Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (224)

Search Parameters:
Keywords = antireflective coating

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2000 KB  
Article
The Impact of Ophthalmic Lens Power and Treatments on Eye Tracking Performance
by Marta Lacort-Beltrán, Adrián Alejandre, Sara Guillén, Marina Vilella, Xian Pan, Victoria Pueyo, Marta Ortin and Eduardo Esteban-Ibañez
J. Eye Mov. Res. 2026, 19(1), 4; https://doi.org/10.3390/jemr19010004 - 29 Dec 2025
Viewed by 208
Abstract
Eye tracking (ET) technology is increasingly used in both research and clinical practice, but its accuracy may be compromised by the presence of ophthalmic lenses. This study systematically evaluated the influence of different optical prescriptions and lens treatments on ET performance using DIVE [...] Read more.
Eye tracking (ET) technology is increasingly used in both research and clinical practice, but its accuracy may be compromised by the presence of ophthalmic lenses. This study systematically evaluated the influence of different optical prescriptions and lens treatments on ET performance using DIVE (Device for an Integral Visual Examination). Fourteen healthy participants underwent oculomotor control tests under thirteen optical conditions: six with varying dioptric powers and six with optical filters, compared against a no-lens control. Key parameters analysed included angle error, fixation stability (bivariate contour ellipse area, BCEA), saccadic accuracy, number of data gaps, and proportion of valid frames. High-powered spherical lenses (+6.00 D and −6.00 D) significantly increased gaze angle error, and the negative lens also increased data gaps, while cylindrical lenses had a moderate effect. Among filters, the Natural IR coating caused the greatest deterioration in ET performance, reducing valid samples and increasing the number of gaps with data loss, likely due to interference with the infrared-based detection system. The lens with basic anti-reflective treatment (SV Org 1.5 AR) also showed some deterioration in interaction with the ET. Other filters showed minimal or no significant impact. These findings demonstrate that both high-powered prescriptions and certain lens treatments can compromise ET data quality, highlighting the importance of accounting for optical conditions in experimental design and clinical applications. Full article
Show Figures

Graphical abstract

17 pages, 3581 KB  
Article
Plasma-Enhanced Atomic Layer Deposition of AlF3 Antireflective Coatings via Pulse-Time Control of Fluorine Radical Reactions
by Jing Zhang, Zhixuan Zhang, Chia-Hsun Hsu, Peng Gao, Yu Qiu, Yuqi Lin and Shui-Yang Lien
Nanomaterials 2026, 16(1), 43; https://doi.org/10.3390/nano16010043 - 29 Dec 2025
Viewed by 359
Abstract
Plasma-enhanced atomic layer deposition (PEALD) is used to grow high-quality aluminum fluoride (AlF3) antireflective coatings via a safe, HF-free route using trimethylaluminum and SF6 plasma. In situ diagnostics reveal a reaction pathway mediated by a hydrogen-terminated fluorinated surface (s-FH). By [...] Read more.
Plasma-enhanced atomic layer deposition (PEALD) is used to grow high-quality aluminum fluoride (AlF3) antireflective coatings via a safe, HF-free route using trimethylaluminum and SF6 plasma. In situ diagnostics reveal a reaction pathway mediated by a hydrogen-terminated fluorinated surface (s-FH). By systematically varying the plasma pulse duration, a critical process window is identified that balances efficient ligand removal against ion-induced structural damage. Within this optimized window, the films achieve ultra-low impurity levels and an atomically smooth morphology, increasing the optical transmittance of glass to (97.6 ± 0.5)%. This study establishes a clear link between fundamental plasma kinetics and functional optical performance, providing a robust, non-corrosive strategy for the rational design of metal–fluoride PEALD coatings. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

