Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (150)

Search Parameters:
Keywords = antimicrobial edible film

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
58 pages, 1897 KiB  
Review
Fabrication and Application of Bio-Based Natural Polymer Coating/Film for Food Preservation: A Review
by Nosipho P. Mbonambi, Jerry O. Adeyemi, Faith Seke and Olaniyi A. Fawole
Processes 2025, 13(8), 2436; https://doi.org/10.3390/pr13082436 - 1 Aug 2025
Viewed by 489
Abstract
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to [...] Read more.
Food waste has emerged as a critical worldwide concern, resulting in environmental deterioration and economic detriment. Bio-based natural polymer coatings and films have emerged as a sustainable solution to food preservation challenges, particularly in reducing postharvest losses and extending shelf life. Compared to their synthetic counterparts, these polymers, such as chitosan, starch, cellulose, proteins, and alginate, are derived from renewable sources that are biodegradable, safe, and functional. Within this context, this review examines the various bio-based natural polymer coatings and films as biodegradable, edible alternatives to conventional packaging solutions. It examines the different fabrication methods, like solution casting, electrospinning, and spray coating, and incorporates antimicrobial agents to enhance performance. Emphasis is placed on their mechanical, barrier, and antimicrobial properties, their application in preserving fresh produce, how they promote food safety and environmental sustainability, and accompanying limitations. This review highlights the importance of bio-based natural polymer coatings and films as a promising, eco-friendly solution to enhancing food quality, safety, and shelf life while addressing global sustainability challenges. Full article
(This article belongs to the Section Food Process Engineering)
Show Figures

Figure 1

16 pages, 678 KiB  
Article
High Methoxyl Pectin–Tomato Paste Edible Films Formed Under Different Drying Temperatures
by Georgia Palavouzi, Charalampos Oikonomidis, Marianthi Zioga, Christos Pappas and Vasiliki Evageliou
Polysaccharides 2025, 6(3), 55; https://doi.org/10.3390/polysaccharides6030055 - 20 Jun 2025
Viewed by 520
Abstract
Pectin–tomato paste edible films with potential antioxidant activity were studied. Initially, the films were formed by drying at 40 °C in the presence and absence of glycerol. The effect of drying temperature on several physicochemical, mechanical, and optical properties of glycerol films formed [...] Read more.
Pectin–tomato paste edible films with potential antioxidant activity were studied. Initially, the films were formed by drying at 40 °C in the presence and absence of glycerol. The effect of drying temperature on several physicochemical, mechanical, and optical properties of glycerol films formed after drying at 40, 50, and 60 °C was investigated. Finally, films formed at different drying conditions (namely F40, F50, and F60) sharing the same antioxidant activity (44.28–45.53%) were studied in terms of their surface pH; solubility; folding endurance; antimicrobial, dynamic mechanical, and barrier properties; contact angle; and FT-IR. Their thickness, weight, opacity, strength, stiffness, and antioxidant activity (AA) [a*] increased with increasing tomato paste content, whereas [L*] decreased. The moisture content was statistically affected by both the presence of glycerol and the drying temperature. AA decreased as drying temperature increased. Overall, the thickness varied from 45 to 182.31 μm, weight from 0.27 to 1.24 g, moisture content from 20.74 to 56.66%, stress from 189 to 959 kPa, Young’s modulus from 86 to 382 kPa, and AA from 16.9 to 53%. In the last step, F60 was less hydrophilic, had a greater density, and better barrier properties, whereas F50 was stiffer and the least strong. Our findings provide information regarding the selection of an optimum drying temperature for pectin-based films with antioxidant properties. Full article
Show Figures

