Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (36)

Search Parameters:
Keywords = antitumor monoterpenes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 3951 KiB  
Article
Exploring the Bioactive Potential and Chemical Profile of Schinus molle Essential Oil: An Integrated In Silico and In Vitro Evaluation
by Rómulo Oses, Matías Ferrando, Flavia Bruna, Patricio Retamales, Myriam Navarro, Katia Fernández, Waleska Vera, María José Larrazábal, Iván Neira, Adrián Paredes, Manuel Osorio, Osvaldo Yáñez, Martina Jacobs and Jessica Bravo
Plants 2025, 14(15), 2449; https://doi.org/10.3390/plants14152449 - 7 Aug 2025
Abstract
Chilean Schinus molle has been used in traditional medicine for effects such as antibacterial, antifungal, anti-inflammatory, analgesic, antiviral, antitumoral, antioxidant, antispasmodic, astringent, antipyretic, cicatrizant, cytotoxic, diuretic, among others. In this study, we evaluated the pharmacological potential of Schinus molle seed essential oil extract [...] Read more.
Chilean Schinus molle has been used in traditional medicine for effects such as antibacterial, antifungal, anti-inflammatory, analgesic, antiviral, antitumoral, antioxidant, antispasmodic, astringent, antipyretic, cicatrizant, cytotoxic, diuretic, among others. In this study, we evaluated the pharmacological potential of Schinus molle seed essential oil extract (SM_EO) through in vitro and in silico approaches. In vitro, the antioxidant potential was analyzed, and antitumor activity was evaluated in non-tumor and human epithelial tumor cell lines. Caenorhabditis elegans was used as a model for evaluating toxicity, and the chemical composition of the SM_EO was analyzed using gas chromatography–mass spectrometry. The oil contained four major monoterpenes: α-phellandrene (34%), β-myrcene (23%), limonene (13%), and β-phellandrene (7%). Based on quantum mechanical calculations, the reactivity of the molecules present in the SM_EO was estimated. The results indicated that α- phellandrene, β-phellandrene, and β-myrcene showed the highest nucleophilic activity. In addition, the compounds following these as candidates for antioxidant and antiproliferative activities were α-phellandrene, β-phellandrene, ρ-cymene, sabinene, caryophyllene, l-limonene, and α-pinene, highlighting β-myrcene. Based on ADME-Tox properties, it is feasible to use these compounds as new drug candidates. Moreover, the antibacterial activity MIC value obtained for B. cereus was equivalent to 2 μg/mL, and for Y. enterocolitica, S. enteritidis, and S. typhimurium, the MIC value was 32.5 μg/μL. SM_EO could selectively inhibit the proliferation of human epithelial mammary tumor MCF7 cells treated with SM_EOs at 64 and 16 ug/mL—a significant increase in BCL-2 in a dose-dependent manner—and showed low toxicity against Caenorhabditis elegans (from 10 to 0.078 mg·mL−1). These findings suggest that SM_EO may be a potential source of bioactive compounds, encouraging further investigation for applications in veterinary medicine, cosmetics, and sanitation. Full article
Show Figures

Graphical abstract

19 pages, 1203 KiB  
Review
Applications of Limonene in Neoplasms and Non-Neoplastic Diseases
by Katarzyna Rakoczy, Natalia Szymańska, Jakub Stecko, Michał Kisiel, Monika Maruszak, Michał Niedziela and Julita Kulbacka
Int. J. Mol. Sci. 2025, 26(13), 6359; https://doi.org/10.3390/ijms26136359 - 1 Jul 2025
Viewed by 406
Abstract
Plants produce an extensive repertoire of secondary metabolites, developed over evolutionary time to support survival. Among these, D-limonene, a monoterpene exuded by citrus fruits, has demonstrated a broad range of pharmacological activities. This review elucidates limonene’s biological versatility, spanning antioxidant, anti-inflammatory, antitumor, antidiabetic, [...] Read more.
Plants produce an extensive repertoire of secondary metabolites, developed over evolutionary time to support survival. Among these, D-limonene, a monoterpene exuded by citrus fruits, has demonstrated a broad range of pharmacological activities. This review elucidates limonene’s biological versatility, spanning antioxidant, anti-inflammatory, antitumor, antidiabetic, neuroprotective, and gastroprotective domains. Synthesizing data from both preclinical and early-phase clinical research, we explore its molecular mechanisms, ranging from reactive oxygen species mitigation and apoptosis induction to metabolic remodeling and neurotransmitter modulation. Special attention is given to limonene’s emerging role in oncological therapeutics, notably in breast and liver cancers, and its capacity to ameliorate pathophysiological hallmarks of diabetes and neurodegeneration. Its low toxicity and high bioavailability support its potential as a safe adjunct or alternative in phytotherapy. This review advocates for continued investigation into limonene’s translational potential across a spectrum of neoplastic and non-neoplastic diseases. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