14 pages, 5045 KB  
Article
Concertation of Anti-Reflective, Superhydrophobic Surface Based on Rational Assembly of Dual-Size Silica
by Lu Xu, Lei Niu, Shuqun Chen, Ting He, Junshu Wu, Jianbo Ai and Yongli Li
Materials 2025, 18(24), 5601; https://doi.org/10.3390/ma18245601 - 12 Dec 2025
Viewed by 367
Abstract
Silica-based multifunctional coatings hold great promise for applications in optical devices, lenses, and solar panels. Herein, we report a facile, low-temperature route to integrate super-hydrophobicity with high transparency and low haze. By precisely controlling particle gradation and applying fluorine passivation, a multi-scale structure [...] Read more.
Silica-based multifunctional coatings hold great promise for applications in optical devices, lenses, and solar panels. Herein, we report a facile, low-temperature route to integrate super-hydrophobicity with high transparency and low haze. By precisely controlling particle gradation and applying fluorine passivation, a multi-scale structure with micro-scale uniformity and nano-scale asperity was constructed. This unique architecture, combined with low surface energy, effectively reduces light scattering and enhances air trapping. Consequently, the coated glass achieves a high optical transmittance of 95.24% with a low haze of 0.97%, alongside a water contact angle of 153° and a sliding angle of 3°. The coating also exhibits distinct anti-reflection (an improvement of ~5.0% relative to the bare substrate) and self-cleaning properties. Furthermore, it demonstrates impressive robustness and durability, withstanding extreme conditions including cryogenic temperatures (−50 °C), hygrothermal environments, and long-term outdoor exposure. This work demonstrates the versatile potential of our strategy for fabricating highly transparent and superhydrophobic surfaces. Full article
(This article belongs to the Section Thin Films and Interfaces)
Show Figures

Graphical abstract

22 pages, 2403 KB  
Article
A Method for Suppressing the Reflection of Coating Images on Aero-Engine Blades
by Xin Wen, Chengyan Han, Xiaoguang Liu, Kechen Song, Han Yu and Xingjie Li
Coatings 2025, 15(12), 1385; https://doi.org/10.3390/coatings15121385 - 26 Nov 2025
Viewed by 389
Abstract
Surface inspection of aero-engine blades is critical for aero-engine production and maintenance. However, composite materials like titanium alloys and superalloys, as well as thermal barrier coatings on blades, exhibit distinct optical reflection properties, while their complex curved surfaces cause severe image reflections leading [...] Read more.
Surface inspection of aero-engine blades is critical for aero-engine production and maintenance. However, composite materials like titanium alloys and superalloys, as well as thermal barrier coatings on blades, exhibit distinct optical reflection properties, while their complex curved surfaces cause severe image reflections leading to overexposure, underexposure, edge blurring and reduced measurement accuracy. To solve this, we propose ELANet, a deep-learning-based multi-exposure image fusion method with DenseNet as the backbone. Its key innovations include two parts: first, an Efficient Channel Attention mechanism to capture reflection feature differences between substrate and coating, prioritizing resource allocation to anti-reflection channels; second, an Ultra-Lightweight Subspace Attention Mechanism with only one-fifth the parameters of traditional spatial attention that adaptively assigns weights to local features based on curved surface reflection laws, enhancing edge and detail extraction while reducing computational cost. The Efficient Channel Attention and Ultra-Lightweight Subspace Attention Mechanism synergistically address exposure and blurring issues. Validated against 12 mainstream methods via 9 quantitative metrics, ELANet achieves state-of-the-art performance: MEF-SSIM reaches 0.9472, which is 1.3% higher than the best comparative method, PSNR reaches 21.48 dB, which is 2.2 percent higher than the second-best method, and the average processing time is 0.48 s. Ablation experiments confirm the necessity of the Efficient Channel Attention and Ultra-Lightweight Subspace Attention Mechanism. This method effectively supports high-precision blade inspection. Full article
(This article belongs to the Special Issue Solid Surfaces, Defects and Detection, 2nd Edition)
Show Figures

