The Noscapine Saga: Unravelling a Valuable Jewel from a Poppy Pod—Past, Present and Future
Abstract
:1. Introduction
2. Methodology
3. Unveiling Noscapine’s Physico-Chemical Portrait
4. Nature’s Alchemy behind the Making of Noscapine into a Conqueror
5. Understanding the Pharmacology of Noscapine: Unravelling the Design of the Conqueror
6. Noscapine Analogues: Deciphering the Brigade of Noscapine
7. Noscapine’s Maiden Medicinal Role: A Remedy for Coughs
8. Noscapine’s Novel Role in Stroke Treatment: Giving an Old Cure a New Life
9. Noscapine’s Expanding Armory against Cancer
9.1. Non-Small Cell Lung Cancer
9.2. Glioblastoma
9.3. Thymic Carcinoma
9.4. Ovarian Cancer
9.5. Gastric Cancer
9.6. Colon Cancer
9.7. Breast Cancer
9.8. Prostate Cancer
10. Exploring Noscapine’s Diverse Application beyond Conventional Roles
11. SARS-CoV-2 and Noscapine
12. Discussing the Future Potential for the Noscapine Family: A Plethora of Alternatives
13. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
References
- Hogshire, J. Opium for the Masses: Harvesting Nature’s Best Pain Medication, 2nd ed.; Feral House: Port Townsend, WA, USA, 2009. [Google Scholar]
- Chen, X.; Dang, T.; Facchini, P. Noscapine comes of age. Phytochemistry 2015, 111, 7–13. [Google Scholar] [CrossRef] [PubMed]
- Aragón, P.F.; Martínez, F.E.; Márquez, E.C.; Pérez, A.; Mora, R.; Torres, L. History of Opium; Elsevier: Amsterdam, The Netherlands, 2002; Volume 1242, pp. 19–21. [Google Scholar]
- Macht, D. The history of opium and some of its preparations and alkaloids. Am. Med. Assoc. 1915, 64, 477–481. [Google Scholar] [CrossRef]
- Mishra, R.C.; Gundala, S.R.; Karna, P.; Lopus, M.; Gupta, K.K.; Nagaraju, M.; Hamelberg, D.; Tandon, V.; Panda, D.; Reid, M.D.; et al. Design, synthesis and biological evaluation of di-substituted noscapine analogs as potent and microtubule-targeted anticancer agents. Bioorg. Med. Chem. Lett. 2015, 25, 2133–2140. [Google Scholar] [CrossRef] [PubMed]
- Singh, H.; Singh, P.; Kumari, K.D.S.; Chandra, R. A review on noscapine, and its impact on heme metabolism. Curr. Drug Metab. 2013, 14, 351–360. [Google Scholar] [CrossRef] [PubMed]
- Rida, P.; LiVecche, D.; Ogden, A.; Zhou, J. The noscapine chronicle: A pharmaco-historic biography of the opiate alkaloid family and its clinical applications. Med. Res. Rev. 2015, 35, 1072–1096. [Google Scholar] [CrossRef]
- Bhimwal, T.; Puneet Priyadarshini, A. Understanding Polycystic ovary syndrome in Light of Associated Key Genes. Egypt J. Med. Hum. Genet. 2023, 24, 38. [Google Scholar] [CrossRef]
- Priyadarshani, A. Effects of opium alkaloid, noscapine in RU486 induced experimental model of polycystic ovary syndrome. Indian J. Biochem. Biophys. 2022, 59, 468–478. [Google Scholar]
- Tomar, V.; Kukreti, S.; Prakash, S.; Madan, J.; Chandra, R. Noscapine and its analogs as chemotherapeutic agent: Current updates. Curr. Top. Med. Chem. 2017, 17, 174–188. [Google Scholar] [CrossRef]
- HHenary, M.; Narayana, L.; Ahad, S.; Gundala, S.R.; Mukkavilli, R.; Sharma, V.; Owens, E.A.; Yadav, Y.; Nagaraju, M.; Hamelberg, D.; et al. Novel third-generation water-soluble noscapine analogs as superior microtubule-interfering agents with enhanced antiproliferative activity. Biochem. Pharmacol. 2014, 92, 192–205. [Google Scholar] [CrossRef]