Figure 1

23 pages, 999 KiB  
Article
Unravelling the Potential of Seven Microalgae Species: Nutritional, Antioxidant, and Antimicrobial Properties and Application
by Valter F. R. Martins, Ana I. Lopes, Diana Gomes, Celina Parreira, Sara M. Badenes, Luís Costa, Manuela Pintado, Alcina M. M. B. Morais and Rui M. S. C. Morais
Appl. Sci. 2025, 15(12), 6691; https://doi.org/10.3390/app15126691 - 14 Jun 2025
Viewed by 433
Abstract
Microalgae are a rich renewable source of a wide variety of bioactive compounds. This study focuses on seven microalgae—Limnospira sp., Dunaliella sp., Lobosphaera sp., Nannochloropsis sp., Odontella sp., Porphyridium sp., and Tetraselmis sp.— analyzing their nutritional compositions and the potential bioactivity of [...] Read more.
Microalgae are a rich renewable source of a wide variety of bioactive compounds. This study focuses on seven microalgae—Limnospira sp., Dunaliella sp., Lobosphaera sp., Nannochloropsis sp., Odontella sp., Porphyridium sp., and Tetraselmis sp.— analyzing their nutritional compositions and the potential bioactivity of their hydroethanolic extracts obtained via ultrasound-assisted extraction. The total phenolic content (TPC) and antioxidant activity (ABTS, DPPH, and ORAC), as well as the antimicrobial activity of the extracts were determined. The protein content of the microalgae ranged from 22.9 ± 0.1 to 59.8 ± 1.6%, the fat content ranged from 5.3 ± 0.0 to 36.6 ± 0.0%, and the carbohydrates ranged from 24.0 ± 3.0 to 46.1 ± 1.0%. The highest contents of protein, fat, and carbohydrates were found in Limnospira sp., Nannochloropsis sp., and Lobosphaera sp., respectively. The TPC of the extracts varied between 0.53 ± 0.09 and 3.18 ± 0.53 mg GAE/100 mg DW. Antioxidant activity values ranged from 1.09 ± 0.15 and 2.85 ± 0.45 μmol TE/100 mg DW for ABTS, 0.25 ± 0.06 and 2.28 ± 0.06 μmol TE/100 mg DW for DPPH, and 2.37 ± 0.58 and 18.32 ± 1.00 μmol TE/100 mg DW for ORAC. The extract from Limnospira sp. exhibited the highest antioxidant activity and also showed notable antimicrobial effects. Meanwhile, the Nannochloropsis sp. extract demonstrated the strongest antimicrobial activity against most tested bacterial strains. Lipids were successfully extracted from Nannochloropsis sp. Furthermore, alginate and zein films incorporated with bioactive-rich extracts from Limnospira sp. and Nannochloropsis sp., along with the lipid-rich extract from Nannochloropsis sp., were developed. These films showed significant antioxidant activity and effective antimicrobial activity against Listeria monocytogenes. Full article
Show Figures

Figure 1

29 pages, 9493 KiB  
Article
Development and Optimization of Edible Antimicrobial Films Based on Dry Heat–Modified Starches from Kazakhstan
by Marat Muratkhan, Kakimova Zhainagul, Kamanova Svetlana, Dana Toimbayeva, Indira Temirova, Sayagul Tazhina, Dina Khamitova, Saduakhasova Saule, Tamara Tultabayeva, Berdibek Bulashev and Gulnazym Ospankulova
Foods 2025, 14(11), 2001; https://doi.org/10.3390/foods14112001 - 5 Jun 2025
Viewed by 3079
Abstract
This study aimed to design and optimize an edible antimicrobial film incorporating thermally modified starches using a systematic experimental approach. A comprehensive analysis of six starch types—both native and dry heat–modified—was conducted to evaluate their gelatinization clarity, freeze–thaw stability, microstructure (CLSM), and in [...] Read more.
This study aimed to design and optimize an edible antimicrobial film incorporating thermally modified starches using a systematic experimental approach. A comprehensive analysis of six starch types—both native and dry heat–modified—was conducted to evaluate their gelatinization clarity, freeze–thaw stability, microstructure (CLSM), and in vitro digestibility. Corn and cassava starches were selected as optimal components based on their physicochemical performance. A series of single-factor experiments and a Box–Behnken design were employed to assess the influence of starch concentration, gelatinization time, glycerol, and chitosan content on film properties including tensile strength, elongation at break, water vapor permeability (WVP), and transparency. The optimized formulation (5.0% starch, 28.2 min gelatinization, 2.6% glycerol, 1.4% chitosan) yielded a transparent (77.64%), mechanically stable (10.92 MPa tensile strength; 50.0% elongation), and moisture-resistant film. Structural and thermal analyses (SEM, AFM, DSC, TGA) confirmed the film’s homogeneity and stability. Furthermore, the film exhibited moderate antioxidant activity and antibacterial efficacy against Escherichia coli and Staphylococcus aureus. These findings demonstrate the feasibility of using dry heat–modified Kazakhstani starches to develop sustainable antimicrobial packaging materials. However, further studies are needed to explore sensory attributes, long-term storage performance, and compatibility with different food matrices. Full article
(This article belongs to the Section Food Packaging and Preservation)
Show Figures