Figure 1

19 pages, 845 KB  
Systematic Review
Luminescent and Optical Thin Film Coatings in Ophthalmic Lenses: Advances, Clinical Applications, and Future Directions
by Ana Paula Oliveira and Clara Martinez-Perez
Coatings 2025, 15(11), 1246; https://doi.org/10.3390/coatings15111246 - 27 Oct 2025
Viewed by 1148
Abstract
Ophthalmic lens coatings are increasingly designed to combine optical, mechanical, and biological functions. This systematic review, registered in PROSPERO and conducted according to PRISMA 2020 guidelines, synthesized 54 experimental, preclinical, and clinical studies on coatings for spectacle lenses, contact lenses, and intraocular lenses. [...] Read more.
Ophthalmic lens coatings are increasingly designed to combine optical, mechanical, and biological functions. This systematic review, registered in PROSPERO and conducted according to PRISMA 2020 guidelines, synthesized 54 experimental, preclinical, and clinical studies on coatings for spectacle lenses, contact lenses, and intraocular lenses. Spectacle lens studies consistently showed that anti-reflective and blue-light filtering coatings reduce glare perception, improve contrast sensitivity, and provide UV protection, while laboratory tests demonstrated significant reductions in impact resistance, with fracture energy of CR-39 lenses decreasing by up to 63% when coated. Contact lens research revealed that plasma and polymeric coatings reduce water contact angles from >100° to <20°, enhancing wettability, while antimicrobial strategies such as melamine binding or nanoparticle-based films achieved >80% reductions in bacterial adhesion. Drug-eluting approaches sustained antibiotic or antioxidant release for periods ranging from 24 h to 6 days, with improved ocular bioavailability compared with drops. Intraocular lens studies demonstrated that heparin surface modifications reduced postoperative flare and anterior chamber cells, and phosphorylcholine or alkylphosphocholine coatings suppressed lens epithelial cell proliferation. Drug-loaded coatings with methotrexate, gefitinib, or amikacin significantly inhibited posterior capsule opacification and infection in ex vivo and animal models. Collectively, coatings improve visual comfort, photoprotection, wettability, and biocompatibility, but clinical translation requires solutions to mechanical trade-offs, long-term stability, and regulatory challenges. Full article
(This article belongs to the Special Issue Developments in Optical Coatings and Thin Films)
Show Figures

Figure 1

16 pages, 2782 KB  
Article
Defect–Coating–Wavelength Coupling Effects on Nano-Scale Electric Field Modulation in Fused Silica Under Multi-Wavelength Irradiation
by Hongbing Cao, Xing Peng, Feng Shi and Xinjie Zhao
Nanomaterials 2025, 15(21), 1626; https://doi.org/10.3390/nano15211626 - 25 Oct 2025
Viewed by 522
Abstract
Fused silica optical components with antireflection (AR) coatings are key components in high-power laser systems. However, their reliability is severely challenged by multi-wavelength irradiation and the presence of unavoidable matrix surface defects. To investigate the coupling effects of electric field modulation between multi-wavelength [...] Read more.
Fused silica optical components with antireflection (AR) coatings are key components in high-power laser systems. However, their reliability is severely challenged by multi-wavelength irradiation and the presence of unavoidable matrix surface defects. To investigate the coupling effects of electric field modulation between multi-wavelength irradiation, AR coating layers, and defects in AR-coated fused silica, this paper uses the finite-difference time-domain (FDTD) method to simulate the nanoscale electric field intensity distribution in fused silica coated with a double-layer AR coating at three different design wavelengths using multi-wavelength lasers. The effects of electric field coupling between the coating layers and defects are analyzed for three representative scratch geometries. The results show that when the incident wavelength matches the AR design wavelength, the interface field is effectively suppressed, resulting in a smoother field distribution and localized hot spots. Conversely, mismatched wavelengths induce severe field distortion, producing multiple hot spots and lateral interference fringes. Wide, shallow scratches are particularly sensitive to wavelength mismatch, with a 532 nm AR coating exhibiting a global maximum enhancement factor of 1.63442 for 355 nm incident light. These findings highlight the coupling effects of scratch geometry, AR coating dispersion, and laser wavelength on electric field modulation. This research provides valuable insights for optimizing antireflection coatings and improving defect tolerance in multi-wavelength laser applications, helping to improve the reliability of high-power laser systems. Full article
(This article belongs to the Section Nanophotonics Materials and Devices)
Show Figures

