Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,593)

Search Parameters:
Keywords = antioxidant polysaccharide

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 2476 KiB  
Article
Fucoidan Modulates Osteoarthritis Progression Through miR-22/HO-1 Pathway
by Tsung-Hsun Hsieh, Jar-Yi Ho, Chih-Chien Wang, Feng-Cheng Liu, Chian-Her Lee, Herng-Sheng Lee and Yi-Jen Peng
Cells 2025, 14(15), 1208; https://doi.org/10.3390/cells14151208 (registering DOI) - 6 Aug 2025
Abstract
Introduction: Osteoarthritis (OA), a leading cause of disability among the elderly, is characterized by progressive joint tissue destruction. Fucoidan, a sulfated polysaccharide with known anti-inflammatory and antioxidant properties, has been investigated for its potential to protect against interleukin-1 beta (IL-1β)-induced articular tissue damage. [...] Read more.
Introduction: Osteoarthritis (OA), a leading cause of disability among the elderly, is characterized by progressive joint tissue destruction. Fucoidan, a sulfated polysaccharide with known anti-inflammatory and antioxidant properties, has been investigated for its potential to protect against interleukin-1 beta (IL-1β)-induced articular tissue damage. Methods: Human primary chondrocytes and synovial fibroblasts were pre-treated with 100 μg/mL fucoidan before stimulation with 1 ng/mL of IL-1β. The protective effects of fucoidan were assessed by measuring oxidative stress markers and catabolic enzyme levels. These in vitro findings were corroborated using a rat anterior cruciate ligament transection-induced OA model. To explore the underlying mechanisms, particularly the interaction between microRNAs (miRs) and heme oxygenase-1 (HO-1), five candidate miRs were identified in silico and experimentally validated. Luciferase reporter assays were used to confirm direct interactions. Results: Fucoidan exhibited protective effects against IL-1β-induced oxidative stress and catabolic processes in both chondrocytes and synovial fibroblasts, consistent with in vivo observations. Fucoidan treatment restored HO-1 expression while reducing inducible nitric oxide synthase and matrix metalloproteinase levels in IL-1β-stimulated cells. Notably, this study revealed that fucoidan modulates the miR-22/HO-1 pathway, a previously uncharacterized mechanism in OA. Specifically, miR-22 was upregulated by IL-1β and subsequently attenuated by fucoidan. Luciferase reporter assays confirmed a direct interaction between miR-22 and HO-1. Conclusion: The results demonstrate that fucoidan mitigates OA-related oxidative stress in chondrocytes and synovial fibroblasts through the novel modulation of the miR-22/HO-1 axis. The miR-22/HO-1 pathway represents a crucial therapeutic target for OA, and fucoidan may offer a promising therapeutic intervention. Full article
Show Figures

Figure 1

13 pages, 745 KiB  
Article
Optimizing Selenium Polysaccharide Supplementation: Impacts on Growth, Oxidative Stress, and Tissue Selenium in Juvenile Large Yellow Croaker (Larimichthys crocea)
by Jinxing Xiao, Zhoudi Miao, Shiliang Dong, Kaiyang Wang, Fan Zhou and Zilong Li
Animals 2025, 15(15), 2292; https://doi.org/10.3390/ani15152292 - 6 Aug 2025
Abstract
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a [...] Read more.
Selenium (Se) is an essential trace element critical for animal growth and immune function. This study investigated the dietary selenium requirement of juvenile large yellow croaker (Larimichthys crocea) through an 8-week feeding trial. Five experimental diets were formulated by supplementing a basal diet with selenium polysaccharides (Se-PS) at 0, 20, 30, 40, and 50 mg/kg, resulting in analyzed Se concentrations of 0.35, 0.54, 0.71, 0.93, and 1.11 mg/kg, respectively. The results demonstrated that growth performance and feed efficiency improved with increasing dietary selenium, peaking at 0.93 mg/kg before declining at higher levels. Antioxidant enzyme activities—superoxide dismutase (SOD) and catalase (CAT)—in serum and liver tissues exhibited a dose-dependent increase, reaching maximal levels at 1.11 mg/kg. Conversely, malondialdehyde (MDA), a marker of oxidative stress, progressively decreased in both serum and liver, attaining its lowest concentration at 1.11 mg/kg, though this did not differ significantly from the 0.93 mg/kg group (p = 0.056). Tissue selenium accumulation was highest at these optimal dietary levels. Based on the growth performance, oxidative stress response, and tissue selenium retention, the recommended dietary selenium requirement for juvenile large yellow croaker is 0.93 mg/kg. These findings highlight the importance of optimal Se supplementation in aquafeeds to enhance growth and physiological health in farmed fish. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