19 pages, 4003 KiB  
Article
Anti-lymphoma Activity of Acyclic Terpenoids and Its Structure–Activity Relationship: In Vivo, In Vitro, and In Silico Studies
by Fernando Calzada, Jesica Ramírez-Santos, Rosa María Ordoñez-Razo, Miguel Valdes, Claudia Velázquez and Elizabeth Barbosa
Int. J. Mol. Sci. 2025, 26(12), 5683; https://doi.org/10.3390/ijms26125683 - 13 Jun 2025
Viewed by 487
Abstract
Terpenoids are a large group of molecules present in several plant species and in many essential oils reported with cytotoxic and anticancer properties. The aim of this study was to evaluate the anticancer activity of eleven acyclic terpenes; seven monoterpenoids: geranyl acetate (C1), [...] Read more.
Terpenoids are a large group of molecules present in several plant species and in many essential oils reported with cytotoxic and anticancer properties. The aim of this study was to evaluate the anticancer activity of eleven acyclic terpenes; seven monoterpenoids: geranyl acetate (C1), geranic acid (C2), citral (C3, mixture of neral and geranial), geraniol (C4), methyl geranate (C5), nerol (C6) and citronellic acid (C7); two sesquiterpenes: farnesal (C8) and farnesol (C9); and one triterpene: squalene (C10), using in vivo, in vitro, and in silico models. Anti-lymphoma activity was evaluated using male Balb/c mice inoculated with U-937 cells. Cytotoxic activity was evaluated using the WST-1 method. Computer tools were used to obtain a molecular docking study, measuring pharmacokinetic and toxicological properties of the acyclic terpenoids with greater antitumor activity. The results showed that the terpenoids with the highest cytotoxic and nodal growth inhibitory activity were C3, C4, C6, and C9, and their effects were better compared to MTX. The data obtained suggest that the anti-lymphoma activity could be due to the presence of the aldehyde, hydroxyl, and acetate groups in the C1 of the monoterpenes and sesquiterpenes evaluated. The theoretical results obtained from molecular docking showed that geranial (C3A), neral (C3B), C9, and C6 terpenoids obtained a higher affinity for the HMG-CoA reductase enzyme and suggest that it could be a target to induce anti-lymphoma activity of bioactive terpenoids. Our study provides evidence that C3, C6, and C9 could be potential anticancer agents for the treatment of histiocytic lymphoma. Full article
Show Figures

Figure 1

18 pages, 7057 KiB  
Article
Green Extraction of Volatile Terpenes from Artemisia annua L.
by Marta Mandić, Ivona Ivančić, Matija Cvetnić, Claudio Ferrante, Giustino Orlando and Sanda Vladimir-Knežević
Molecules 2025, 30(7), 1638; https://doi.org/10.3390/molecules30071638 - 7 Apr 2025
Viewed by 999
Abstract
In the present study, the extraction of volatile terpenes from A. annua with supercritical CO2 (sc-CO2) was optimized by a full factorial design procedure and compared with conventional distillation. The influence of pressure (100–220 bar) and temperature (40–60 °C) on [...] Read more.
In the present study, the extraction of volatile terpenes from A. annua with supercritical CO2 (sc-CO2) was optimized by a full factorial design procedure and compared with conventional distillation. The influence of pressure (100–220 bar) and temperature (40–60 °C) on sc-CO2 extraction was investigated to obtain extracts rich in the desired components while maintaining a high yield. Extraction yields (m/m) varied from 0.62% (130 bar/40 °C) to 1.92% (100 bar/60 °C). Monoterpenes were the most abundant constituents of the sc-CO2 extracts, among which artemisia ketone (16.93–48.49%), camphor (3.29–18.44%) and 1,8-cineole (4.77–11.89%) dominated. Arteannuin B (3.98–10.03%) and β-selinene (1.05–7.42%) were the major sesquiterpenes. Differences were found between the terpene profiles of the sc-CO2 extracts and the essential oils obtained by conventional hydrodistillation and steam distillation, as well as between the distilled essential oils. Our results demonstrate the optimal conditions for the rapid and effective supercritical extraction of certain monoterpenes and sesquiterpenes from A. annua, which have promising antimicrobial, antioxidant, antiviral, anti-inflammatory and antitumor properties. Full article
Show Figures