Figure 1

13 pages, 3209 KB  
Article
Fabrication and Measurement of Fiber Optic Sensor Based on Localized Surface Plasmon Resonance for Interleukin-8 Detection Using Micropillar and Gold Nanoparticle Composite
by Min-Jun Kim, Jong-Hyun Bang, Hyeong-Min Kim, Jae-Hyoung Park and Seung-Ki Lee
Appl. Sci. 2025, 15(20), 10894; https://doi.org/10.3390/app152010894 - 10 Oct 2025
Viewed by 1030
Abstract
This study reports the development of a fiber-optic localized surface plasmon resonance (FO-LSPR) sensor incorporating a three-dimensional micropillar array functionalized with gold nanoparticles. The micropillar structures were fabricated on the fiber facet using a single-mask imprint lithography process, followed by nanoparticle immobilization to [...] Read more.
This study reports the development of a fiber-optic localized surface plasmon resonance (FO-LSPR) sensor incorporating a three-dimensional micropillar array functionalized with gold nanoparticles. The micropillar structures were fabricated on the fiber facet using a single-mask imprint lithography process, followed by nanoparticle immobilization to create a composite plasmonic surface. Compared with flat polymer-coated fibers, the micropillar array markedly increased the effective sensing surface and enhanced light trapping by providing anti-reflective conditions at the interface. Consequently, the sensor demonstrated superior performance in refractive index sensing, yielding a sensitivity of 4.54 with an R2 of 0.984, in contrast to 3.13 and 0.979 obtained for the flat counterpart. To validate its biosensing applicability, Interleukin-8 (IL-8), a cancer-associated cytokine, was selected as a model analyte. Direct immunoassays revealed quantitative detection across a broad dynamic range (0.1–1000 pg/mL) with a limit of detection of 0.013 pg/mL, while specificity was confirmed against non-target proteins. The proposed FO-LSPR platform thus offers a cost-effective and reproducible route to overcome the surface-area limitations of conventional designs, providing enhanced sensitivity and stability. These results highlight the potential of the micropillar-based FO-LSPR sensor for practical deployment in point-of-care diagnostics and real-time biomolecular monitoring. Full article
Show Figures

Figure 1

52 pages, 7164 KB  
Review
Binary Oxide Ceramics (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3) for Solar Cell Applications: A Comparative and Bibliometric Analysis
by Yana Suchikova, Serhii Nazarovets, Marina Konuhova and Anatoli I. Popov
Ceramics 2025, 8(4), 119; https://doi.org/10.3390/ceramics8040119 - 23 Sep 2025
Cited by 8 | Viewed by 3681
Abstract
Binary oxide ceramics have emerged as key materials in solar energy research due to their versatility, chemical stability, and tunable electronic properties. This study presents a comparative analysis of seven prominent oxides (TiO2, ZnO, Al2O3, SiO2 [...] Read more.
Binary oxide ceramics have emerged as key materials in solar energy research due to their versatility, chemical stability, and tunable electronic properties. This study presents a comparative analysis of seven prominent oxides (TiO2, ZnO, Al2O3, SiO2, CeO2, Fe2O3, and WO3), focusing on their functional roles in silicon, perovskite, dye-sensitized, and thin-film solar cells. A bibliometric analysis covering over 50,000 publications highlights TiO2 and ZnO as the most widely studied materials, serving as electron transport layers, antireflective coatings, and buffer layers. Al2O3 and SiO2 demonstrate highly specialized applications in surface passivation and interface engineering, while CeO2 offers UV-blocking capability and Fe2O3 shows potential as an absorber material in photoelectrochemical systems. WO3 is noted for its multifunctionality and suitability for scalable, high-rate processing. Together, these findings suggest that binary oxide ceramics are poised to transition from supporting roles to essential components of stable, efficient, and environmentally safer next-generation solar cells. Full article
Show Figures