- Madan, J.; Baruah, B.; Nagaraju, M.; Abdalla, M.; Turner, T.; Rangari, V.; Hamelberg, D.; Aneja, R. Molecular cyclo encapsulation augments solubility and improves therapeutic index of brominated noscapine in prostate cancer cells. Mol. Pharm. 2012, 9, 1470–1480. [Google Scholar] [CrossRef]
- Rahmanian-Devin, P.; Baradaran Rahimi, V.; Jaafari, M.; Golmohammadzadeh, S.; Sanei-Far, Z.; Askari, V. Noscapine, an emerging medication for different diseases: A mechanistic review. Evid.-Based Complement. Altern. Med. 2021, 2021, 8402517. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.; Facchini, P. CYP82Y1 is N-methylcanadine 1-hydroxylase, a key noscapine biosynthetic enzyme in opium poppy. J. Biol. Chem. 2014, 289, 2013–2026. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.; Facchini, P. Cloning and characterization of canadine synthase involved in noscapine biosynthesis in opium poppy. FEBS Lett. 2014, 588, 198–204. [Google Scholar] [CrossRef] [PubMed]
- Dang, T.; Chen, X.; Facchini, P. Acetylation serves as a protective group in noscapine biosynthesis in opium poppy. Nat. Chem. Biol. 2015, 11, 104–106. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Facchini, P. Short-chain dehydrogenase/reductase catalyzing the final step of noscapine biosynthesis is localized to laticifers in opium poppy. Plant J. 2014, 77, 173–184. [Google Scholar] [CrossRef]
- Dahlström, B.; Mellstrand, T.; Löfdahl, C.; Johansson, M. Pharmakokinetic properties of noscapine. Eur. J. Clin. Pharmacol. 1982, 22, 535–539. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudian, M.; Rahimi-Moghaddam, P. The anti-cancer activity of noscapine: A review. Recent Pat. Anticancer Drug Discov. 2009, 4, 92–97. [Google Scholar] [CrossRef] [PubMed]
- Ye, K.; Zhou, J.; Landen, J.; Bradbury, E.; Joshi, H. Sustained activation of p34 cdc2 is required for noscapine-induced apoptosis. J. Biol. Chem. 2001, 276, 46697–46700. [Google Scholar] [CrossRef]
- Heidari, N.; Goliaei, B.; Moghaddam, P.; Rahbar-Roshandel, N.; Mahmoudian, M. Apoptotic pathway induced by noscapine in human myelogenous leukemic cells. Anticancer Drugs 2007, 18, 1139–1147. [Google Scholar] [CrossRef]
- Pezzuto, A.; Carico, E. Role of HIF-1 in cancer progression: Novel insights. A review. Curr. Mol. Med. 2018, 18, 343–351. [Google Scholar] [CrossRef]
- Porcù, E.; Sipos, A.; Basso, G.; Hamel, E.; Bai, R.; Stempfer, V.; Udvardy, A.; Bényei, A.C.; Schmid hammer, H.; Antus, S.; et al. Novel 9′-substituted-noscapines: Synthesis with Suzuki cross-coupling, structure elucidation and biological evaluation. Eur. J. Med. Chem. 2014, 84, 476–490. [Google Scholar] [CrossRef] [PubMed]
- Tomar, R.; Sahni, A.; Chandra, R. Review of noscapine and its analogues as potential anti-cancer drugs. Mini-Rev. Org. Chem. 2018, 15, 345–363. [Google Scholar] [CrossRef]
- Karna, P.; Zughaier, S.; Pannu, V.; Simmons, R.; Narayana, S.; Aneja, R. Induction of reactive oxygen species-mediated autophagy by a novel microtubule-modulating agent. J. Biol. Chem. 2010, 285, 18737–18748. [Google Scholar] [CrossRef] [PubMed]
- Pannu, V.; Rida, P.C.G.; Ogden, A.; Clewley, R.; Cheng, A.; Karna, P.; Lopus, M.; Mishra, R.C.; Zhou, J.; Aneja, R. Induction of robust de novo centrosome amplification, high-grade spindle multipolarity and metaphase catastrophe: A novel chemotherapeutic approach. Cell Death Dis. 2012, 3, e346. [Google Scholar] [CrossRef]