Graphical abstract

20 pages, 4545 KiB  
Article
A Comprehensive Analysis of Transcriptomics and Metabolomics Reveals Key Genes Involved in Terpenes Biosynthesis Pathway of Litsea cubeba Under Light and Darkness Treatments
by Jiahui Yang, Yunxiao Zhao, Yicun Chen, Yangdong Wang and Ming Gao
Int. J. Mol. Sci. 2025, 26(7), 2992; https://doi.org/10.3390/ijms26072992 - 25 Mar 2025
Cited by 1 | Viewed by 650
Abstract
Light is an important environmental regulator of plant secondary metabolism. Terpenoids, the most abundant secondary metabolites in plants, demonstrate a wide spectrum of biologically significant properties, encompassing antimicrobial, antioxidative, and analgesic activities. Litsea cubeba (Lour.) Pers., a core species within the Lauraceae family, [...] Read more.
Light is an important environmental regulator of plant secondary metabolism. Terpenoids, the most abundant secondary metabolites in plants, demonstrate a wide spectrum of biologically significant properties, encompassing antimicrobial, antioxidative, and analgesic activities. Litsea cubeba (Lour.) Pers., a core species within the Lauraceae family, exhibits notable pharmacological potential, including antimicrobial and antitumor effects. Here, we found that darkness treatment significantly suppressed terpenoid accumulation in L. cubeba fruits. To clarify the molecular mechanisms underlying the regulatory effect of light and darkness treatments on terpenoid biosynthesis, we conducted a comparative transcriptome profiling of L. cubeba fruits under light and darkness treatments. A total of 13,074 differentially expressed genes (DEGs) were identified among four sampling time points (L1-L2-L3-L4 vs. D1-D2-D3-D4). These genes were enriched in various pathways, with significant enrichment being observed in the terpenoid and other secondary metabolism pathways. Additionally, the enrichment of DEGs in L2 and D2 stages was further studied, and it was found that nine DEGs were significantly enriched in the monoterpene synthesis pathway. The weighted gene co-expression network analysis (WGCNA) showed that alcohol dehydrogenase (ADH), a key enzyme in terpenoid synthesis, had the same expression pattern as WRKY and NAC transcription factors, suggesting their involvement in the biosynthesis of terpenoids in L. cubeba. Expression profiling demonstrated that plastid-localized terpenoid pathway genes were markedly downregulated under darkness treatment. qRT-PCR validation of key genes (LcDXS3, LcHMGS1, LcMDS, and LcTPS19) confirmed the reliability of the transcriptome data, with LcDXS3 exhibiting pronounced declines in expression after 6 h (2.76-fold decrease) and 12 h (2.63-fold decrease) of darkness treatment. These findings provide novel insights into the photoregulatory mechanisms governing terpenoid metabolism in L. cubeba. Full article
Show Figures

Figure 1

24 pages, 1369 KiB  
Review
Synthesis, Bioproduction and Bioactivity of Perillic Acid—A Review
by Thaís de Souza Rolim, André Luiz Franco Sampaio, José Luiz Mazzei, Davyson Lima Moreira and Antonio Carlos Siani
Molecules 2025, 30(3), 528; https://doi.org/10.3390/molecules30030528 - 24 Jan 2025
Cited by 1 | Viewed by 1560
Abstract
Perillic acid (PA) is a limonene derivative in which the exocyclic methyl is oxidized to a carboxyl group. Although endowed with potential anticancer activity, PA has been much less explored regarding its biological properties than analogous compounds such as perillyl alcohol, perillaldehyde, or [...] Read more.
Perillic acid (PA) is a limonene derivative in which the exocyclic methyl is oxidized to a carboxyl group. Although endowed with potential anticancer activity, PA has been much less explored regarding its biological properties than analogous compounds such as perillyl alcohol, perillaldehyde, or limonene itself. PA is usually described in mixture with alcohols and ketones produced in the oxidation of monoterpenes, with relatively few existing reports focusing on the PA molecule. This study provides a comprehensive review of PA, addressing its origin, the processes of obtaining it through organic synthesis and biotransformation, and the pharmacological tests in which it is either the lead compound or reference for in vitro efficacy in experimental models. Although feasible and generally poorly yielded, the synthesis of PA from limonene requires multiple steps and the use of unusual catalysts. The most economical process involves using (−)-β-pinene epoxide as the starting material, ending up with (−)-PA. On the other hand, some bacteria and yeasts are successful in producing, exclusively or at satisfactory purity level, PA from limonene or a few other monoterpenes, through environmentally friendly approaches. The compiled data revealed that, with few exceptions, most reports on PA bioactivity are related to its ability to interfere with the prenylation process of oncogenic proteins, an essential step for the growth and dissemination of cancer cells. The present survey reveals that there is still a vast field to disclose regarding the obtaining and scaling of PA via the fermentative route, as well as extending prospective studies on its properties and possible pharmacological applications, especially in the preclinical oncology field. Full article
Show Figures