Figure 1

13 pages, 1954 KB  
Article
Temperature-Dependent Growth Mechanisms and Optical Properties of MgF2 Thin Films Synthesized by Plasma-Enhanced Atomic Layer Deposition
by Shui-Yang Lien, Xiao Lin, Zhi-Xuan Zhang, Jing Zhang, Wen-Xuan Zhu, Chia-Hsun Hsu and Chen Wang
Chemistry 2025, 7(5), 147; https://doi.org/10.3390/chemistry7050147 - 15 Sep 2025
Viewed by 1490
Abstract
MgF2 films are prepared using plasma-enhanced atomic layer deposition (PEALD). The influence of substrate temperature on the growth behavior, chemical composition, and optical properties of MgF2 films is systematically investigated. The experimental results show that the deposition process transitions through three [...] Read more.
MgF2 films are prepared using plasma-enhanced atomic layer deposition (PEALD). The influence of substrate temperature on the growth behavior, chemical composition, and optical properties of MgF2 films is systematically investigated. The experimental results show that the deposition process transitions through three distinct regimes: an incomplete-reaction regime at 100 °C, a self-limiting ALD window at 125–150 °C, and a chemical vapor deposition (CVD)-like regime above 175 °C. At 100 °C, incomplete surface chemistry yields low growth-per-cycle, carbon incorporation, and an elevated refractive index. Within 125–150 °C, films are near-stoichiometric, smooth, and exhibit a low refractive index ≈ 1.37 ± 0.003 at 550 nm. Above 175 °C, precursor decomposition drives non-self-limiting growth with increased roughness. As an application-level validation, a film grown at 125 °C used as a double-sided antireflection coating on glass increases transmittance from 92 ± 0.1% (bare) to 97.2% ± 0.2% at 550 nm. The average transmittance of 96.4 ± 0.2% over 380–780 nm can be achieved. Overall, this work establishes the relationship between deposition temperature and PEALD-MgF2 film properties and demonstrates precise, low-temperature, non-corrosive deposition suitable for advanced optical antireflection coatings. Full article
Show Figures

Figure 1

9 pages, 1739 KB  
Article
High-Responsivity Waveguide UTC Photodetector with 90 GHz Bandwidth for High-Speed Optical Communication
by Yu Zheng, Qin Han, Han Ye, Shuai Wang, Yimiao Chu, Liyan Geng and Junming An
Photonics 2025, 12(9), 891; https://doi.org/10.3390/photonics12090891 - 5 Sep 2025
Viewed by 993
Abstract
A directly coupled waveguide uni-traveling carrier photodetector (UTC-PD) with high responsivity and broad bandwidth is demonstrated. The device’s epitaxial structure was carefully optimized via optical simulations to enhance quantum efficiency. Furthermore, the fabrication process was refined to introduce a vertically defined mushroom-shaped mesa [...] Read more.
A directly coupled waveguide uni-traveling carrier photodetector (UTC-PD) with high responsivity and broad bandwidth is demonstrated. The device’s epitaxial structure was carefully optimized via optical simulations to enhance quantum efficiency. Furthermore, the fabrication process was refined to introduce a vertically defined mushroom-shaped mesa structure, which effectively maintains high responsivity while facilitating further improvement in bandwidth performance. As a result, the fabricated device, without the use of an anti-reflection coating, simultaneously achieves a responsivity of 0.49 A/W and a 3 dB bandwidth of 90 GHz. Full article
(This article belongs to the Section Optical Communication and Network)
Show Figures