23 pages, 1714 KiB  
Article
Physicochemical and Biological Properties of Quercetin-Loaded Low-Molecular-Weight Chitosan Nanoparticles Derived from Hermetia illucens Larvae and Crustacean Sources: A Comparative Study
by Anna Guarnieri, Rosanna Mallamaci, Giuseppe Trapani, Dolores Ianniciello, Carmen Scieuzo, Francesco Iannielli, Luigi Capasso, Maria Chiara Sportelli, Alessandra Barbanente, Michela Marsico, Angela De Bonis, Stefano Castellani, Patrizia Falabella and Adriana Trapani
Pharmaceutics 2025, 17(8), 1016; https://doi.org/10.3390/pharmaceutics17081016 - 5 Aug 2025
Abstract
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac [...] Read more.
Introduction. Larvae of the insect Hermetia illucens can represent an alternative source for low-molecular-weight chitosan (CS) production compared with CS from crustaceans (CScrustac), making it appealing in terms of pharmaceutical applications. Hence, the performances of CSlarvae and CScrustac were compared herein by investigating the in vitro features of nanoparticles (NPs) made from each polysaccharide and administered with the antioxidant quercetin (QUE). Methods. X-ray diffraction and FT-IR spectroscopy enabled the identification of each type of CS. Following the ionic gelation technique and using sulfobutylether-β-cyclodextrin as a cross-linking agent, NPs were easily obtained. Results. Physicochemical data, release studies in PBS, and the evaluation of antioxidant effects via the 1,1-diphenyl-2-picrylhydrazyl (DPPH) test were studied for both CSlarvae and CScrustac. QUE-loaded NP sizes ranged from 180 to 547 nm, and zeta potential values were between +7.5 and +39.3 mV. In vitro QUE release in PBS was faster from QUE-CSlarvae NPs than from CScrustac, and high antioxidant activity—according to the DPPH test—was observed for all tested NP formulations. Discussion. The agar diffusion assay, referring to Escherichia coli and Micrococcus flavus, as well as the microdilution assay, showed the best performance as antimicrobial formulations in the case of QUE-CSlarvae NPs. QUE-CSlarvae NPs can represent a promising vehicle for QUE, releasing it in a sustained manner, and, relevantly, the synergism noticed between QUE and CSlarvae resulted in a final antimicrobial product. Conclusions. New perspectives for low-molecular-weight CS are disclosed by adopting renewable sources from insects instead of the commercial CScrustac. Full article
(This article belongs to the Section Biopharmaceutics)
Show Figures

Figure 1

25 pages, 816 KiB  
Article
Bioactive Compounds and Antioxidant Activity of Boletus edulis, Imleria badia, Leccinum scabrum in the Context of Environmental Conditions and Heavy Metals Bioaccumulation
by Zofia Sotek, Katarzyna Malinowska, Małgorzata Stasińska and Ireneusz Ochmian
Molecules 2025, 30(15), 3277; https://doi.org/10.3390/molecules30153277 - 5 Aug 2025
Abstract
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria [...] Read more.
Wild edible mushrooms are increasingly recognised for their nutritional and therapeutic potential, owing to their richness in bioactive compounds and antioxidant properties. This study assessed the chemical composition, antioxidant capacity, and bioaccumulation of heavy metals (Cd, Pb, Ni) in Boletus edulis, Imleria badia, and Leccinum scabrum collected from two forested regions of north-western Poland differing in anthropogenic influence and soil characteristics. The analysis encompassed structural polysaccharides (β- and α-glucans, chitin), carotenoids, L-ascorbic acid, phenolic and organic acids. B. edulis exhibited the highest β-glucan and lycopene contents, but also the greatest cadmium accumulation. I. badia was distinguished by elevated ascorbic and citric acid levels and the strongest DPPH radical scavenging activity, while L. scabrum showed the highest ABTS and FRAP antioxidant capacities and accumulated quinic acid and catechin. Principal component analysis indicated strong correlations between antioxidant activity and phenolic acids, while cadmium levels were inversely associated with antioxidant potential and positively correlated with chitin. Although all metal concentrations remained within EU food safety limits, B. edulis showed consistent cadmium bioaccumulation. From a practical perspective, the results highlight the importance of species selection and sourcing location when considering wild mushrooms for consumption or processing, particularly in the context of nutritional value and contaminant load. Importantly, regular or excessive consumption of B. edulis may result in exceeding the tolerable weekly intake (TWI) levels for cadmium and nickel, which warrants particular attention from a food safety perspective. These findings underscore the influence of species-specific traits and environmental conditions on mushroom biochemical profiles and support their potential as functional foods, provided that metal contents are adequately monitored. Full article
Show Figures

