High-Responsivity Waveguide UTC Photodetector with 90 GHz Bandwidth for High-Speed Optical Communication
Abstract
1. Introduction
2. Device Structure Design
3. Device Fabrication and Characterization
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chowdhury, M.Z.; Shahjalal, M.; Ahmed, S.; Jang, Y.M. 6G wireless communication systems: Applications, requirements, technologies, challenges, and research directions. IEEE Open J. Commun. Soc. 2020, 1, 957–975. [Google Scholar] [CrossRef]
- Jaber, A.T.; Ahmed, S.S.; Kadhim, S.A. Next generation of high-speed optical communications networks using ofdm technology. J. Phys. Conf. Ser. 2020, 1591, 012092. [Google Scholar] [CrossRef]
- Ghassemlooy, Z.; Arnon, S.; Uysal, M.; Xu, Z.; Cheng, J. Emerging optical wireless communications-advances and challenges. IEEE J. Sel. Areas Commun. 2015, 33, 1738–1749. [Google Scholar] [CrossRef]
- Rashed, A.N.Z. High efficiency wireless optical links in high transmission speed wireless optical communication networks. Int. J. Commun. Syst. 2014, 27, 3416–3429. [Google Scholar] [CrossRef]
- Rajbhandari, S.; Chun, H.; Faulkner, G.; Cameron, K.; Jalajakumari, A.V.N.; Henderson, R.; Tsonev, D.; Ijaz, M.; Chen, Z.; Haas, H.; et al. High-speed integrated visible light communication system: Device constraints and design considerations. IEEE J. Sel. Areas Commun. 2015, 33, 1750–1757. [Google Scholar] [CrossRef]
- Ishibashi, T.; Kodama, S.; Shimizu, N.S.N.; Furuta, T. High-speed response of uni-traveling-carrier photodiodes. Jpn. J. Appl. Phys. 1997, 36, 6263. [Google Scholar] [CrossRef]
- Zhou, G.; Runge, P. Nonlinearities of high-speed pin photodiodes and MUTC photodiodes. IEEE Trans. Microw. Theory Tech. 2017, 65, 2063–2072. [Google Scholar] [CrossRef]
- Chtioui, M.; Lelarge, F.; Enard, A.; Pommereau, F.; Carpentier, D.; Marceaux, A.; van Dijk, F.; Achouche, M. High responsivity and high power UTC and MUTC GaInAs-InP photodiodes. IEEE Photonics Technol. Lett. 2011, 24, 318–320. [Google Scholar] [CrossRef]
- Huang, Y.C.; Chen, N.W.; Wu, Y.K.; Naseem; Shi, J.W. Improvements in the maximum THz output power and responsivity in near-ballistic uni-traveling-carrier photodiodes with an undercut collector. J. Light. Technol. 2023, 42, 2362–2370. [Google Scholar] [CrossRef]
- Lin, X.; Natrella, M.; Seddon, J.; Graham, C.; Renaud, C.C.; Tang, M.; Wu, J.; Liu, H.; Seeds, A.J. High performance waveguide uni-travelling carrier photodiode grown by solid source molecular beam epitaxy. Opt. Express 2019, 27, 37065–37086. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Pan, H.; Chen, H.; Beling, A.; Campbell, J.C. High-saturation-current modified uni-traveling-carrier photodiode with cliff layer. IEEE J. Quantum Electron. 2010, 46, 626–632. [Google Scholar] [CrossRef]
- Li, W.; Beling, A.; Campbell, J.; Hillier, G.; Stender, C.; Pan, N.; Fay, P. Front-side-illuminated InGaAs/InP modified UTC-photodiodes with cliff layer. In Proceedings of the CS MANTECH Conference, Denver, CO, USA, 19–22 May 2014. [Google Scholar]
- Li, Q.; Sun, K.; Li, K.; Yu, Q.; Runge, P.; Ebert, W.; Beling, A.; Campbell, J.C. High-power evanescently coupled waveguide MUTC photodiode with> 105-GHz bandwidth. J. Light. Technol. 2017, 35, 4752–4757. [Google Scholar] [CrossRef]
- Tossoun, B.; Morgan, J.; Beling, A. Ultra-low capacitance, high-speed integrated waveguide photodiodes on InP. In Proceedings of the Integrated Photonics Research, Silicon and Nanophotonics, Burlingame, CA, USA, 29 July–1 August 2019; Optica Publishing Group: Washington, DC, USA, 2019; p. IT3A.6. [Google Scholar]
- Grzeslo, M.; Dülme, S.; Clochiatti, S.; Neerfeld, T.; Haddad, T.; Lu, P.; Tebart, J.; Makhlouf, S.; Biurrun-Quel, C.; Estévez, J.L.F.; et al. High saturation photocurrent THz waveguide-type MUTC-photodiodes reaching mW output power within the WR3. 4 band. Opt. Express 2023, 31, 6484–6498. [Google Scholar] [CrossRef]
- Rouvalis, E.; Chtioui, M.; Tran, M.; Lelarge, F.; van Dijk, F.; Fice, M.J.; Renaud, C.C.; Carpintero, G.; Seeds, A.J. High-speed photodiodes for InP-based photonic integrated circuits. Opt. Express 2012, 20, 9172–9177. [Google Scholar] [CrossRef] [PubMed]
