Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,049)

Search Parameters:
Keywords = antimicrobial molecule

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 6211 KiB  
Article
In Silico and In Vitro Potential Antifungal Insights of Insect-Derived Peptides in the Management of Candida sp. Infections
by Catarina Sousa, Alaka Sahoo, Shasank Sekhar Swain, Payal Gupta, Francisco Silva, Andreia S. Azevedo and Célia Fortuna Rodrigues
Int. J. Mol. Sci. 2025, 26(15), 7449; https://doi.org/10.3390/ijms26157449 (registering DOI) - 1 Aug 2025
Abstract
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the [...] Read more.
The worldwide increase in antifungal resistance, particularly in Candida sp., requires the exploration of novel therapeutic agents. Natural compounds have been a rich source of antimicrobial molecules, where peptides constitute the class of the most bioactive components. Therefore, this study looks into the target-specific binding efficacy of insect-derived antifungal peptides (n = 37) as possible alternatives to traditional antifungal treatments. Using computational methods, namely the HPEPDOCK and HDOCK platforms, molecular docking was performed to evaluate the interactions between selected key fungal targets, lanosterol 14-demethylase, or LDM (PDB ID: 5V5Z), secreted aspartic proteinase-5, or Sap-5 (PDB ID: 2QZX), N-myristoyl transferase, or NMT (PDB ID: 1NMT), and dihydrofolate reductase, or DHFR, of C. albicans. The three-dimensional peptide structure was modelled through the PEP-FOLD 3.5 tool. Further, we predicted the physicochemical properties of these peptides through the ProtParam and PEPTIDE 2.0 tools to assess their drug-likeness and potential for therapeutic applications. In silico results show that Blap-6 from Blaps rhynchopeter and Gomesin from Acanthoscurria gomesiana have the most antifungal potential against all four targeted proteins in Candida sp. Additionally, a molecular dynamics simulation study of LDM-Blap-6 was carried out at 100 nanoseconds. The overall predictions showed that both have strong binding abilities and are good candidates for drug development. In in vitro studies, Gomesin achieved complete biofilm eradication in three out of four Candida species, while Blap-6 showed moderate but consistent reduction across all species. C. tropicalis demonstrated relative resistance to complete eradication by both peptides. The present study provides evidence to support the antifungal activity of certain insect peptides, with potential to be used as alternative drugs or as a template for a new synthetic or modified peptide in pursuit of effective therapies against Candida spp. Full article
Show Figures

Figure 1

21 pages, 3648 KiB  
Article
Preparation and Physicochemical Evaluation of Ionically Cross-Linked Chitosan Nanoparticles Intended for Agricultural Use
by Maria Karayianni, Emi Haladjova, Stanislav Rangelov and Stergios Pispas
Polysaccharides 2025, 6(3), 67; https://doi.org/10.3390/polysaccharides6030067 (registering DOI) - 1 Aug 2025
Abstract
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its [...] Read more.
The search for sustainable, economically viable, and effective plant protection strategies against pathogenic bacteria, fungi, and viruses is a major challenge in modern agricultural practices. Chitosan (CS) is an abundant cationic natural biopolymer known for its biocompatibility, low toxicity, and antimicrobial properties. Its potential use in agriculture for pathogen control is a promising alternative to traditional chemical fertilisers and pesticides, which raise concerns regarding public health, environmental protection, and pesticide resistance. This study focused on the preparation of chitosan nanoparticles (CS-NPs) through cross-linking with organic molecules, such as tannic acid (TA). Various formulations were explored for the development of stable nanoscale particles having encapsulation capabilities towards low compounds of varying polarity and with potential agricultural applications relevant to plant health and growth. The solution properties of the NPs were assessed using dynamic and electrophoretic light scattering (DLS and ELS); their morphology was observed through atomic force microscopy (AFM), while analytical ultracentrifugation (AUC) measurements provided insights into their molar mass. Their properties proved to be primarily influenced by the concentration of CS, which significantly affected its intrinsic conformation. Additional structural insights were obtained via infrared and UV–Vis spectroscopic measurements, while detailed fluorescence analysis with the use of three different probes, as model cargo molecules, provided information regarding the hydrophobic and hydrophilic microdomains within the particles. Full article
(This article belongs to the Collection Bioactive Polysaccharides)
Show Figures