Figure 1

15 pages, 647 KiB  
Article
Effects of Burdock Addition and Different Starters on the Quality and Flavor Improvement of Duck Sausages
by Li Cui, Xuan Zhao, Xingye Song, Wenjing Zhou, Tao Wang, Wuyang Huang and Yuxing Guo
Biology 2025, 14(8), 996; https://doi.org/10.3390/biology14080996 (registering DOI) - 4 Aug 2025
Abstract
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, [...] Read more.
Burdock (Arctium lappa L.) is a medicinal and edible homologous plant whose roots contain many bioactive substances such as polysaccharides and phenolics. This study explored the integration of burdock powder and lactic acid bacteria fermentation to enhance the nutritional quality, sensory attributes, and flavor profiles of duck sausages. Three bacterial strains, Lacticaseibacillus casei, L. helveticus, and L. plantarum, were selected based on sensory analysis, and their effects on sausage properties were evaluated through combined fermentation trials. The results demonstrated that duck sausages fermented with L. plantarum and L. helveticus and supplemented with 3% burdock powder (PHB group) exhibited > 1.5-fold higher antioxidant activity (ABTS at 85.2 μmol trolox/g and DPPH at 92.7 μmol trolox/g, respectively; p < 0.05) and 15% increase in total phenolic content (8.24 mg gallic acid/g) compared to non-fermented counterparts. The PHB formulation also enhanced color stability (lightness, redness, yellowness), textural characteristics (hardness, springiness, cohesiveness), and sensory acceptability. Volatile compound analysis revealed a reduction in off-odor aldehydes (hexanal, (E)-2-octenal, (E)-2-decenal, and (E,E)-2,4-decadienal) and increased production of desirable aromatic compounds like tetramethyl-pyrazine. These findings highlight the potential of combining lactic acid bacteria fermentation with burdock powder to develop functional duck sausages with improved nutritional and sensory properties. Full article
(This article belongs to the Special Issue Nutraceutical and Bioactive Compounds in Foods)
Show Figures

Figure 1

38 pages, 9437 KiB  
Review
Antibacterial Polysaccharides in Dental Implantology
by Lubica Hallmann and Mark Daniel Gerngroß
Mar. Drugs 2025, 23(8), 321; https://doi.org/10.3390/md23080321 - 4 Aug 2025
Abstract
Background: The aim of this review is to summarize and evaluate the properties of antibacterial polysaccharides for application in dental implantology to identify knowledge gaps and provide new research ideas. Methods: The electronic databases PubMed, Medline, ProQuest, and Google Scholar were used [...] Read more.
Background: The aim of this review is to summarize and evaluate the properties of antibacterial polysaccharides for application in dental implantology to identify knowledge gaps and provide new research ideas. Methods: The electronic databases PubMed, Medline, ProQuest, and Google Scholar were used to search for peer-reviewed scientific publications published between 2018 and 2025 that provide insights to answer research questions on the role of antibacterial polysaccharides in combating pathogens in dental implantology without triggering immune reactions and inflammation. Further research questions relate to the efficacy against various dental pathogens and the understanding of the antibacterial mechanism, which may enable the development of functionalized polysaccharides with long-term antibacterial activity. Results: Biomedical implants have revolutionized medicine but also increased the risk of infections. Implant infections are a major problem in implantology and lead to implant failure and replacement. An antibacterial coating could be an excellent strategy to extend the lifespan of implants and improve the quality of the patient’s life. Bacterial resistance to antibiotics poses significant challenges for researchers, forcing them to search for new ways to prevent bacterial infections in implantology. Antibacterial natural polymers have recently received considerable research attention due to their long-term antibacterial activity. Polysaccharides from marine sources, such as chitosan and alginate, or pectin, xanthan, etc., from various plants, appear to be promising biopolymers for such applications in implantology due to their antibacterial activity, biocompatibility, and osteogenic properties. The antibacterial activity of these natural biopolymers depends on their chemical and physical properties. Nanopolysaccharides exhibit higher antibacterial activity than conventional polysaccharides, but their toxicity to human cells must be considered. Their antibacterial activity is based on the disruption of bacterial DNA or RNA synthesis, increased cell wall permeability, membrane disruption, and cytoplasmic leakage. Conclusions: Polysaccharides are a class of natural polymers with a broad spectrum of biological activities. They exhibit antioxidant, immunomodulatory, anticoagulant, anticancer, anti-inflammatory, antibacterial, and antiviral activity. Furthermore, polysaccharides are non-cytotoxic and exhibit good biocompatibility with osteogenic cells. Bactericidal polysaccharides are attractive new antibacterial materials against implant infections and open up new perspectives in implantology. Full article
(This article belongs to the Special Issue Marine Biomaterials for Dental Applications)
Show Figures