- Madan, J.; Gundala, S.R.; Baruah, B.; Nagaraju, M.; Yates, C.; Turner, T.; Rangari, V.; Hamelberg, D.; Reid, M.D.; Aneja, R. Cyclodextrin complexes of reduced bromonoscapine in guar gum microspheres enhance colonic drug delivery. Mol. Pharm. 2014, 11, 4339–4349. [Google Scholar] [CrossRef]
- Naik, P.; Santoshi, S.; Rai, A.; Joshi, H. Molecular modeling and competition binding study of Br-noscapine and colchicine provides insight into noscapinoid-tubulin binding site. J. Mol. Graph Model. 2011, 29, 947–955. [Google Scholar] [CrossRef]
- Zughaier, S.; Karna, P.; Stephens, D.; Aneja, R. Potent anti-inflammatory activity of novel microtubule-modulating brominated noscapineanalogs. PLoS ONE 2010, 5, e9165. [Google Scholar] [CrossRef]
- DeBono, A.J.; Mistry, S.J.; Xie, J.; Muthiah, D.; Phillips, J.; Ventura, S.; Callaghan, R.; Pouton, C.W.; Capuano, B.; Scammells, P.J. The synthesis and biological evaluation of multifunctionalised derivatives of noscapine as cytotoxic agents. Chem. Med. Chem. 2014, 9, 399–410. [Google Scholar] [CrossRef]
- Zhou, J.; Gupta, K.; Aggarwal, S.; Aneja, R.; Chandra, R.; Panda, D.; Joshi, H.C. Brominated derivatives of noscapine are potent microtubule-interfering agents that perturb mitosis and inhibit cell proliferation. Mol. Pharmacol. 2003, 63, 799–807. [Google Scholar] [CrossRef]
- Verma, A.K.; Bansal, S.; Singh, J.; Tiwari, R.K.; Sankar, V.K.; Tandon, V.; Chandra, R. Synthesis and in vitro cytotoxicity of haloderivatives of noscapine. Bioorg. Med. Chem. 2006, 14, 6733–6736. [Google Scholar] [CrossRef]
- Aneja, R.; Miyagi, T.; Karna, P.; Ezell, T.; Shukla, D.; Vij Gupta, M.; Yateset, C.; Chinni, S.R.; Zhau, H.; Chung, L.W.K.; et al. A novel microtubule-modulating agent induces mitochondrially driven caspase dependent apoptosis via mitotic checkpoint activation in human prostate cancer cells. Eur. J. Cancer 2010, 26, 1668–1678. [Google Scholar] [CrossRef]
- Pannu, V.; Karna, P.; Sajja, H.; Shukla, D.; Aneja, R. Synergistic antimicrotubule therapy for prostate cancer. Biochem. Pharmacol. 2011, 81, 478–487. [Google Scholar] [CrossRef] [PubMed]
- Madan, J.; Pandey, R.; Jain, V.; Katare, O.; Chandra, R.; Katyal, A. Poly (ethylene)-glycol conjugated solid lipid nanoparticles of noscapinemprove biological half-life, brain delivery and efficacy in glioblastoma cells. Nanomed. Nanotechnol. Biol. Med. 2013, 9, 492–503. [Google Scholar] [CrossRef] [PubMed]
- Qi, Q.; Liu, X.; Li, S.; Joshi, H.; Ye, K. Synergistic suppression of noscapine and conventional chemotherapeutics on human glioblastoma cell growth. ActaPharmacol. Sin. 2013, 34, 930–938. [Google Scholar] [CrossRef]
- Altinoz, M.; Bilir, A.; Del Maestro, R.; Tuna, S.; Ozcan, E.; Gedikoglu, G. Noscapine and diltiazem augment taxol and radiation-induced S-phase arrest and clonogenic death of C6 glioma in vitro. Surg Neurol. 2006, 65, 478–485. [Google Scholar] [CrossRef] [PubMed]
- Jhaveri, N.; Cho, H.; Torres, S.; Wang, W.; Schönthal, A.H.; Petasis, N.A.; Louie, S.G.; Hofman, F.M.; Chen, T.C. Noscapine inhibits tumor growth in TMZ-resistant gliomas. Cancer Lett. 2001, 312, 245–252. [Google Scholar] [CrossRef]
- Erguven, M.; Bilir, A.; Yazihan, N.; Ermis, E.; Sabanci, A.; Aktas, E.; Aras, Y.; Alpman, V. Decreased therapeutic effects of noscapine combined with imatinibmesylate on human glioblastoma in vitro and the effect of midkine. Cancer Cell Int. 2011, 11, 18. [Google Scholar] [CrossRef]