Figure 1

50 pages, 2093 KiB  
Review
Enhancing Human Health Through Nutrient and Bioactive Compound Recovery from Agri-Food By-Products: A Decade of Progress
by Cinzia Ingallina, Mattia Spano, Sabrina Antonia Prencipe, Giuliana Vinci, Antonella Di Sotto, Donatella Ambroselli, Valeria Vergine, Maria Elisa Crestoni, Chiara Di Meo, Nicole Zoratto, Luana Izzo, Abel Navarré, Giuseppina Adiletta, Paola Russo, Giacomo Di Matteo, Luisa Mannina and Anna Maria Giusti
Nutrients 2025, 17(15), 2528; https://doi.org/10.3390/nu17152528 (registering DOI) - 31 Jul 2025
Abstract
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus [...] Read more.
In light of pressing global nutritional needs, the valorization of agri-food waste constitutes a vital strategy for enhancing human health and nutrition, while simultaneously supporting planetary health. This integrated approach is increasingly indispensable within sustainable and equitable food systems. Recently, a sustainability-driven focus has shifted attention toward the valorization of the agri-food by-products as rich sources of bioactive compounds useful in preventing or treating chronic diseases. Agri-food by-products, often regarded as waste, actually hold great potential as they are rich in bioactive components, dietary fiber, and other beneficial nutrients from which innovative food ingredients, functional foods, and even therapeutic products are developed. This review aims to provide a comprehensive analysis of the current advances in recovering and applying such compounds from agri-food waste, with a particular focus on their roles in human health, sustainable packaging, and circular economy strategies. Methods: This review critically synthesizes recent scientific literature on the extraction, characterization, and utilization of bioactive molecules from agri-food by-products. After careful analysis of the PubMed and Scopus databases, only English-language articles from the last 10 years were included in the final narrative review. The analysis also encompasses applications in the nutraceutical, pharmaceutical, and food packaging sectors. Results: Emerging technologies have enabled the efficient and eco-friendly recovery of compounds such as polyphenols, carotenoids, and dietary fibers that demonstrate antioxidant, antimicrobial, and anti-inflammatory properties. These bioactive compounds support the development of functional foods and biodegradable packaging materials. Furthermore, these valorization strategies align with global health trends by promoting dietary supplements that counteract the effects of the Western diet and chronic diseases. Conclusions: Valorization of agri-food by-products offers a promising path toward sustainable development by reducing waste, enhancing public health, and driving innovation. This strategy not only minimizes waste and supports sustainability, but also promotes a more nutritious and resilient food system. Full article
(This article belongs to the Special Issue Nutrition 3.0: Between Tradition and Innovation)
Show Figures