Figure 1

27 pages, 3015 KiB  
Article
Preparation of Auricularia auricula-Derived Immune Modulators and Alleviation of Cyclophosphamide-Induced Immune Suppression and Intestinal Microbiota Dysbiosis in Mice
by Ming Zhao, Huiyan Huang, Bowen Li, Yu Pan, Chuankai Wang, Wanjia Du, Wenliang Wang, Yansheng Wang, Xue Mao and Xianghui Kong
Life 2025, 15(8), 1236; https://doi.org/10.3390/life15081236 - 4 Aug 2025
Viewed by 15
Abstract
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant [...] Read more.
With the acceleration of the pace of life, increased stress levels, and changes in lifestyle factors such as diet and exercise, the incidence of diseases such as cancer and immunodeficiency has been on the rise, which is closely associated with the impaired antioxidant capacity of the body. Polypeptides and polysaccharides derived from edible fungi demonstrate significant strong antioxidant activity and immunomodulatory effects. Auricularia auricula, the second most cultivated mushroom in China, is not only nutritionally rich but also offers considerable health benefits. In particular, its polysaccharides have been widely recognized for their immunomodulatory activities, while its abundant protein content holds great promise as a raw material for developing immunomodulatory peptides. To meet the demand for high-value utilization of Auricularia auricula resources, this study developed a key technology for the stepwise extraction of polypeptides (AAPP1) and polysaccharides (AAPS3) using a composite enzymatic hydrolysis process. Their antioxidant and immunomodulatory effects were assessed using cyclophosphamide (CTX)-induced immune-suppressed mice. The results showed that both AAPP1 and AAPS3 significantly reversed CTX-induced decreases in thymus and spleen indices (p < 0.05); upregulated serum levels of cytokines (e.g., IL-4, TNF-α) and immunoglobulins (e.g., IgA, IgG); enhanced the activities of hepatic antioxidant enzymes SOD and CAT (p < 0.05); and reduced the content of MDA, a marker of oxidative damage. Intestinal microbiota analysis revealed that these compounds restored CTX-induced reductions in microbial α-diversity, increased the abundance of beneficial bacteria (Paramuribaculum, Prevotella; p < 0.05), decreased the proportion of pro-inflammatory Duncaniella, and reshaped the balance of the Bacteroidota/Firmicutes phyla. This study represents the first instance of synergistic extraction of polypeptides and polysaccharides from Auricularia auricula using a single process. It demonstrates their immune-enhancing effects through multiple mechanisms, including “antioxidation-immune organ repair-intestinal microbiota regulation.” The findings offer a theoretical and technical foundation for the deep processing of Auricularia auricula and the development of functional foods. Full article
(This article belongs to the Special Issue Research Progress of Cultivation of Edible Fungi: 2nd Edition)
Show Figures