Figure 1

15 pages, 2412 KB  
Article
Preparation of Infrared Anti-Reflection Surfaces Based on Microcone Structures of Silicon Carbide
by Ruirui Li, Xiaozheng Ji, Sijia Chang, Haoyu Tian, Zihong Zhao and Chengqun Chu
Materials 2025, 18(17), 4054; https://doi.org/10.3390/ma18174054 - 29 Aug 2025
Viewed by 981
Abstract
Silicon carbide (SiC) has become the material of choice for precision optical systems due to its exceptional optical characteristics. However, conventional anti-reflection strategies for SiC components predominantly utilize deposited thin-film coatings, which are frequently compromised by insufficient environmental robustness and long-term stability concerns. [...] Read more.
Silicon carbide (SiC) has become the material of choice for precision optical systems due to its exceptional optical characteristics. However, conventional anti-reflection strategies for SiC components predominantly utilize deposited thin-film coatings, which are frequently compromised by insufficient environmental robustness and long-term stability concerns. To overcome these limitations, direct nanostructuring of SiC substrates has emerged as a promising alternative solution. This work introduces an innovative graded-index microcone array design fabricated on SiC substrates, achieving superior broadband anti-reflection performance. Our two-step fabrication methodology comprises plasma-induced formation of tunable nanofiber etch masks through controlled argon bombardment parameters, followed by precision reactive ion etching (RIE) for microcone array formation. By systematically varying plasma exposure duration, we demonstrate precise control over nanofiber mask morphology, which in turn enables the fabrication of height-optimized SiC microcone arrays. The resulting structures exhibit exceptional optical performance, achieving an ultra-low average reflectivity of 2.25% across the spectral range of 2.5–8 μm. This breakthrough fabrication technique not only extends the available toolbox for SiC micro/nanofabrication but also provides a robust platform for next-generation optical applications. Unlike conventional thin-film approaches, our nanostructuring method preserves the intrinsic mechanical and environmental durability of the SiC substrate while delivering a favorable optical performance. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

15 pages, 3608 KB  
Article
Design Method for Stress Reduction of Multilayer Thin Films
by Songlin Wang, Jianfu Zhang, Gaoyuan Mi, Qingqing Wu, Wanhong Yin, Runqing Li, Hongjun Zhao and Wei Wei
Coatings 2025, 15(9), 980; https://doi.org/10.3390/coatings15090980 - 22 Aug 2025
Viewed by 1198
Abstract
Residual stress in optical thin films severely degrades optoelectronic device performance. Traditional designs, relying on extensive experiments, limit precise stress regulation. This study proposes a Stoney’s formula-based stress design method for multilayer thin films, constructing a mathematical model to characterize their total stress. [...] Read more.
Residual stress in optical thin films severely degrades optoelectronic device performance. Traditional designs, relying on extensive experiments, limit precise stress regulation. This study proposes a Stoney’s formula-based stress design method for multilayer thin films, constructing a mathematical model to characterize their total stress. Innovatively, it integrates single-layer stress and spectral performance for dual-objective optimization (stress elimination and spectral indicators), significantly reducing deposition workload. Experiments show small stress-prediction deviations in the 1.064 μm laser and 3.7–4.8 μm mid-infrared bands. A 16-layer broadband antireflection film (400–900 nm) with Ti2O3, HfO2, and SiO2 also shows effectively reduced stress. This model offers a novel, reliable scheme for precise residual stress regulation in multilayer thin films. Full article
(This article belongs to the Section Thin Films)
Show Figures

Figure 1

10 pages, 2289 KB  
Communication
Raman Gas Analysis with External Power Build-Up Cavity of Line-Narrowed 407-nm Laser Diode
by Zhongyi Yao, Xinbing Wang and Duluo Zuo
Sensors 2025, 25(15), 4600; https://doi.org/10.3390/s25154600 - 25 Jul 2025
Cited by 1 | Viewed by 845
Abstract
An external power build-up cavity of a line-narrowed 407-nm laser diode for Raman gas analysis was demonstrated to possess good gas detection capabilities. By employing an ordinary laser diode without anti-reflection coating or and a bandpass interference filter in an external cavity resonance, [...] Read more.
An external power build-up cavity of a line-narrowed 407-nm laser diode for Raman gas analysis was demonstrated to possess good gas detection capabilities. By employing an ordinary laser diode without anti-reflection coating or and a bandpass interference filter in an external cavity resonance, the laser linewidth was narrowed by resonant optical feedback, and tens of watts of external cavity power were built up. The coupling mechanism between the semiconductor laser and the external cavity are discussed, as well as the noise background in the experimental results. The Raman spectrum of ambient air was analyzed, achieving a methane detection limit of 1 ppm. Full article
(This article belongs to the Special Issue Spectroscopy Gas Sensing and Applications)
Show Figures