Figure 1

18 pages, 2263 KiB  
Article
Predicting Antimicrobial Peptide Activity: A Machine Learning-Based Quantitative Structure–Activity Relationship Approach
by Eliezer I. Bonifacio-Velez de Villa, María E. Montoya-Alfaro, Luisa P. Negrón-Ballarte and Christian Solis-Calero
Pharmaceutics 2025, 17(8), 993; https://doi.org/10.3390/pharmaceutics17080993 (registering DOI) - 31 Jul 2025
Viewed by 186
Abstract
Background: Peptides are a class of molecules that can be presented as good antimicrobials and with mechanisms that avoid resistance, and the design of peptides with good activity can be complex and laborious. The study of their quantitative structure–activity relationships through machine [...] Read more.
Background: Peptides are a class of molecules that can be presented as good antimicrobials and with mechanisms that avoid resistance, and the design of peptides with good activity can be complex and laborious. The study of their quantitative structure–activity relationships through machine learning algorithms can shed light on a rational and effective design. Methods: Information on the antimicrobial activity of peptides was collected, and their structures were characterized by molecular descriptors generation to design regression and classification models based on machine learning algorithms. The contribution of each descriptor in the generated models was evaluated by determining its relative importance and, finally, the antimicrobial activity of new peptides was estimated. Results: A structured database of antimicrobial peptides and their descriptors was obtained, with which 56 machine learning models were generated. Random Forest-based models showed better performance, and of these, regression models showed variable performance (R2 = 0.339–0.574), while classification models showed good performance (MCC = 0.662–0.755 and ACC = 0.831–0.877). Those models based on bacterial groups showed better performance than those based on the entire dataset. The properties of the new peptides generated are related to important descriptors that encode physicochemical properties such as lower molecular weight, higher charge, propensity to form alpha-helical structures, lower hydrophobicity, and higher frequency of amino acids such as lysine and serine. Conclusions: Machine learning models allowed to establish the structure–activity relationships of antimicrobial peptides. Classification models performed better than regression models. These models allowed us to make predictions and new peptides with high antimicrobial potential were proposed. Full article
Show Figures

Graphical abstract

23 pages, 1789 KiB  
Review
Multi-Enzyme Synergy and Allosteric Regulation in the Shikimate Pathway: Biocatalytic Platforms for Industrial Applications
by Sara Khan and David D. Boehr
Catalysts 2025, 15(8), 718; https://doi.org/10.3390/catal15080718 - 28 Jul 2025
Viewed by 297
Abstract
The shikimate pathway is the fundamental metabolic route for aromatic amino acid biosynthesis in bacteria, plants, and fungi, but is absent in mammals. This review explores how multi-enzyme synergy and allosteric regulation coordinate metabolic flux through this pathway by focusing on three key [...] Read more.
The shikimate pathway is the fundamental metabolic route for aromatic amino acid biosynthesis in bacteria, plants, and fungi, but is absent in mammals. This review explores how multi-enzyme synergy and allosteric regulation coordinate metabolic flux through this pathway by focusing on three key enzymes: 3-deoxy-d-arabino-heptulosonate-7-phosphate synthase, chorismate mutase, and tryptophan synthase. We examine the structural diversity and distribution of these enzymes across evolutionary domains, highlighting conserved catalytic mechanisms alongside species-specific regulatory adaptations. The review covers directed evolution strategies that have transformed naturally regulated enzymes into standalone biocatalysts with enhanced activity and expanded substrate scope, enabling synthesis of non-canonical amino acids and complex organic molecules. Industrial applications demonstrate the pathway’s potential for sustainable production of pharmaceuticals, polymer precursors, and specialty chemicals through engineered microbial platforms. Additionally, we discuss the therapeutic potential of inhibitors targeting pathogenic organisms, particularly their mechanisms of action and antimicrobial efficacy. This comprehensive review establishes the shikimate pathway as a paradigmatic system where understanding allosteric networks enables the rational design of biocatalytic platforms, providing blueprints for biotechnological innovation and demonstrating how evolutionary constraints can be overcome through protein engineering to create superior industrial biocatalysts. Full article
Show Figures