Figure 1

18 pages, 4468 KiB  
Article
Proteomic and Functional Analysis Reveals Temperature-Driven Immune Evasion Strategies of Streptococcus iniae in Yellowfin Seabream (Acanthopagrus latus)
by Yanjian Yang, Guanrong Zhang, Ruilong Xu, Yiyang Deng, Zequan Mo, Yanwei Li and Xueming Dan
Biology 2025, 14(8), 986; https://doi.org/10.3390/biology14080986 (registering DOI) - 2 Aug 2025
Viewed by 263
Abstract
Streptococcus iniae (S. iniae) is a globally significant aquatic pathogen responsible for severe economic losses in aquaculture. While the S. iniae infection often exhibits distinct seasonal patterns strongly correlated with water temperature, there is limited knowledge regarding the temperature-dependent immune evasion [...] Read more.
Streptococcus iniae (S. iniae) is a globally significant aquatic pathogen responsible for severe economic losses in aquaculture. While the S. iniae infection often exhibits distinct seasonal patterns strongly correlated with water temperature, there is limited knowledge regarding the temperature-dependent immune evasion strategies of S. iniae. Our results demonstrated a striking temperature-dependent virulence phenotype, with significantly higher A. latus mortality rates observed at high temperature (HT, 33 °C) compared to low temperature (LT, 23 °C). Proteomic analysis revealed temperature-dependent upregulation of key virulence factors, including streptolysin S-related proteins (SagG, SagH), antioxidant-related proteins (SodA), and multiple capsular polysaccharide (cps) synthesis proteins (cpsD, cpsH, cpsL, cpsY). Flow cytometry analysis showed that HT infection significantly reduced the percentage of lymphocyte and myeloid cell populations in the head kidney leukocytes of A. latus, which was associated with elevated caspase-3/7 expression and increased apoptosis. In addition, HT infection significantly inhibited the release of reactive oxygen species (ROS) but not nitric oxide (NO) production. Using S. iniae cps-deficient mutant, Δcps, we demonstrated that the cps is essential for temperature-dependent phagocytosis resistance in S. iniae, as phagocytic activity against Δcps remained unchanged across temperatures, while NS-1 showed significantly reduced uptake at HT. These findings provide new insights into the immune evasion of S. iniae under thermal regulation, deepening our understanding of the thermal adaptation of aquatic bacterial pathogens. Full article
(This article belongs to the Special Issue Aquatic Economic Animal Breeding and Healthy Farming)
Show Figures

Figure 1

20 pages, 10909 KiB  
Article
Preparation Optimization and Antioxidant Properties of the β-Glucan and Ferulic Acid/Quercetin Complex from Highland Barley (Hordeum vulgare var. nudum)
by Yuanhang Ren, Yanting Yang, Mi Jiang, Wentao Gu, Yanan Cao, Liang Zou and Lianxin Peng
Foods 2025, 14(15), 2712; https://doi.org/10.3390/foods14152712 - 1 Aug 2025
Viewed by 152
Abstract
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, [...] Read more.
Polysaccharides and phenols are commonly co-localized in various plant-derived foods, including highland barley (Hordeum vulgare L. var. nudum Hook. f.). The interactions between these compounds can influence multiple characteristics of food products, including their physicochemical properties and functional performance, such as bioavailability, stability, and digestibility, which may support promising application of the phenol and polysaccharide complex in health food industry. In this study, two complexes with potential existence in highland barley, such as β-glucan-ferulic acid (GF) and β-glucan-quercetin (GQ), were prepared using the equilibrium dialysis method in vitro. FTIR and SEM results showed that ferulic acid and quercetin formed complexes with β-glucan separately, with covalent and non-covalent bonds and a dense morphological structure. The pH value, reaction temperature, and concentration of phosphate buffer solution (PBS) were confirmed to have an impact on the formation and yield of the complex. Through the test of the response surface, it was found that the optimum conditions for GF and (GQ) preparations were a pH of 6.5 (6), a PBS buffer concentration of 0.08 mol/L (0.3 mol/L), and a temperature of 8 °C (20 °C). Through in vitro assays, GF and GQ were found to possess good antioxidant activity, with a greater scavenging effect of DPPH, ABTS, and hydroxyl radical than the individual phenolic acids and glucans, as well as their physical mixtures. Taking GF as an example, the DPPH radical scavenging capacity ranked as GF (71.74%) > ferulic acid (49.50%) > PGF (44.43%) > β-glucan (43.84%). Similar trends were observed for ABTS radical scavenging (GF: 54.56%; ferulic acid: 44.37%; PGF: 44.95%; β-glucan: 36.42%) and hydroxyl radical elimination (GF: 39.16%; ferulic acid: 33.06%; PGF: 35.51%; β-glucan: 35.47%). In conclusion, the convenient preparation method and excellent antioxidant effect of the phenol–polysaccharide complexes from highland barley provide new opportunities for industrial-scale production, development, and design of healthy food based on these complexes. Full article
Show Figures