Figure 1

18 pages, 2524 KB  
Article
Measuring Optical Scattering in Relation to Coatings on Crystalline X-Ray Scintillator Screens
by Matthias Diez and Simon Zabler
Crystals 2025, 15(7), 605; https://doi.org/10.3390/cryst15070605 - 27 Jun 2025
Viewed by 869
Abstract
Scattered light makes up a significant amount of recorded intensities during tomographic imaging, thereby leading to severe misinterpretation and artifacts in the reconstructed volume images. Correcting artificial intensities that stem from scattered light, therefore, is of primary interest and demands quantitative measurements. While [...] Read more.
Scattered light makes up a significant amount of recorded intensities during tomographic imaging, thereby leading to severe misinterpretation and artifacts in the reconstructed volume images. Correcting artificial intensities that stem from scattered light, therefore, is of primary interest and demands quantitative measurements. While numerous methods have been developed to reduce X-ray scattering artifacts, fewer methods deal with optical scattering. In this study, a measurement method for determining optical scattering in scintillators is presented with the aim of further developing correction algorithms. A theoretical model based on internal multiple reflections was developed for this purpose. This model assumes an additive exponential kernel with a certain scattering length to the system’s point spread function. This assumption was confirmed, and the scatter length was estimated from three new different kinds of experiments (hgap, rect, and LSF) on the BM18 beamline of the European synchrotron. The experiments further revealed significant differences in scattering proportion and length when different coatings are applied to the front and back faces of crystalline LuAG scintillators. Anti-reflective coatings on the backside show an effect of reducing the scattering magnitude while reflective coatings on the front side increase the proportion of the unscattered signal and, thus, show proportionally less scattering than black coating or no front coating. In particular, roughened black coating is found to worsen optical scattering. In summary, our results indicate that a combination of reflective (front) and anti-reflective (back) coatings yields the least optical scattering and, hence, the best image quality. Full article
(This article belongs to the Section Crystal Engineering)
Show Figures

Figure 1

20 pages, 3209 KB  
Article
Experimental Evaluation of GAGG:Ce Crystalline Scintillator Properties Under X-Ray Radiation
by Anastasios Dimitrakopoulos, Christos Michail, Ioannis Valais, George Fountos, Ioannis Kandarakis and Nektarios Kalyvas
Crystals 2025, 15(7), 590; https://doi.org/10.3390/cryst15070590 - 23 Jun 2025
Cited by 2 | Viewed by 2223
Abstract
The scope of this study was to evaluate the response of Ce-doped gadolinium aluminum gallium garnet (GAGG:Ce) crystalline scintillator under medical X-ray irradiation for medical imaging applications. A 10 × 10 × 10 mm3 crystal was irradiated at X-ray tube voltages ranging [...] Read more.
The scope of this study was to evaluate the response of Ce-doped gadolinium aluminum gallium garnet (GAGG:Ce) crystalline scintillator under medical X-ray irradiation for medical imaging applications. A 10 × 10 × 10 mm3 crystal was irradiated at X-ray tube voltages ranging from 50 kVp to 150 kVp. The crystal’s compatibility with several commercially available optical photon detectors was evaluated using the spectral matching factor (SMF) along with the absolute efficiency (AE) and the effective efficiency (EE). In addition, the energy-absorption efficiency (EAE), the quantum-detection efficiency (QDE) as well as the zero-frequency detective quantum detection efficiency DQE(0) were determined. The crystal demonstrated satisfactory AE values as high as 26.3 E.U. (where 1 E.U. = 1 μW∙m−2/(mR∙s−1)) at 150 kVp, similar, or in some cases, even superior to other cerium-doped scintillator materials. It also exhibits adequate DQE(0) performance ranging from 0.99 to 0.95 across all the examined X-ray tube voltages. Moreover, it showed high spectral compatibility with commonly used photoreceptors in modern day such as complementary metal–oxide–semiconductors (CMOS) and charge-coupled-devices (CCD) with SMF values of 0.95 for CCD with broadband anti-reflection coating and 0.99 for hybrid CMOS blue. The aforementioned properties of this scintillator material were indicative of its superior efficiency in the examined medical energy range, compared to other commonly used scintillators. Full article
(This article belongs to the Special Issue Exploring New Materials for the Transition to Sustainable Energy)
Show Figures

Figure 1

Back to TopTop