Graphical abstract

54 pages, 3105 KiB  
Review
Insight into the in Silico Structural, Physicochemical, Pharmacokinetic and Toxicological Properties of Antibacterially Active Viniferins and Viniferin-Based Compounds as Derivatives of Resveratrol Containing a (2,3-Dihydro)benzo[b]furan Privileged Scaffold
by Dominika Nádaská and Ivan Malík
Appl. Sci. 2025, 15(15), 8350; https://doi.org/10.3390/app15158350 - 27 Jul 2025
Viewed by 318
Abstract
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel [...] Read more.
Resistance of various bacterial pathogens to the activity of clinically approved drugs currently leads to serious infections, rapid spread of difficult-to-treat diseases, and even death. Taking the threats for human health in mind, researchers are focused on the isolation and characterization of novel natural products, including plant secondary metabolites. These molecules serve as inspiration and a suitable structural platform in the design and development of novel semi-synthetic and synthetic derivatives. All considered compounds have to be adequately evaluated in silico, in vitro, and in vivo using relevant approaches. The current review paper briefly focuses on the chemical and metabolic properties of resveratrol (1), as well as its oligomeric structures, viniferins, and viniferin-based molecules. The core scaffolds of these compounds contain so-called privileged structures, which are also present in many clinically approved drugs, indicating that those natural, properly substituted semi-synthetic, and synthetic molecules can provide a notably broad spectrum of beneficial pharmacological activities, including very impressive antimicrobial efficiency. Except for spectral verification of their structures, these compounds suffer from the determination or prediction of other structural and physicochemical characteristics. Therefore, the structure–activity relationships for specific dihydrodimeric and dimeric viniferins, their bioisosteres, and derivatives with notable efficacy in vitro, especially against chosen Gram-positive bacterial strains, are summarized. In addition, a set of descriptors related to their structural, physicochemical, pharmacokinetic, and toxicological properties is generated using various computational tools. The obtained values are compared to those of clinically approved drugs. The particular relationships between these in silico parameters are also explored. Full article
Show Figures

Figure 1

15 pages, 1136 KiB  
Article
Association of HMGB1, IL-1β, IL-8, IL-10, and MCP-1 with the Development of Systemic Inflammatory Response Syndrome in Pediatric Patients with Recently Diagnosed Acute Lymphoblastic Leukemia
by Carmen Maldonado-Bernal, Horacio Márquez-González, Erandi Pérez-Figueroa, Rocío Nieto-Meneses, Víctor Olivar-López, Aurora Medina-Sanson and Elva Jiménez-Hernández
Life 2025, 15(8), 1187; https://doi.org/10.3390/life15081187 - 25 Jul 2025
Viewed by 263
Abstract
In acute lymphoblastic leukemia (ALL), neutropenia and fever of unknown origin may occur, indicating the use of antimicrobials to control a probable infection. However, in 60–70% of cases there is no obvious infectious focus so treatment is empirical, increasing the risk of developing [...] Read more.
In acute lymphoblastic leukemia (ALL), neutropenia and fever of unknown origin may occur, indicating the use of antimicrobials to control a probable infection. However, in 60–70% of cases there is no obvious infectious focus so treatment is empirical, increasing the risk of developing systemic inflammatory response syndrome (SIRS). The construction of a prognostic model of fever and development of SIRS based on the identification of endogenous molecules, called alarmins or damage-associated molecular patterns (DAMPs) and inflammatory cytokines, can help identify children with ALL and fever or SIRS and who do not have an infection. A cohort of 30 children with recently diagnosed ALL and absence of infectious microorganisms before starting the remission induction phase was studied. Two groups were identified: (1) a group with SIRS (fever, tachycardia, tachypnea, and leukopenia, without focus of infection) and (2) a group without SIRS. The DAMPs, namely HMGB1 and S100A8 proteins, were quantified by ELISA and inflammatory mediators were determined by multiple protein analysis. The medians of DAMPs and inflammatory mediators in children with SIRS were higher than in children who did not have SIRS, and the delta values of the biomarkers studied in patients with and without SIRS showed important differences, with statistically higher medians in patients with SIRS compared to those without SIRS. HMGB1 together with IL-1β, IL-8, IL-10, and MCP-1 can serve as biomarkers to identify children with ALL and fever or SIRS who should not receive antimicrobial treatment because the origin of their fever is not due to an infectious agent. Full article
(This article belongs to the Section Medical Research)
Show Figures