Graphical abstract

19 pages, 4810 KiB  
Article
Endosomal pH, Redox Dual-Sensitive Prodrug Micelles Based on Hyaluronic Acid for Intracellular Camptothecin Delivery and Active Tumor Targeting in Cancer Therapy
by Huiping Zhang, Liang Li, Wei Li, Hongxia Yin, Huiyun Wang and Xue Ke
Pharmaceutics 2024, 16(10), 1327; https://doi.org/10.3390/pharmaceutics16101327 - 14 Oct 2024
Cited by 5 | Viewed by 2141
Abstract
Background: CPT is a pentacyclic monoterpene alkaloid with a wide spectrum of antitumor activity. Its clinical application is restricted due to poor water solubility, instability, and high toxicity. We developed a new kind of multifunctional micelles to improve its solubility, reduce the side [...] Read more.
Background: CPT is a pentacyclic monoterpene alkaloid with a wide spectrum of antitumor activity. Its clinical application is restricted due to poor water solubility, instability, and high toxicity. We developed a new kind of multifunctional micelles to improve its solubility, reduce the side effecs, and obtain enhanced antitumor effects. Methods: We constructed HA-CPT nano-self-assembly prodrug micelles, which combined the advantages of pH-sensitivity, redox-sensitivity, and active targeting ability to CD44 receptor-overexpressing cancer cells. To synthesize dual sensitive HA-CPT conjugates, CPT was conjugated with HA by pH-sensitive histidine (His) and redox-sensitive 3,3′-dithiodipropionic acid (DTPA). In vitro, we studied the cellular uptake and antitumor effect for tumor cell lines. In vivo, we explored the bio-distribution and antitumor effects of the micelles in HCT 116 tumor bearing nude mice. Results: The dual-sensitive and active targeting HA-His-ss-CPT micelles was proved to be highly efficient in CPT delivery by the in vitro cellular uptake study. The HA-His-ss-CPT micelles escaped from endosomes of tumor cells within 4 h after cellular uptake due to the proton sponge effect of the conjugating His and then quickly released CPT in the cytosol by glutathione (GSH). In mice, HA-His-ss-CPT micelles displayed efficient tumor accumulation and conspicuous inhibition of tumor growth. Conclusions: The novel, dual-sensitive, active targeting nano-prodrug micelles exhibited high efficiency in drug delivery and cancer therapy. This “all in one” drug delivery system can be realized in an ingenious structure and avoid intricate synthesis. This construction strategy can illume the design of nanocarriers responding to endogenous stimuli in tumors. Full article
Show Figures