- Jyoti, K.; Kaur, K.; Pandey, R.; Jain, U.; Chandra, R.; Madan, J. Inhalable nanostructured lipid particles of 9-bromo-noscapine, a tubulin-binding cytotoxic agent: Invitro and in vivo studies. J. Colloid Interface Sci. 2015, 455C, 219–230. [Google Scholar] [CrossRef]
- Ebrahimi, S.; Zareie, M.; Rostami, P.; Mahmoudian, M. Interaction of noscapine with the bradykinin mediation of the cough response. Acta Physiol. Hung. 2003, 90, 147–155. [Google Scholar] [CrossRef]
- Mooraki, A.; Jenabi, A.; Jabbari, M.; Zolfaghari, M.I.; Javanmardi, S.Z.; Mahmoudian, M.; Bastani, B. Noscapine suppresses angiotensin converting enzyme inhibitors-induced cough. Nephrology 2005, 10, 348–350. [Google Scholar] [CrossRef]
- Chandra, R.; Madan, J.; Singh, P.; Chandra, A.; Kumar, P.; Tomar, V.; Dass, S.K. Implications of nanoscale based drug delivery systems in delivery and targeting tubulin binding agent, noscapine in cancer cells. Curr. Drug Metab. 2012, 13, 1476–1483. [Google Scholar] [CrossRef]
- Altinoz, M.; Guloksuz, S.; Ozpinar, A. Immunomodifying and neuroprotective effects of noscapine: Implications for multiple sclerosis, neurodegenerative, and psychiatric disorders. Chem. Biol. Interact. 2022, 352, 109794. [Google Scholar] [CrossRef] [PubMed]
- Segal, M.S.; Goldstein, M.M.; Attinger, E.O. The use of noscapine (narcotine) as an antitussive agent. Dis. Chest 1957, 32, 305–309. [Google Scholar] [CrossRef] [PubMed]
- Mahmoudian, M.; Rezvani, M.; Rohani, M.; Benaissa, F.; Jalili, M.; Ghourchian, S. A novel effect of Noscapine on patients with massive ischemic stroke: A pseudo-randomized clinical trial. Iran J. Neurol. 2015, 14, 12. [Google Scholar] [PubMed]
- Ye, K.; Ke, Y.; Keshava, N.; Shanks, J.; Kapp, J.; Tekmal, R.; Petros, J.; Joshi, H.C. Opium alkaloid noscapine is an antitumor agent that arrests metaphase and induces apoptosis in dividing cells. Proc. Natl. Acad. Sci. USA 1998, 95, 1601–1606. [Google Scholar] [CrossRef]
- Zhou, J.; Panda, D.; Landen, J.; Wilson, L.; Joshi, H. Minor alteration of microtubule dynamics causes loss of tension across kinetochore pairs and activates the spindle checkpoint. J. Biol. Chem. 2002, 277, 17200–17208. [Google Scholar] [CrossRef]
- Jackson, T.; Chougule, M.; Ichite, N.; Patlolla, R.; Singh, M. Antitumor activity of noscapine in human non-small cell lung cancer xenograft model. CancerChemother. Pharmacol. 2008, 63, 117–126. [Google Scholar] [CrossRef]
- Li, S.; He, J.; Cao, G.; Tang, S.; Tong, Q.; Joshi, H. Noscapine induced apoptosis via downregulation of survivin in human neuroblastoma cells having wild type or null p53. PLoS ONE 2012, 7, e40076. [Google Scholar] [CrossRef]
- Chougule, M.; Patel, A.; Sachdeva, P.; Jackson, T.; Singh, M. Enhanced anticancer activity of gemcitabine in combination with noscapine via antiangiogenic and apoptotic pathway against non-small cell lung cancer. PLoS ONE 2011, 6, e27394. [Google Scholar] [CrossRef]
- Madan, J.; Pandey, R.; Jain, U.; Katare, O.; Katyal, A. Sterically stabilized gelatin microassemblies of noscapine enhance cytotoxicity, apoptosis and drug delivery in lung cancer cells. Colloids Surf. B Biointerfaces 2013, 107, 235–244. [Google Scholar] [CrossRef]