Figure 1

21 pages, 2330 KiB  
Article
Assessing 5-Aminolevulinic Acid as a Natural Biocide Precursor for Light-Activated Eradication of Pseudomonas spp.
by Irena Maliszewska and Anna Zdubek
Int. J. Mol. Sci. 2025, 26(15), 7153; https://doi.org/10.3390/ijms26157153 - 24 Jul 2025
Viewed by 146
Abstract
Photodynamic inactivation (aPDI) involves the interaction of three components: non-toxic photosensitizer molecules (PS), low-intensity visible light, and molecular oxygen. This interaction leads to the generation of toxic reactive oxygen species. The present work demonstrated the efficacy of light-induced antimicrobial photodynamic inactivation against Pseudomonas [...] Read more.
Photodynamic inactivation (aPDI) involves the interaction of three components: non-toxic photosensitizer molecules (PS), low-intensity visible light, and molecular oxygen. This interaction leads to the generation of toxic reactive oxygen species. The present work demonstrated the efficacy of light-induced antimicrobial photodynamic inactivation against Pseudomonas aeruginosa and Pseudomonas putida using 5-aminolevulinic acid (5-ALA) as a prodrug to produce the photosensitizer protoporphyrin IX. The photoeradication efficiency of these pathogens under blue (405 nm; 45 mW cm−2) and red (635 nm; 53 mW cm−2) light was investigated. Results showed that at least 30 min of blue light irradiation was necessary to achieve a 99.999% reduction of P. aeruginosa, whereas red light was less effective. P. putida exhibited limited susceptibility under similar conditions. To enhance aPDI efficiency, exogenous glucose was added alongside 5-ALA, which significantly increased the photodynamic efficacy—particularly against P. aeruginosa—leading to complete eradication after just 5 min of exposure. Spectroscopic analyses confirmed that glucose increased the levels of protoporphyrin IX, which correlated with enhanced photodynamic efficacy. Furthermore, multiple aPDI exposure reduced key virulence factors, including alkaline protease activity, biofilm formation, and swarming motility (in P. aeruginosa). These findings suggest that 5-ALA-mediated photodynamic inactivation offers a promising strategy to improve efficacy against resistant Gram-negative pathogens. Full article
Show Figures

Graphical abstract

26 pages, 1614 KiB  
Review
The Role of LC-MS in Profiling Bioactive Compounds from Plant Waste for Cosmetic Applications: A General Overview
by Gilda D’Urso, Alessandra Capuano, Francesca Fantasma, Maria Giovanna Chini, Vincenzo De Felice, Gabriella Saviano, Gianluigi Lauro, Agostino Casapullo, Giuseppe Bifulco and Maria Iorizzi
Plants 2025, 14(15), 2284; https://doi.org/10.3390/plants14152284 - 24 Jul 2025
Viewed by 232
Abstract
The agro-industrial sector produces large amounts of by-products that have a high environmental impact, so it has become essential to recover food waste at all levels. This is because it often contains bioactive molecules that can be a valuable source of new products [...] Read more.
The agro-industrial sector produces large amounts of by-products that have a high environmental impact, so it has become essential to recover food waste at all levels. This is because it often contains bioactive molecules that can be a valuable source of new products such as animal feed, biopolymers, or products for human use, (e.g., cosmetics and nutraceuticals) due to its antioxidant, antimicrobial, and anti-inflammatory properties. Advanced analytical methodologies such as liquid chromatography coupled to mass spectrometry (LC-MS) are crucial for the characterisation of bioactive chemicals in these waste materials. LC-MS enables both targeted and untargeted metabolomic approaches, facilitating the identification and quantification of a wide range of secondary metabolites, including polyphenols, flavonoids, alkaloids, and terpenoids. The choice of extraction methodology is essential for the precise identification and quantification of these metabolites. This study provides an overview of LC-MS as an effective tool for analysing complex extracts derived from plant waste, discussing both methodological aspects and typical bioactive metabolites identified, and offering examples of their potential applications in cosmeceutics. Full article
(This article belongs to the Special Issue Plant-Based Foods and By-Products)
Show Figures