Figure 1

19 pages, 10865 KiB  
Article
Evaluation of Immunoprotective Activities of White Button Mushroom (Agaricus bisporus) Water Extract Against Major Pathogenic Bacteria (Aeromonas hydrophila or Vibrio fluvialis) in Goldfish (Carassius auratus)
by Shujun Sun, Jing Chen, Pan Cui, Xiaoxiao Yang, Yuhan Zheng, Zijian Ma, Yong Liu and Xiang Liu
Animals 2025, 15(15), 2257; https://doi.org/10.3390/ani15152257 - 1 Aug 2025
Viewed by 168
Abstract
The white button mushroom (Agaricus bisporus) is a widely cultivated edible and medicinal mushroom, which contains various active substances, and has application value against pathogenic bacteria in aquaculture. Firstly, A. bisporus water extract (AB-WE) was prepared. Through the detection kits, it [...] Read more.
The white button mushroom (Agaricus bisporus) is a widely cultivated edible and medicinal mushroom, which contains various active substances, and has application value against pathogenic bacteria in aquaculture. Firstly, A. bisporus water extract (AB-WE) was prepared. Through the detection kits, it was found that the polysaccharide, protein, and polyphenol components of AB-WE were 9.11%, 3.3%, and 1.5%, respectively. The 246 compounds were identified in AB-WE, and the major small-molecule components included L-Isoleucine, L-Tyrosine, L-Valine, and Linoleic acid by HPLC-Q Exactive-Orbitrap-MS. Secondly, the AB-WE was evaluated for its immunological activities through dietary administration and pathogen challenge (Aeromonas hydrophila and Vibrio fluvialis) in goldfish (Carassius auratus). The results showed that the levels of immune factors of acid phosphatase (ACP), alkaline phosphatase (AKP), and lysozyme (LZM) increased (p < 0.05) in goldfish, and the relative percentage survival of AB-WE against A. hydrophila and V. fluvialis were 80.00% (p < 0.05) and 81.82% (p < 0.05), respectively. The AB-WE reduced the bacterial content in renal tissue, enhanced the phagocytic activity of leukocytes, and exhibited antioxidant and anti-inflammatory effects by reducing the expression of antioxidant-related factors and inflammatory factors. Through histopathological and immunofluorescence techniques, it was found that AB-WE maintained the integrity of visceral tissues and reduced renal tissue apoptosis and DNA damage. Therefore, AB-WE exhibits immunoprotective activity against A. hydrophila and V. fluvialis infections in fish, and holds promise as an immunotherapeutic agent against major pathogenic bacteria in aquaculture. Full article
(This article belongs to the Section Aquatic Animals)
Show Figures

Figure 1

20 pages, 3519 KiB  
Article
Hylocereus polyrhizus Pulp Residues Polysaccharide Alleviates High-Fat Diet-Induced Obesity by Modulating Intestinal Mucus Secretion and Glycosylation
by Guanghui Li, Kit-Leong Cheong, Yunhua He, Ahluk Liew, Jiaxuan Huang, Chen Huang, Saiyi Zhong and Malairaj Sathuvan
Foods 2025, 14(15), 2708; https://doi.org/10.3390/foods14152708 - 1 Aug 2025
Viewed by 209
Abstract
Although Hylocereus polyrhizus pulp residues polysaccharides (HPPP) have shown potential in improving metabolic disorders and intestinal barrier function, the mechanism by which they exert their effects through regulating O-glycosylation modifications in the mucus layer remains unclear. Therefore, this study established a HFD-induced obese [...] Read more.
Although Hylocereus polyrhizus pulp residues polysaccharides (HPPP) have shown potential in improving metabolic disorders and intestinal barrier function, the mechanism by which they exert their effects through regulating O-glycosylation modifications in the mucus layer remains unclear. Therefore, this study established a HFD-induced obese colitis mouse model (n = 5 per group) and combined nano-capillary liquid chromatography-tandem mass spectrometry (nanoLC-MS/MS) technology to quantitatively analyze the dynamic changes in O-glycosylation. Additionally, through quantitative O-glycosylation proteomics and whole-proteome analysis, we identified 155 specifically altered O-glycosylation sites in colon tissue, with the glycosylation modification level of the MUC2 core protein increased by approximately 2.1-fold. The results indicate that HPPP alleviates colonic mucosal damage by regulating interactions between mucus O-glycosylation. Overall, we demonstrated that HPPP increases HFD-induced O-glycosylation sites, improves intestinal mucosal structure in obese mice, and provides protective effects against obesity-induced intestinal mucosal damage. Full article
Show Figures