Figure 1

18 pages, 958 KiB  
Article
Mint-Scented Species in Lamiaceae: An Abundant and Varied Reservoir of Phenolic and Volatile Compounds
by Tilen Zamljen, Mariana Cecilia Grohar and Aljaz Medic
Foods 2024, 13(12), 1857; https://doi.org/10.3390/foods13121857 - 13 Jun 2024
Cited by 1 | Viewed by 1669
Abstract
This investigation aimed to identify the most favorable cultivar based on plant metabolites for potential targeted cultivation in the pharmaceutical industry. The analysis revealed the presence of 19 individual phenolics and 80 individual volatiles across the cultivars, a breadth of data not previously [...] Read more.
This investigation aimed to identify the most favorable cultivar based on plant metabolites for potential targeted cultivation in the pharmaceutical industry. The analysis revealed the presence of 19 individual phenolics and 80 individual volatiles across the cultivars, a breadth of data not previously explored to such an extent. Flavones emerged as the predominant phenolic group in all mint-scented cultivars, except for peppermint, where hydroxycinnamic acids dominated. Peppermint exhibited high concentrations of phenolic acids, particularly caffeic acid derivatives and rosmarinic acid, which are known for their anti-inflammatory and antioxidant properties. Luteolin-rich concentrations were found in several mint varieties, known for their antioxidative, antitumor, and cardio-protective properties. Swiss mint and spearmint stood out with elevated levels of flavanones, particularly eriocitrin, akin to citrus fruits. Monoterpene volatiles, including menthol, camphor, limonene, and carvone, were identified across all cultivars, with Swiss mint and spearmint exhibiting the highest amounts. The study underscores the potential for targeted cultivation to enhance volatile yields and reduce agricultural land use. Notably, chocolate mint demonstrated promise for volatile content, while apple mint excelled in phenolics, suggesting their potential for broader agricultural, pharmaceutical, and food industry production. Full article
(This article belongs to the Special Issue Bioactive Phenolic Compounds from Agri-Food and Its Wastes)
Show Figures

Figure 1

13 pages, 1641 KiB  
Article
Cladanthus scariosus Essential Oil and Its Principal Constituents with Cytotoxic Effects on Human Tumor Cell Lines
by Natale Badalamenti, Vincenzo Ilardi, Maurizio Bruno, Filippo Maggi, Luana Quassinti and Massimo Bramucci
Plants 2024, 13(11), 1555; https://doi.org/10.3390/plants13111555 - 4 Jun 2024
Cited by 1 | Viewed by 1774
Abstract
Cladanthus is a small genus of the Asteraceae family comprising just five species that, apart from Cladanthus mixtus (L.) Chevall., has a large distribution in all the Mediterranean countries, mainly in the North Africa area. Several ethnopharmacological uses have been reported for species [...] Read more.
Cladanthus is a small genus of the Asteraceae family comprising just five species that, apart from Cladanthus mixtus (L.) Chevall., has a large distribution in all the Mediterranean countries, mainly in the North Africa area. Several ethnopharmacological uses have been reported for species of this genus. Notably, Cladanthus scariosus (Ball) Oberpr. & Vogt is endemic to Morocco. Seeking to delve deeper into the phytochemistry and pharmacological aspects of this species, in this work, we investigated the essential oil (EO) obtained from the aerial parts of a locally sourced accession, hitherto unexplored, growing wild near Tizi n’Ticha, Morocco. The chemical composition of the EO, obtained by the hydrodistillation method, was evaluated by GC and GC-MS. The most abundant EO constituent was germacrene D (13.2%), the principal representative of the sesquiterpene hydrocarbons class (27.2%). However, the major class of constituents was monoterpene hydrocarbons (43.0%), with α-pinene (11.9%), sabinene (10.2%), p-cymene (8.5%), and α-phellandrene (5.2%) as the most abundant. The EO and its main constituents have been tested for their possible cytotoxic activity against three human tumor cell lines (MDA-MB 231, A375, and CaCo2) using the MTT assay, with corresponding IC50 values of 13.69, 13.21, and 22.71 µg/mL, respectively. Germacrene D and terpinen-4-ol were found to be the most active constituents with IC50 values between 3.21 and 9.53 µg/mL. The results demonstrate remarkable cytotoxic activity against the three human tumor cell lines studied, and in the future, further analyses could demonstrate the excellent potential of C. scariosus EO as an antitumor agent. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