Figure 1

39 pages, 3407 KiB  
Review
Current Status of the Application of Antimicrobial Peptides and Their Conjugated Derivatives
by Marcel·lí del Olmo and Cecilia Andreu
Molecules 2025, 30(15), 3070; https://doi.org/10.3390/molecules30153070 - 22 Jul 2025
Viewed by 286
Abstract
A significant issue in healthcare is the growing prevalence of antibiotic-resistant strains. Therefore, it is necessary to develop strategies for discovering new antibacterial compounds, either by identifying natural products or by designing semisynthetic or synthetic compounds with this property. In this context, a [...] Read more.
A significant issue in healthcare is the growing prevalence of antibiotic-resistant strains. Therefore, it is necessary to develop strategies for discovering new antibacterial compounds, either by identifying natural products or by designing semisynthetic or synthetic compounds with this property. In this context, a great deal of research has recently been carried out on antimicrobial peptides (AMPs), which are natural, amphipathic, low-molecular-weight molecules that act by altering the cell surface and/or interfering with cellular activities essential for life. Progress is also being made in developing strategies to enhance the activity of these compounds through their association with other molecules. In addition to identifying AMPs, it is essential to ensure that they maintain their integrity after passing through the digestive tract and exhibit adequate activity against their targets. Significant advances are being made in relation to analyzing various types of conjugates and carrier systems, such as nanoparticles, vesicles, hydrogels, and carbon nanotubes, among others. In this work, we review the current knowledge of different types of AMPs, their mechanisms of action, and strategies to improve performance. Full article
(This article belongs to the Special Issue Research Progress of New Antimicrobial Drugs)
Show Figures

Graphical abstract

40 pages, 2830 KiB  
Review
Metal Complexes with Hydroxyflavones: A Study of Anticancer and Antimicrobial Activities
by Ljiljana E. Mihajlović, Monica Trif and Marijana B. Živković
Inorganics 2025, 13(8), 250; https://doi.org/10.3390/inorganics13080250 - 22 Jul 2025
Viewed by 359
Abstract
Metal chelation to bioactive small molecules is a well-established strategy to enhance the biological activity of the resulting complexes. Among the widely explored structural motifs, the combination of prominent metal centers with naturally inspired derivatives has attracted considerable attention. One such promising platform [...] Read more.
Metal chelation to bioactive small molecules is a well-established strategy to enhance the biological activity of the resulting complexes. Among the widely explored structural motifs, the combination of prominent metal centers with naturally inspired derivatives has attracted considerable attention. One such promising platform is the flavone scaffold, derived from flavonoids and studied since ancient times. Flavones are plant-derived compounds known for their diverse biological activities and health benefits. They exhibit significant structural variability, primarily through backbone modifications such as hydroxylation. Importantly, coordination of metal ions to hydroxylated flavone cores often improves their natural bioactivities, including anticancer and antimicrobial effects. In this review, we summarize transition metal complexes incorporating hydroxyflavone (OH–F) ligands reported over the past 15 years. We provide a concise overview of synthetic approaches and structural characterization, with a particular emphasis on coordination modes (e.g., maltol-type, acetylacetonate-type, catechol-type, and others). Furthermore, we discuss biological evaluation results, especially anticancer and antimicrobial studies, to highlight the therapeutic potential of these complexes. Finally, we suggest directions for the future development of metal-based agents bearing hydroxyflavone moieties through several critical points in terms of the accuracy, reproducibility, and relevance of biological studies involving metal-based compounds. Full article
Show Figures