- Chougule, M.; Patel, A.; Sachdeva, P.; Jackson Singh, M. Anticancer activity of noscapine, an opioid alkaloid in combination with cisplatin in human non-small cell lung cancer. Lung Cancer 2011, 71, 271–282. [Google Scholar] [CrossRef] [PubMed]
- Ivanenkov, Y.A.; Filyaeva, K.Y.; Matniyazov, R.T.; Baymiev, A.K.; Baymiev, A.K.; Vladimirova, A.A.; Yamidanov, R.S.; Mavzyutov, A.R.; Zileeva, Z.R.; Zainullina, L.F.; et al. Antibacterial activity of noscapine analogs. Bioorg. Med. Chem. Lett. 2021, 43, 128055. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Liang, B.; Yin, J.; Li, X.; Cheng, J. Noscapine increases the sensitivity of drug-resistant ovarian cancer cell line SKOV3/DDP to cisplatin by regulating cell cycle and activating apoptotic pathways. Cell Biochem. Biophys. 2014, 72, 203–213. [Google Scholar] [CrossRef] [PubMed]
- Zhou, J.; Gupta, K.; Yao, J.; Ye, K.; Panda, D.; Giannakakou, P.; Joshi, H.C. Paclitaxel-resistant human ovarian cancer cells undergo c-Jun NH2-terminal kinase-mediated apoptosis in response to noscapine. J. Biol. Chem. 2002, 277, 39777–39785. [Google Scholar] [CrossRef] [PubMed]
- Su, W.; Huang, L.; Ao, Q.; Zhang, Q.; Tian, X.; Fang, Y.; Lu, Y. Noscapine sensitizes chemoresistant ovarian cancer cells to cisplatin through inhibition of HIF-1alpha. Cancer Lett. 2011, 305, 94–99. [Google Scholar] [CrossRef]
- Nisar, S.; Masoodi, T.; Prabhu, K.S.; Kuttikrishnan, S.; Zarif, L.; Khatoon, S.; Ali, S.; Uddin, S.; Akil, A.A.; Singh, M.; et al. Natural products as chemo-radiation therapy sensitizers in cancers. Biomed. Pharmacother. 2022, 154, 113610. [Google Scholar] [CrossRef] [PubMed]
- Aneja, R.; Vangapandu, S.; Lopus, M.; Chandra, R.; Panda, D.; Joshi, H. Development of a novel nitro-derivative of noscapine for the potential treatment of drug-resistant ovarian cancer and T-cell lymphoma. Mol. Pharmacol. 2006, 69, 1801–1809. [Google Scholar] [CrossRef]
- Newcomb, E.; Lukyanov, Y.; Alonso-Basanta, M.; Esencay, M.; Smirnova, I.; Schnee, T.; Shao, Y.; Devitt, M.L.; DavidZagzag, M.D.; McBride, W.; et al. Antiangiogenic effects of noscapine enhance radioresponse for GL261 tumors. Int. J. Radiat. Oncol. Biol. Phys. 2008, 71, 1477–1484. [Google Scholar] [CrossRef]
- Tormoehlen, L.; Pascuzzi, R. Thymoma, myasthenia gravis, and other paraneoplastic syndromes. Hematol. Oncol. Clin. N. Am. 2008, 22, 509–526. [Google Scholar] [CrossRef]
- Liu, M.; Luo, X.; Liao, F.; Lei, X.; Dong, W. Noscapine induces mitochondria mediated apoptosis in gastric cancer cells in vitro and in vivo. Cancer Chemother. Pharmacol. 2011, 67, 605–612. [Google Scholar] [CrossRef]
- Nourbakhsh, F.; Askari, V. Biological and pharmacological activities of noscapine: Focusing on its receptors and mechanisms. BioFactors 2021, 47, 975–991. [Google Scholar] [CrossRef]
- Aneja, R.; Ghaleb, A.; Zhou, J.; Yang, V.; Joshi, H. p53 and p21 determine the sensitivity of noscapine-induced apoptosis in colon cancer cells. Cancer Res. 2007, 67, 3862–3870. [Google Scholar] [CrossRef]
- Ogino, S.; Nosho, K.; Shima, K.; Baba, Y.; Irahara, N.; Kirkner, G.J.; Hazra, A.; De Vivo, I.; Giovannucci, E.L.; Meyerhardt, J.A.; et al. p21 expression in colon cancer and modifying effects of patient age and body mass index on prognosis. Cancer Epidemiol. Biomark. Prev. 2009, 18, 2513–2521. [Google Scholar] [CrossRef] [PubMed]
- Hollstein, M.; Sidransky, D.; Vogelstein, B.; Harris, C.C. p53 mutations in human cancers. Science 2010, 253, 49–53. [Google Scholar] [CrossRef] [PubMed]