Graphical abstract

28 pages, 2517 KiB  
Article
Extraction, Characterization, Biological Properties, and X-Ray Fluorescence Analysis of Functional Polysaccharides Derived from Limnospira platensis
by Wanida Pan-utai, Naraporn Phomkaivon, Sarn Settachaimongkon, Preeyanut Pongponpai and Chomphunuch Songsiriritthigul
Life 2025, 15(8), 1213; https://doi.org/10.3390/life15081213 - 31 Jul 2025
Viewed by 263
Abstract
This study explored the extraction, characterization, and biological properties of polysaccharides derived from Spirulina (Limnospira platensis), a microalga known for its rich nutritional benefits. Polysaccharides were successfully isolated and characterized using optimized biorefinery water extraction techniques to detail their structural and [...] Read more.
This study explored the extraction, characterization, and biological properties of polysaccharides derived from Spirulina (Limnospira platensis), a microalga known for its rich nutritional benefits. Polysaccharides were successfully isolated and characterized using optimized biorefinery water extraction techniques to detail their structural and functional characteristics. Results revealed notable antioxidant activity and effective α-glucosidase inhibition, indicating potential health benefits. X-ray fluorescence (XRF) analysis was conducted to assess the elemental composition, offering insights into the mineral contents of the polysaccharides. Our findings underscore the promising applications of polysaccharides from Limnospira platensis as functional ingredients in health-related fields, advocating the need for further research into their mechanisms of action and therapeutic applications. Full article
(This article belongs to the Special Issue Update on Microalgae Metabolites)
Show Figures

Figure 1

18 pages, 14612 KiB  
Article
Integrated Proteomic and Transcriptomic Analysis Reveals the Mechanism of Selenium-Mediated Cell Wall Polysaccharide in Rice (Oryza sativa L.) Cadmium Detoxification
by Sixi Zhu, Xianwang Du, Wei Zhao, Xiuqin Yang, Luying Sheng, Huan Mao and Suxia Su
Toxics 2025, 13(8), 642; https://doi.org/10.3390/toxics13080642 - 30 Jul 2025
Viewed by 240
Abstract
Cadmium (Cd) toxicity destroys plant cells and affects plant growth and development. Due to its unique metallic properties, selenium (Se) has been shown to be effective in antioxidants, cellular immunity, and heavy metal detoxification. When Se and Cd are present together in plants, [...] Read more.
Cadmium (Cd) toxicity destroys plant cells and affects plant growth and development. Due to its unique metallic properties, selenium (Se) has been shown to be effective in antioxidants, cellular immunity, and heavy metal detoxification. When Se and Cd are present together in plants, they antagonize. However, the mechanism of action of the two in the rice cell wall remains to be clarified. In this study, we analyzed the mechanism of Cd detoxification by rice (Oryza sativa L.) cellular polysaccharides mediated by Se, using the cell wall as an entry point. Proteomic and transcriptomic analyses revealed that “Glycosyl hydrolases family 17”, “O-methyltransferase”, and “Polygalacturonase” protein pathways were significantly expressed in the cell wall. The most abundant enzymes involved in polysaccharide biosynthesis were found, including bglB, otsB, HK, PFP, ADH1, and ALDH, which resulted in the synthetic pathway of polysaccharide formation in the rice cell wall. Finally, the essential genes/proteins, such as protein Os03g0170500, were identified. The study showed that Se inhibits Cd uptake and transport when Se (1 mg/kg) is low relative to Cd (3 mg/kg), has little inhibitory effect, and even promotes Cd (3 mg/kg) uptake when Se (5 mg/kg) is relatively high. Full article
Show Figures