Graphical abstract

35 pages, 2798 KiB  
Review
Mechanistic Insight into the Antioxidant and Antimicrobial Activities of Palm Oil-Derived Biomaterials: Implications for Dental and Therapeutic Applications
by Syafira Masri, Nurulhuda Mohd, Noor Hayaty Abu Kasim and Masfueh Razali
Int. J. Mol. Sci. 2025, 26(14), 6975; https://doi.org/10.3390/ijms26146975 - 20 Jul 2025
Viewed by 252
Abstract
Palm oil is a highly versatile natural resource that has gathered significant attention due to its bioactive properties, particularly its antimicrobial and antioxidant effects. Rich in tocotrienols, tocopherols, and carotenoids, palm oil exhibits potent antioxidant activity, while its fatty acid content and other [...] Read more.
Palm oil is a highly versatile natural resource that has gathered significant attention due to its bioactive properties, particularly its antimicrobial and antioxidant effects. Rich in tocotrienols, tocopherols, and carotenoids, palm oil exhibits potent antioxidant activity, while its fatty acid content and other bioactive molecules contribute to its antimicrobial efficacy against various pathogens. The underlying mechanisms of action driving these bioactivities involve intricate molecular interactions, biochemical pathways, and redox processes, which influence microbial cell function and oxidative stress reduction. This review provides a critical analysis of the current mechanistic understanding of palm oil’s biofunctional properties, emphasizing its potential incorporation into engineered biomaterials. Particular focus is given to the chemical composition, reaction pathways, and synergistic potential of palm oil derivatives in material-based formulations. Furthermore, the potential applications of palm oil as a standalone or synergistic agent in novel therapeutic and industrial formulations are explored. By elucidating the mechanistic basis of its bioactivity within material contexts, this review highlights palm oil’s promising role in the development of advanced functional materials for pharmaceutical and dental technologies. Full article
(This article belongs to the Special Issue Bone and Cartilage Injury and Repair: Molecular Aspects)
Show Figures

Figure 1

21 pages, 2552 KiB  
Review
The Impact of Fusobacterium nucleatum and the Genotypic Biomarker KRAS on Colorectal Cancer Pathogenesis
by Ahmed Dewan, Ivan Tattoli and Maria Teresa Mascellino
Int. J. Mol. Sci. 2025, 26(14), 6958; https://doi.org/10.3390/ijms26146958 - 20 Jul 2025
Viewed by 515
Abstract
Fusobacterium nucleatum and activating mutations in the Kirsten rat sarcoma virus oncogene homolog (KRAS) are increasingly recognized as cooperative drivers of colorectal cancer (CRC). F. nucleatum promotes tumorigenesis via adhesion to epithelial cells, modulation of the immune microenvironment, and delivery of virulence factors, [...] Read more.
Fusobacterium nucleatum and activating mutations in the Kirsten rat sarcoma virus oncogene homolog (KRAS) are increasingly recognized as cooperative drivers of colorectal cancer (CRC). F. nucleatum promotes tumorigenesis via adhesion to epithelial cells, modulation of the immune microenvironment, and delivery of virulence factors, while KRAS mutations—present in 60% of CRC cases—amplify proliferative signaling and inflammatory pathways. Here, we review the molecular interplay by which F. nucleatum enhances KRAS-driven oncogenic cascades and, conversely, how KRAS mutations reshape the tumor niche to favor bacterial colonization. We further discuss the use of KRAS as a prognostic biomarker and explore promising non-antibiotic interventions—such as phage therapy, antimicrobial peptides, and targeted small-molecule inhibitors—aimed at selectively disrupting F. nucleatum colonization and virulence. This integrated perspective on microbial–genetic crosstalk offers novel insights for precision prevention and therapy in CRC. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