20 pages, 1446 KiB  
Article
Nanoemulsified Essential Oil of Melaleuca leucadendron Leaves for Topical Application: In Vitro Photoprotective, Antioxidant and Anti-Melanoma Activities
by Lucas Resende Dutra Sousa, Maria Luiza da Costa Santos, Larissa Silva Sampaio, Clarisse Gaëlle Faustino, Mérine Lauriane Loïce Guigueno, Kátia Michelle Freitas, Miriam Teresa Paz Lopes, Gabriela Cristina Ferreira Mota, Viviane Martins Rebello dos Santos, Janaína Brandão Seibert, Tatiane Roquete Amparo, Paula Melo de Abreu Vieira, Orlando David Henrique dos Santos and Gustavo Henrique Bianco de Souza
Pharmaceuticals 2024, 17(6), 721; https://doi.org/10.3390/ph17060721 - 2 Jun 2024
Cited by 4 | Viewed by 2386
Abstract
Melanoma, primarily caused by solar ultraviolet (UV) radiation, can be prevented by the use of sunscreens. However, the use of synthetic sunscreens raises environmental concerns. Natural compounds with antioxidant photoprotective properties and cytotoxic effects against cancer cells can be promising for the prevention [...] Read more.
Melanoma, primarily caused by solar ultraviolet (UV) radiation, can be prevented by the use of sunscreens. However, the use of synthetic sunscreens raises environmental concerns. Natural compounds with antioxidant photoprotective properties and cytotoxic effects against cancer cells can be promising for the prevention and treatment of melanoma with less environmental effect. This study focuses on Melaleuca leucadendron essential oil (EO) for photoprotection and antitumor applications. EO was hydrodistilled from M. leucadendron leaves with a 0.59% yield. Gas chromatography–mass spectrometry detected monoterpenes and sesquiterpenes. Nanoemulsions were prepared with (NE-EO) and without EO (NE-B) using the phase inversion method, showing good stability, spherical or oval morphology, and a pseudoplastic profile. Photoprotective activity assessed spectrophotometrically showed that the NE-EO was more effective than NE-B and free EO. Antioxidant activity evaluated by DPPH and ABTS methods indicated that pure and nanoemulsified EO mainly inhibited the ABTS radical, showing IC50 40.72 and 5.30 µg/mL, respectively. Cytotoxicity tests on L-929 mouse fibroblasts, NGM human melanocyte, B16-F10 melanoma, and MeWo human melanoma revealed that EO and NE-EO were more cytotoxic to melanoma cells than to non-tumor cells. The stable NE-EO demonstrates potential for melanoma prevention and treatment. Further research is required to gain a better understanding of these activities. Full article
Show Figures

Graphical abstract

36 pages, 5284 KiB  
Review
Exploring the Biomedical Potential of Terpenoid Alkaloids: Sources, Structures, and Activities
by Xuyan Wang, Jianzeng Xin, Lili Sun, Yupei Sun, Yaxi Xu, Feng Zhao, Changshan Niu and Sheng Liu
Molecules 2024, 29(9), 1968; https://doi.org/10.3390/molecules29091968 - 25 Apr 2024
Cited by 5 | Viewed by 2310
Abstract
Terpenoid alkaloids are recognized as a class of compounds with limited numbers but potent biological activities, primarily derived from plants, with a minor proportion originating from animals and microorganisms. These alkaloids are synthesized from the same prenyl unit that forms the terpene skeleton, [...] Read more.
Terpenoid alkaloids are recognized as a class of compounds with limited numbers but potent biological activities, primarily derived from plants, with a minor proportion originating from animals and microorganisms. These alkaloids are synthesized from the same prenyl unit that forms the terpene skeleton, with the nitrogen atom introduced through β-aminoethanol, ethylamine, or methylamine, leading to a range of complex and diverse structures. Based on their skeleton type, they can be categorized into monoterpenes, sesquiterpenes, diterpenes, and triterpene alkaloids. To date, 289 natural terpenoid alkaloids, excluding triterpene alkaloids, have been identified in studies published between 2019 and 2024. These compounds demonstrate a spectrum of biological activities, including anti-inflammatory, antitumor, antibacterial, analgesic, and cardioprotective effects, making them promising candidates for further development. This review provides an overview of the sources, chemical structures, and biological activities of natural terpenoid alkaloids, serving as a reference for future research and applications in this area. Full article
Show Figures