Graphical abstract

19 pages, 4058 KiB  
Article
Antitumor Activity of Ruditapes philippinarum Polysaccharides Through Mitochondrial Apoptosis in Cellular and Zebrafish Models
by Mengyue Liu, Weixia Wang, Haoran Wang, Shuang Zhao, Dongli Yin, Haijun Zhang, Chunze Zou, Shengcan Zou, Jia Yu and Yuxi Wei
Mar. Drugs 2025, 23(8), 304; https://doi.org/10.3390/md23080304 - 29 Jul 2025
Viewed by 196
Abstract
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this [...] Read more.
Colorectal cancer (CRC) remains a predominant cause of global cancer-related mortality, highlighting the pressing demand for innovative therapeutic strategies. Natural polysaccharides have emerged as promising candidates in cancer research due to their multifaceted anticancer mechanisms and tumor-suppressive potential across diverse malignancies. In this study, we enzymatically extracted a polysaccharide, named ERPP, from Ruditapes philippinarum and comprehensively evaluated its anti-colorectal cancer activity. We conducted in vitro assays, including CCK-8 proliferation, clonogenic survival, scratch wound healing, and Annexin V-FITC/PI apoptosis staining, and the results demonstrated that ERPP significantly inhibited HT-29 cell proliferation, suppressed colony formation, impaired migratory capacity, and induced apoptosis. JC-1 fluorescence assays provided further evidence of mitochondrial membrane potential (MMP) depolarization, as manifested by a substantial reduction in the red/green fluorescence ratio (from 10.87 to 0.35). These antitumor effects were further validated in vivo using a zebrafish HT-29 xenograft model. Furthermore, ERPP treatment significantly attenuated tumor angiogenesis and downregulated the expression of the vascular endothelial growth factor A (Vegfaa) gene in the zebrafish xenograft model. Mechanistic investigations revealed that ERPP primarily activated the mitochondrial apoptosis pathway. RT-qPCR analysis showed an upregulation of the pro-apoptotic gene Bax and a downregulation of the anti-apoptotic gene Bcl-2, leading to cytochrome c (CYCS) release and caspase-3 (CASP-3) activation. Additionally, ERPP exhibited potent antioxidant capacity, achieving an 80.2% hydroxyl radical scavenging rate at 4 mg/mL. ERPP also decreased reactive oxygen species (ROS) levels within the tumor cells, thereby augmenting anticancer efficacy through its antioxidant activity. Collectively, these findings provide mechanistic insights into the properties of ERPP, underscoring its potential as a functional food component or adjuvant therapy for colorectal cancer management. Full article
Show Figures

Figure 1

17 pages, 2387 KiB  
Article
Application of Lactobacillus helveticus KLDS 1.1105 Postbiotics for Resisting Pathogenic Bacteria Infection in the Intestine
by Peng Du, Jiaying Liu, Chengwen Hu, Jianing Zhang, Miao Li, Yu Xin, Libo Liu, Aili Li and Chun Li
Foods 2025, 14(15), 2659; https://doi.org/10.3390/foods14152659 - 29 Jul 2025
Viewed by 301
Abstract
Postbiotics, defined as metabolites produced by probiotics, encompass both bacterial cells and their metabolic byproducts, and offer significant health benefits to the host. However, there are relatively few reports on their effects on intestinal microbiota. In this study, we investigated the components, total [...] Read more.
Postbiotics, defined as metabolites produced by probiotics, encompass both bacterial cells and their metabolic byproducts, and offer significant health benefits to the host. However, there are relatively few reports on their effects on intestinal microbiota. In this study, we investigated the components, total antioxidant capacity of Lactobacillus helveticus postbiotics (LHPs) and their impact on intestinal flora using the Simulator for Human Intestinal Microecology Simulation (SHIME). The results indicate that the primary components of postbiotics include polysaccharides, proteins, and organic acids. Furthermore, LHPs have a strong ability to inhibit the growth of harmful bacteria while promoting the growth of probiotics. Additionally, LHPs significantly increased the total antioxidant capacity in the intestine and regulated the balance of intestinal microbiota. Notably, there was also a significant increase in the content of short-chain fatty acids (SCFAs) in the intestine. Overall, LHPs have the potential to aid in the prevention and treatment of diseases by enhancing gut microbiology. Full article
Show Figures

Graphical abstract

Back to TopTop