20 pages, 3905 KiB  
Article
Antimicrobial Properties of Daucus nebrodensis Strobl.: A Multifunctional Essential Oil Against Bacterial Pathogens
by Giusy Castagliuolo, Antonella Porrello, Maddalena Cerasola, Giuseppe Bazan, Dario Antonini, Mario Varcamonti, Maurizio Bruno, Anna Zanfardino and Natale Badalamenti
Plants 2025, 14(14), 2227; https://doi.org/10.3390/plants14142227 - 18 Jul 2025
Viewed by 263
Abstract
Daucus is a large genus of the Apiaceae family, comprising around forty-five accepted species, that has a worldwide distribution. Species of this genus have been reported to have several traditional medicinal uses, and some of them are also largely used as food and [...] Read more.
Daucus is a large genus of the Apiaceae family, comprising around forty-five accepted species, that has a worldwide distribution. Species of this genus have been reported to have several traditional medicinal uses, and some of them are also largely used as food and spices. Daucus nebrodensis Strobl. is an endemic species of Sicily growing in the montane environments of the Madonie and the Nebrodi Mountains. In this work, the essential oil of D. nebrodensis (DnEO), collected wild near Messina (Italy), was chemically and biologically investigated. The hydrodistilled essential oil (yield 0.15%), obtained from fresh aerial parts, was evaluated by GC-MS, and It was particularly rich in monoterpene hydrocarbons, with sabinene (33.6%), α-pinene (17.2%), γ-terpinene (9.8%), and α-terpinene (7.6%) as the main metabolites. DnEO, and its main constituents, have been tested to evaluate their biological properties. Given the current problem of antibiotic resistance, it is of great interest to identify alternative molecules that could counteract the its progression. Therefore, DnEO was tested against Gram-negative species, such as E. coli DH5α and P. aeruginosa PAOI, and Gram-positive species, such as S. aureus ATCC6538P, B. subtilis AZ54, and M. smegmatis MC2155, showing notable antibacterial activity. The MIC for Bacillus subtilis, the most sensitive strain, was 18 mg/mL, while the MIC for Pseudomonas aeruginosa, the least sensitive strain, was 30 mg/mL. Moreover, interesting antibiofilm activity was observed against Mycobacterium smegmatis with a 55% inhibition. Its ability to form biofilms contributes to its persistence and resistance in clinical settings. These findings highlight the potential of D. nebrodensis EO as a source of bioactive compounds with promising antimicrobial and antibiofilm properties. Full article
(This article belongs to the Special Issue Plant Bioactive Compounds, Functional Components and Functions)
Show Figures

Figure 1

22 pages, 1643 KiB  
Article
Skin Wound Healing: The Impact of Treatment with Antimicrobial Nanoparticles and Mesenchymal Stem Cells
by Pavel Rossner, Eliska Javorkova, Michal Sima, Zuzana Simova, Barbora Hermankova, Katerina Palacka, Zuzana Novakova, Irena Chvojkova, Tereza Cervena, Kristyna Vrbova, Anezka Vimrova, Jiri Klema, Andrea Rossnerova and Vladimir Holan
J. Xenobiot. 2025, 15(4), 119; https://doi.org/10.3390/jox15040119 - 18 Jul 2025
Viewed by 362
Abstract
An investigation into the biological mechanisms initiated in wounded skin following the application of mesenchymal stem cells (MSCs) and nanoparticles (NPs) (Ag, ZnO), either alone or combined, was performed in mice, with the aim of determining the optimal approach to accelerate the healing [...] Read more.
An investigation into the biological mechanisms initiated in wounded skin following the application of mesenchymal stem cells (MSCs) and nanoparticles (NPs) (Ag, ZnO), either alone or combined, was performed in mice, with the aim of determining the optimal approach to accelerate the healing process. This combined treatment was hypothesized to be beneficial, as it is associated with the production of molecules supporting the healing process and antimicrobial activity. The samples were collected seven days after injury. When compared with untreated wounded animals (controls), the combined (MSCs+NPs) treatment induced the expression of Sprr2b, encoding small proline-rich protein 2B, which is involved in keratinocyte differentiation, the response to tissue injury, and inflammation. Pathways associated with keratinocyte differentiation were also affected. Ag NP treatment (alone or combined) modulated DNA methylation changes in genes involved in desmosome organization. The percentage of activated regulatory macrophages at the wound site was increased by MSC-alone and Ag-alone treatments, while the production of nitric oxide, an inflammatory marker, by stimulated macrophages was decreased by both MSC/Ag-alone and MSCs+Ag treatments. Ag induced the expression of Col1, encoding collagen-1, at the injury site. The results of the MSC and NP treatment of skin wounds (alone or combined) suggest an induction of processes accelerating the proliferative phase of healing. Thus, MSC-NP interactions are a key factor affecting global mRNA expression changes in the wound. Full article
Show Figures

Graphical abstract

Back to TopTop