9H12N2O6 | [M+H]+ | 245.0768 | 245.077 | 1 | Uridine | |
C10H12N4O5 | [M+H]+ | 269.0880 | 269.088 | 0 | Inosine | |
C10H13N5O5 | [M+H]+ | 284.0989 | 284.099 | 0 | Guanosine | |
C17H21NO3 | [M+NH4]+ | 305.1860 | 305.188 | 7 | Piperanine | |
C21H35NO | [M+H]+ | 318.2791 | 318.279 | 0 | Funtumine | |
Organic acids | C2H2O4 | [M+Na]+ | 112.9845 | 112.985 | 4 | Oxalic acid |
C4H6O5 | [M+H]+ | 135.0288 | 135.028 | 6 | (2S)-2-Hydroxybutanedioic acid | |
C6H6O6 | [M+H]+ | 175.0237 | 175.024 | 2 | trans-Aconitic acid | |
C18H32O2 | [M+Na]+ | 303.2295 | 303.229 | 2 | Linoleic acid | |
Amino acids | C3H7NO3 | [M+H]+ | 106.0499 | 106.050 | 1 | Serine |
C4H9NO3 | [M+H]+ | 120.0655 | 120.066 | 4 | Threonine | |
C3H7NO2 | [M+K]+ | 128.0108 | 128.011 | 2 | Alanine | |
C5H9NO2 | [M+Na]+ | 138.0525 | 138.053 | 4 | Proline | |
C6H13NO2 | [M+K]+ | 170.0578 | 170.057 | 5 | Leucine/Isoleucine | |
C9H11NO3 | [M+H]+ | 182.0812 | 182.081 | 1 | Tyrosine | |
C5H9NO4 | [M+K]+ | 186.0163 | 186.016 | 2 | Glutamic acid | |
C11H9NO2 | [M+K]+ | 226.0265 | 226.026 | 2 | 3-Amino-2-naphthoic acid | |
C15H29NO3 | [M+H]+ | 272.2220 | 272.222 | 0 | N-Tridecanoylglycine | |
C11H15N5O5 | [M+H]+ | 298.1146 | 298.115 | 1 | Adenine hexose | |
C18H35NO4 | [M+K]+ | 368.2198 | 368.219 | 2 | N-Dodecoxycarbonylvaline | |
C20H37NO3 | [M+K]+ | 378.2405 | 378.241 | 1 | N-Oleoylglycine | |
Flavonoids and others | C16H12O5 | [M+H]+ | 285.0757 | 285.076 | 1 | Genkwanin |
C19H20O5 | [M+K]+ | 367.0942 | 367.094 | 1 | Methylophiopogonanone B | |
C19H16O6 | [M+K]+ | 379.0578 | 379.058 | 1 | 6-Aldehydoisoophiopogonon B | |
C21H18O11 | [M+Na]+ | 469.0741 | 469.074 | 0 | Baicalin | |
C26H28O14 | [M+Na]+ | 587.1371 | 587.137 | 0 | Apiin | |
C15H10O5 | [M+H]+ | 271.0601 | 271.060 | 0 | Emodin | |
C29H50O | [M+Na]+ | 437.3754 | 437.375 | 1 | Beta-Sitosterol |
Analyte | Linear Range/(mg·mL−1) | Regression Equation | R2 |
---|---|---|---|
Uracil | 3.2750~9.8250 | Y = 53.432 X + 1.970 | 0.9993 |
Cytidine | 2.5000~7.5000 | Y = 27.911 X + 1.502 | 0.9994 |
Uridine | 14.8750~44.6250 | Y = 52.107 X + 9.944 | 1.0000 |
Hydroxypurine | 6.6875~20.0625 | Y = 66.163 X + 10.118 | 1.0000 |
Inosine | 2.6000~7.8000 | Y = 29.816 X + 3.388 | 0.9996 |
Guanosine | 19.5000~58.5000 | Y = 43.452 X + 12.234 | 1.0000 |
Thymidine | 7.0625~21.1875 | Y = 19.523 X + 2.658 | 0.9999 |
Adenine | 13.8750~41.6250 | Y = 22.005 X − 3.414 | 0.9994 |
Sample | Uracil | Cytidine | Uridine | Hydroxypurine | Inosine | Guanosine | Thymidine | Adenine |
---|---|---|---|---|---|---|---|---|
WT | 11.579 a ± 0.121 | 163.748 b ± 0.243 | 411.560 b ± 0.324 | 140.920 b ± 0.135 | 94.946 a ± 0.095 | 340.844 b ± 0.353 | 168.039 b ± 0.131 | 824.087 a ± 0.532 |
BT | 4.091 c ± 0.074 | 147.185 c ± 0.213 | 284.880 c ± 0.233 | 102.966 c ± 0.103 | 41.596 c ± 0.043 | 271.715 c ± 0.276 | 114.799 c ± 0.094 | 622.910 c ± 0.479 |
PT | 10.284 b ± 0.132 | 247.228 a ± 0.295 | 498.725 a ± 0.325 | 171.601 a ± 0.113 | 45.621 b ± 0.046 | 481.643 a ± 0.401 | 183.231 a ± 0.152 | 804.092 b ± 0.586 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, J.; Han, X.; Zheng, Y.; Zhao, Y.; Wang, W.; Ma, D.; Sun, H. Spatial Metabolomic Profiling of Pinelliae Rhizoma from Different Leaf Types Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Molecules 2024, 29, 4251. https://doi.org/10.3390/molecules29174251
Wang J, Han X, Zheng Y, Zhao Y, Wang W, Ma D, Sun H. Spatial Metabolomic Profiling of Pinelliae Rhizoma from Different Leaf Types Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Molecules. 2024; 29(17):4251. https://doi.org/10.3390/molecules29174251
Chicago/Turabian StyleWang, Jiemin, Xiaowei Han, Yuguang Zheng, Yunsheng Zhao, Wenshuai Wang, Donglai Ma, and Huigai Sun. 2024. "Spatial Metabolomic Profiling of Pinelliae Rhizoma from Different Leaf Types Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging" Molecules 29, no. 17: 4251. https://doi.org/10.3390/molecules29174251
APA StyleWang, J., Han, X., Zheng, Y., Zhao, Y., Wang, W., Ma, D., & Sun, H. (2024). Spatial Metabolomic Profiling of Pinelliae Rhizoma from Different Leaf Types Using Matrix-Assisted Laser Desorption/Ionization Mass Spectrometry Imaging. Molecules, 29(17), 4251. https://doi.org/10.3390/molecules29174251