- McBride, O.W.; Merry, D.; Givol, D. Gene for human p53 cellular tumor antigen is located on chromosome 17 short arm (17p13). Proc. Natl. Acad. Sci. USA 1986, 83, 130–134. [Google Scholar] [CrossRef] [PubMed]
- Tian, X.; Liu, M.; Zhu, Q.; Tan, J.; Liu, W.; Wang, Y.; Chen, W.; Zou, Y.; Cai, Y.; Han, Z.; et al. Down-regulation of liver-intestine cadherin enhances noscapine-induced apoptosis in human colon cancer cells. Expert Rev. Anticancer Gerapy. 2017, 17, 857–863. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Liu, M.; Peng, X.; Lei, X.; Zhang, J.; Dong, W. Noscapine induces mitochondria-induced apoptosis in human colon cancer cells in vivo and in vitro. Biochem. Biophys. Res. Commun. 2012, 421, 627–633. [Google Scholar] [CrossRef]
- Chougule, M.; Patel, A.; Jackson, T.; Singh, M. Antitumor activity of noscapine in combination with doxorubicin in triple negative breast cancer. PLoS ONE 2011, 6, e17733. [Google Scholar] [CrossRef]
- Madan, J.; Gundala, S.R.; Kasetti, Y.; Bharatam, P.V.; Aneja, R.; Katyal, A.; Jain, U.K. Enhanced noscapine delivery using estrogen-receptor-targeted nanoparticles for breast cancer therapy. Anticancer Drugs 2014, 25, 704–716. [Google Scholar] [CrossRef]
- Sammeta, S.M.; Wang, L.; Mutyam, S.K. Formulation approaches to improving the delivery of an antiviral drug with activity against seasonal flu. Pharm. Devel.-Opment. Technol. 2015, 20, 169–175. [Google Scholar] [CrossRef]
- Cheriyamundath, S.; Mahaddalkar, S.; Kantevari, S.; Lopus, M. Induction of acetylation and bundling of cellular microtubules by 9-(4-vinylphenyl) noscapine elicits S-phase arrest in MDA-MB-231 cells. Biomed. Pharm.-Ther. 2017, 86, 74–80. [Google Scholar] [CrossRef]
- Nambiar, N.; Nagireddy, P.K.R.; Pedapati, R.; Kantevari, S.; Lopus, M. Tubulin- and ROS-dependent anti- proliferative mechanism of a potent analogue of noscapine, N-propargylnoscapine. Life Sci. 2020, 258, 118238. [Google Scholar] [CrossRef]
- Barken, I.; Geller, J.; Rogosnitzky, M. Noscapine inhibits human prostate cancer progression and metastasis in a mouse model. Anticancer Res. 2008, 28, 3701–3704. [Google Scholar]
- Shin, J.; Lee, S.; Lee, M. Inhibitory effects of noscapine on dopamine biosynthesis in PC12 cells. Arch. Pharm. Res. 1997, 20, 510–512. [Google Scholar] [CrossRef] [PubMed]
- Priyadarshini, A.; Chuttani, K.; Mittal, G.; Bhatnagar, A. Radiolabeling, biodistribution and gamma scintigraphy of noscapine hydrochloride in normal and polycystic ovary induced rats. J. Ovarian Res. 2010, 3, 10. [Google Scholar] [CrossRef] [PubMed]
- Matthews, J.; Morgan, R.; Sleigher, C.; Frey, T. Do viruses require the cytoskeleton? Virol. J. 2013, 10, 121–125. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Sood, D.; van der Spek, P.J.; Sharma, H.S.; Chandra, R. Molecular binding mechanism and pharmacology comparative analysis of noscapine for repurposing against SARS-CoV-2 protease. J. Proteome Res. 2020, 19, 4678–4689. [Google Scholar] [CrossRef]
- Barati, S.; Feizabadi, F.; Khalaj, H.; Sheikhzadeh, H.; Jamaati, H.R.; Farajidavar, H.; Dastan, F. Evaluation of noscapine-licorice combination effects on cough relieving in COVID-19 outpatients: A randomized controlled trial. Front. Pharmacol. 2023, 14, 1102940. [Google Scholar] [CrossRef]