Figure 1

14 pages, 2128 KiB  
Article
Cytotoxic Potential of the Monoterpene Isoespintanol against Human Tumor Cell Lines
by Orfa Inés Contreras-Martínez, Alberto Angulo-Ortíz, Gilmar Santafé Patiño, Fillipe Vieira Rocha, Karine Zanotti, Dario Batista Fortaleza, Tamara Teixeira and Jesus Sierra Martinez
Int. J. Mol. Sci. 2024, 25(9), 4614; https://doi.org/10.3390/ijms25094614 - 23 Apr 2024
Viewed by 2185
Abstract
Cancer is a disease that encompasses multiple and different malignant conditions and is among the leading causes of death in the world. Therefore, the search for new pharmacotherapeutic options and potential candidates that can be used as treatments or adjuvants to control this [...] Read more.
Cancer is a disease that encompasses multiple and different malignant conditions and is among the leading causes of death in the world. Therefore, the search for new pharmacotherapeutic options and potential candidates that can be used as treatments or adjuvants to control this disease is urgent. Natural products, especially those obtained from plants, have played an important role as a source of specialized metabolites with recognized pharmacological properties against cancer, therefore, they are an excellent alternative to be used. The objective of this research was to evaluate the action of the monoterpene isoespintanol (ISO) against the human tumor cell lines MDA-MB-231, A549, DU145, A2780, A2780-cis and the non-tumor line MRC-5. Experiments with 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and fluorescence with propidium iodide (PI), 4′,6-diamidino-2-phenylindole dilactate (DAPI) and green plasma revealed the cytotoxicity of ISO against these cells; furthermore, morphological and chromogenic studies revealed the action of ISO on cell morphology and the inhibitory capacity on reproductive viability to form colonies in MDA-MB-231 cells. Likewise, 3D experiments validated the damage in these cells caused by this monoterpene. These results serve as a basis for progress in studies of the mechanisms of action of these compounds and the development of derivatives or synthetic analogues with a better antitumor profile. Full article
(This article belongs to the Special Issue Natural Compounds in Health and Disease)
Show Figures

Figure 1

12 pages, 1272 KiB  
Article
GC-MS Analysis and Bioactivity Screening of Leaves and Fruits of Zanthoxylum armatum DC.
by Jie Ma, Liping Ning, Jingyan Wang, Wei Gong, Yue Gao and Mei Li
Separations 2023, 10(8), 420; https://doi.org/10.3390/separations10080420 - 25 Jul 2023
Cited by 3 | Viewed by 2894
Abstract
Zanthoxylum armatum DC. is a plant that has been homologated for medicine and food by the Chinese for three thousand years. In this study, the essential oils of fresh leaves and fruits were extracted by hydrodistillation, the aromas of fresh leaves and fruits [...] Read more.
Zanthoxylum armatum DC. is a plant that has been homologated for medicine and food by the Chinese for three thousand years. In this study, the essential oils of fresh leaves and fruits were extracted by hydrodistillation, the aromas of fresh leaves and fruits were extracted by headspace solid-phase microextraction and their chemical compositions were analyzed by gas chromatography mass spectrometry. The main components of the leaf essential oils were linalool (62.01%), 2-undecanone (9.83%) and 2-tridecanone (5.47%); the fruit essential oils were linalool (72.17%), limonene (8.05%) and sabinene (6.77%); the leaf aromas were limonene (39.15%), β-myrcene (15.8%), sabinene (8.17%) and linalool (5.25%); the fruit aromas were limonene (28.43%), sabinene (13.56%), linalool (11.47%) and β-myrcene (8.64%). By comparison, it was found that the composition of leaf essential oils and fruit essential oils were dominated by oxygenated monoterpenes, while the composition of their aromas were both dominated by monoterpenes; the relative content of non-terpene components in leaf essential oil and leaf aroma is second only to oxygenated monoterpenes, while their content in fruits is low; the chemical composition of leaf aromas and fruit aromas were richer than those of essential oils. In this study, we reported for the first time that the antitumor, tyrosinase inhibition, HMGR inhibition and nitric oxide production inhibition activity of leaf essential oils were stronger than those of fruit essential oils in in vitro tests. The results of the study can provide a reference for the recycling and green low-carbon transformation of the leaves, and also help to deepen the understanding of the value of the volatile chemical constituents of this plant in “forest medicine” or “aromatherapy”, and provide new ideas for the transformation of the value of the plant in the secondary and tertiary industry chain. Full article
Show Figures