- Kato, K.; Hata, S.; Kozen, A.; Oku, S.; Matsumoto, S.; Yoshida, J. 22 Ghz Photodiode Monolithically Integrated with Optical Wave-Guide on Semiinsulating Inp Using Novel Butt-Joint Structure. Electron. Lett. 1992, 28, 1140–1142. [Google Scholar] [CrossRef]
- Beling, A.; Bach, H.G.; Mekonnen, G.G.; Kunkel, R.; Schmidt, D. Miniaturized waveguide-integrated pin photodetector with 120-GHz bandwidth and high responsivity. IEEE Photonics Technol. Lett. 2005, 17, 2152–2154. [Google Scholar] [CrossRef]
- Kozyreva, O.A.; Solov’Ev, Y.V.; Polukhin, I.S.; Mikhailov, A.K.; Mikhailovskiy, G.A.; Odnoblyudov, M.A.; Gareev, E.Z.; Kolodeznyi, E.S.; Novikov, I.I.; Karachinsky, L.Y.; et al. High-speed 1.3–1.55 μm InGaAs/InP PIN photodetector for microwave photonics. J. Phys. Conf. Ser. 2017, 917, 052029. [Google Scholar] [CrossRef]
- Shi, J.W.; Cheng, Y.H.; Wun, J.M.; Chi, K.L.; Hsin, Y.M.; Benjamin, S.D. High-speed, high-efficiency, large-area pin photodiode for application to optical interconnects from 0.85 to 1.55 μm wavelengths. J. Light. Technol. 2013, 31, 3956–3961. [Google Scholar] [CrossRef]
- Wang, X.; Duan, N.; Chen, H.; Campbell, J.C. InGaAs–InP photodiodes with high responsivity and high saturation power. IEEE Photonics Technol. Lett. 2007, 19, 1272–1274. [Google Scholar] [CrossRef]
- Liu, F.; Huang, Y.; Kang, C.; Chen, Q.; Duan, X.; Ren, X. High speed and high responsivity dual-absorption InGaAs/InP UTC-PDs. In Proceedings of the 2015 Opto-Electronics and Communications Conference (OECC), Shanghai, China, 28 June–2 July 2015; pp. 1–3. [Google Scholar]
- Rouvalis, E.; Cthioui, M.; van Dijk, F.; Fice, M.J.; Carpintero, G.; Renaud, C.C.; Seeds, A.J. 170 GHz Photodiodes for InP-based photonic integrated circuits. In Proceedings of the IEEE Photonics Conference 2012, Cocoa Beach, FL, USA, 11–13 September 2012; pp. 88–89. [Google Scholar]
Composition | Thickness [nm] | Doping [cm−3] | Function |
---|---|---|---|
In0.53Ga0.47As | 80 | P-2.0 × 1018 | P-contact |
InP | 200 | P-1.0 × 1018 | Cladding |
InGaAsP (Q1.3) | 900 | P-3.0 × 1018 | Cladding |
In0.53Ga0.47As | 25 | P-2.5 × 1018 | Absorber |
In0.53Ga0.47As | 25 | P-1.0 × 1018 | Absorber |
In0.53Ga0.47As | 25 | P-5.0 × 1017 | Absorber |
In0.53Ga0.47As | 75 | u.i.d | Absorber |
InGaAsP (Q1.3) | 20 | N-5.0 × 1017 | Cliff |
InGaAsP (Q1.3) | 200 | N-1.0 × 1016 | Collector |
InP | 100 | N-2.0 × 1018 | Collector |
InGaAsP (Q1.3) | 580 | N-2.0 × 1018 | N-contact |
InP | 500 | u.i.d | Buffer |
InP | 300,000 | Substrate |
References | Device Type | Responsivity | Bandwidth |
---|---|---|---|
[12] | UTC-PD | 0.36 A/W | 12.8 GHz |
[13] | UTC-PD | 0.16 A/W | 105 GHz |
[14] | UTC-PD | 0.26 A/W | 85 GHz |
[15] | UTC-PD | 0.25 A/W | 100 GHz |
[19] | PIN | 0.65 A/W | 20 GHz |
[20] | PIN | 0.9 A/W | 25 GHz |
[21] | WG-UTC | 0.75 A/W | 14 GHz |
[22] | UTC-PD | 0.33 A/W | 52.2 GHz |
[23] | UTC-PD | 170 GHz | 0.27 A/W |
Our work | UTC-PD | 0.49 A/W | 90 GHz |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, Y.; Han, Q.; Ye, H.; Wang, S.; Chu, Y.; Geng, L.; An, J. High-Responsivity Waveguide UTC Photodetector with 90 GHz Bandwidth for High-Speed Optical Communication. Photonics 2025, 12, 891. https://doi.org/10.3390/photonics12090891
Zheng Y, Han Q, Ye H, Wang S, Chu Y, Geng L, An J. High-Responsivity Waveguide UTC Photodetector with 90 GHz Bandwidth for High-Speed Optical Communication. Photonics. 2025; 12(9):891. https://doi.org/10.3390/photonics12090891
Chicago/Turabian StyleZheng, Yu, Qin Han, Han Ye, Shuai Wang, Yimiao Chu, Liyan Geng, and Junming An. 2025. "High-Responsivity Waveguide UTC Photodetector with 90 GHz Bandwidth for High-Speed Optical Communication" Photonics 12, no. 9: 891. https://doi.org/10.3390/photonics12090891
APA StyleZheng, Y., Han, Q., Ye, H., Wang, S., Chu, Y., Geng, L., & An, J. (2025). High-Responsivity Waveguide UTC Photodetector with 90 GHz Bandwidth for High-Speed Optical Communication. Photonics, 12(9), 891. https://doi.org/10.3390/photonics12090891