- Kumar, D.; Kumari, K.; Jayaraj, A.; Kumar, V.; Kumar, R.V.; Dass, S.K.; Chandra, R.; Singh, P. Understanding the binding affinity of noscapines with protease of SARS-CoV-2 for COVID-19 using MD simulations at different temperatures. J. Biomol. Struct. Dyn. 2021, 39, 2659–2672. [Google Scholar] [CrossRef]
- Kumar, N.; Awasthi, A.; Kumari, A.; Sood, D.; Jain, P.; Singh, T.; Sharma, N.; Grover, A.; Chandra, R. Antitussive noscapine and antiviral drug conjugates as arsenal against COVID-19: A comprehensivechemoinformatics analysis. J. Biomol. Struct. Dyn. 2022, 40, 101–116. [Google Scholar] [CrossRef]
- Winter, C.; Flataker, L. Toxicity studies on noscapine. Toxicol. Appl. Pharmacol. 1961, 3, 96–106. [Google Scholar] [CrossRef] [PubMed]
- Mitchell, I.; Carlton, J.; Chan, M.; Robinson, A.; Sunderland, J. Noscapine-induced polyploidy in vitro. Mutagenesis 1991, 6, 479–486. [Google Scholar] [CrossRef] [PubMed]
- Sneyd, J. Papaveretum in women of childbearing potential. Brit. Med. J. 1991, 303, 852. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.F.; Gong, Y.; Wu, M.; Yang, X.; Xiong, L.; Chen, S.; Xiao, Z.; Li, Y.; Zhang, L.; Zan, W.; et al. Exploring the mechanism of action of licorice in the treatment of COVID-19 through bioinformatics analysis and molecular dynamics simulation. Front. Pharmacol. 2022, 13, 1003310. [Google Scholar] [CrossRef]
- Verma, A.; Jha, R.R.; Chaudhary, R.; Tiwari, R.; Danodia, A.K. 2-(1-Benzotriazolyl) pyridine: A Robust Bidentate Ligand for the Palladium-Catalyzed C C (Suzuki, Heck, Fujiwara–Moritani, Sonogashira), C N and C S Coupling Reactions. Adv. Synth. Catal. 2013, 355, 421–438. [Google Scholar] [CrossRef]
- Manchukonda, N.; Naik, P.; Sridhar, B.; Kantevari, S. Synthesis and biological evaluation of novel biaryl type alpha-noscapine congeners. Bioorg. Med. Chem. Lett. 2014, 24, 5752–5757. [Google Scholar] [CrossRef]
Name | Noscapine—Effects and Mechanisms | Chemical Structure | References | |
Noscapine—a benzylisoquinoline alkaloid |
| [13] | ||
Name | Analogues of Noscapine—Effects and Mechanisms | Chemical Structure | References | |
Red-Br-Nos | Targets human prostate cancer | [25,26] | ||
| ||||
9- chloronoscapine and its derivative EM015 | Targets ovarian and T-cell lymphoma cancers | [27,28,29,30,31,32] | ||
| ||||
9-bromonoscapine | Targets breast, prostate, lung cancers | [12,30,31,33,34,35] | ||
| ||||
9-iodonoscapine |
| [30,32] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Priyadarshani, A.; Bhatia, R.; Shan, M. The Noscapine Saga: Unravelling a Valuable Jewel from a Poppy Pod—Past, Present and Future. Psychoactives 2024, 3, 1-21. https://doi.org/10.3390/psychoactives3010001
Priyadarshani A, Bhatia R, Shan M. The Noscapine Saga: Unravelling a Valuable Jewel from a Poppy Pod—Past, Present and Future. Psychoactives. 2024; 3(1):1-21. https://doi.org/10.3390/psychoactives3010001
Chicago/Turabian StylePriyadarshani, Anjali, Rishit Bhatia, and Muniba Shan. 2024. "The Noscapine Saga: Unravelling a Valuable Jewel from a Poppy Pod—Past, Present and Future" Psychoactives 3, no. 1: 1-21. https://doi.org/10.3390/psychoactives3010001
APA StylePriyadarshani, A., Bhatia, R., & Shan, M. (2024). The Noscapine Saga: Unravelling a Valuable Jewel from a Poppy Pod—Past, Present and Future. Psychoactives, 3(1), 1-21. https://doi.org/10.3390/psychoactives3010001