Figure 1

19 pages, 4681 KiB  
Article
New 5-Hydroxycoumarin-Based Tyrosyl-DNA Phosphodiesterase I Inhibitors Sensitize Tumor Cell Line to Topotecan
by Tatyana M. Khomenko, Alexandra L. Zakharenko, Tatyana E. Kornienko, Arina A. Chepanova, Nadezhda S. Dyrkheeva, Anastasia O. Artemova, Dina V. Korchagina, Chigozie Achara, Anthony Curtis, Jóhannes Reynisson, Konstantin P. Volcho, Nariman F. Salakhutdinov and Olga I. Lavrik
Int. J. Mol. Sci. 2023, 24(11), 9155; https://doi.org/10.3390/ijms24119155 - 23 May 2023
Cited by 5 | Viewed by 2075
Abstract
Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is an important enzyme in the DNA repair system. The ability of the enzyme to repair DNA damage induced by a topoisomerase 1 poison such as the anticancer drug topotecan makes TDP1 a promising target for complex antitumor therapy. In [...] Read more.
Tyrosyl-DNA-phosphodiesterase 1 (TDP1) is an important enzyme in the DNA repair system. The ability of the enzyme to repair DNA damage induced by a topoisomerase 1 poison such as the anticancer drug topotecan makes TDP1 a promising target for complex antitumor therapy. In this work, a set of new 5-hydroxycoumarin derivatives containing monoterpene moieties was synthesized. It was shown that most of the conjugates synthesized demonstrated high inhibitory properties against TDP1 with an IC50 in low micromolar or nanomolar ranges. Geraniol derivative 33a was the most potent inhibitor with IC50 130 nM. Docking the ligands to TDP1 predicted a good fit with the catalytic pocket blocking access to it. The conjugates used in non-toxic concentration increased cytotoxicity of topotecan against HeLa cancer cell line but not against conditionally normal HEK 293A cells. Thus, a new structural series of TDP1 inhibitors, which are able to sensitize cancer cells to the topotecan cytotoxic effect has been discovered. Full article
(This article belongs to the Special Issue Nuclear Genome Stability: DNA Replication and DNA Repair)
Show Figures

Figure 1

18 pages, 1376 KiB  
Systematic Review
Alpha-Phellandrene and Alpha-Phellandrene-Rich Essential Oils: A Systematic Review of Biological Activities, Pharmaceutical and Food Applications
by Matteo Radice, Andrea Durofil, Raissa Buzzi, Erika Baldini, Amaury Pérez Martínez, Laura Scalvenzi and Stefano Manfredini
Life 2022, 12(10), 1602; https://doi.org/10.3390/life12101602 - 14 Oct 2022
Cited by 37 | Viewed by 4478
Abstract
Alpha-phellandrene is a very common cyclic monoterpene found in several EOs, which shows extensive biological activities. Therefore, the main focus of the present systematic review was to provide a comprehensive and critical analysis of the state of the art regarding its biological activities [...] Read more.
Alpha-phellandrene is a very common cyclic monoterpene found in several EOs, which shows extensive biological activities. Therefore, the main focus of the present systematic review was to provide a comprehensive and critical analysis of the state of the art regarding its biological activities and pharmaceutical and food applications. In addition, the study identified essential oils rich in alpha-phellandrene and summarized their main biological activities as a preliminary screening to encourage subsequent studies on their single components. With this review, we selected and critically analyzed 99 papers, using the following bibliographic databases: PubMed, SciELO, Wiley and WOS, on 8 July 2022. Data were independently extracted by four authors of this work, selecting those studies which reported the keyword “alpha-phellandrene” in the title and/or the abstract, and avoiding those in which there was not a clear correlation between the molecule and its biological activities and/or a specific concentration from its source. Duplication data were removed in the final article. Many essential oils have significant amounts of alpha-phellandrene, and the species Anethum graveolens and Foeniculum vulgare are frequently cited. Some studies on the above-mentioned species show high alpha-phellandrene amounts up to 82.1%. There were 12 studies on alpha-phellandrene as a pure molecule showed promising biological functions, including antitumoral, antinociceptive, larvicidal and insecticidal activities. There were 87 research works on EOs rich in alpha-phellandrene, which were summarized with a focus on additional data concerning potential biological activities. We believe this data is a useful starting point to start new research on the pure molecule, and, in particular, to distinguish between the synergistic effects of the different components of the OEs and those due to alpha-phellandrene itself. Toxicological data are still lacking, requiring further investigation on the threshold values to distinguish the boundary between beneficial and toxic effects, i.e., mutagenic, carcinogenic and allergenic. All these findings offer inspiration for potential applications of alpha-phellandrene as a new biopesticide, antimicrobial and antitumoral agent. In particular, we believe our work is of interest as a starting point for further studies on the food application of alpha-phellandrene. Full article
Show Figures

Figure 1

Back to TopTop