Figure 1

15 pages, 1752 KiB  
Review
Sodium Alginate: A Green Biopolymer Resource-Based Antimicrobial Edible Coating to Enhance Fruit Shelf-Life: A Review
by Anshika Sharma and Arun K. Singh
Colloids Interfaces 2025, 9(3), 32; https://doi.org/10.3390/colloids9030032 - 19 May 2025
Viewed by 1463
Abstract
Fruits are a significant source of natural nutrition for human health. However, the perishable nature and short shelf life of fruits lead to spoilage, nutrition safety challenges, and other substantial postharvest losses. Edible coatings have emerged as a novel approach in order to [...] Read more.
Fruits are a significant source of natural nutrition for human health. However, the perishable nature and short shelf life of fruits lead to spoilage, nutrition safety challenges, and other substantial postharvest losses. Edible coatings have emerged as a novel approach in order to enhance the shelf life of perishable fruits by forming a protective barrier against adverse environmental conditions and microbial infections. Sodium alginate is recognized as an excellent polysaccharide (derived from algae, seaweed, etc.) in the food industry for edible fruit coatings because of its non-allergic, biodegradable, non-toxic (safe for human health), inexpensive, and efficient gel/film-forming properties. However, the hydrophilicity of the polysaccharides is a significant concern to prevent the growth of mold and yeast. In recent years, various plant extracts (containing multiple bioactive compounds, including polyphenolic acids) and nanoparticles have been applied in sodium alginate-based edible films and fruit coatings to enhance antimicrobial activity. This review study summarized recent advancements in fabricating plant extracts incorporating sodium alginate-based films and coatings to enhance fruit shelf life. In addition, approaches to preparing edible films and the basic mechanism behind the role of coating materials in enhancing fruit shelf life are discussed. Moreover, the limitations associated with sodium alginate-based fruit coatings and films have been highlighted. Full article
(This article belongs to the Special Issue Food Colloids: 3rd Edition)
Show Figures

Graphical abstract

33 pages, 1262 KiB  
Systematic Review
Antimicrobial Activity of Clove (Syzygium aromaticum) Essential Oil in Meat and Meat Products: A Systematic Review
by Eduardo Valarezo, Guicela Ledesma-Monteros, Ximena Jaramillo-Fierro, Matteo Radice and Miguel Angel Meneses
Antibiotics 2025, 14(5), 494; https://doi.org/10.3390/antibiotics14050494 - 11 May 2025
Viewed by 1396
Abstract
Background: Clove (Syzygium aromaticum) essential oil is widely recognized for its potent antimicrobial properties, making it a valuable natural preservative in food products, particularly in meat and meat derivatives, where it helps extend shelf life and enhance food safety. Methods: This [...] Read more.
Background: Clove (Syzygium aromaticum) essential oil is widely recognized for its potent antimicrobial properties, making it a valuable natural preservative in food products, particularly in meat and meat derivatives, where it helps extend shelf life and enhance food safety. Methods: This systematic review aims to evaluate the application of clove essential oil in meat and meat products, following the PRISMA 2020 methodology, to analyze its antimicrobial efficacy and its impact on the preservation of these products. The information search was carried out in the PubMed, ScienceDirect, SCOPUS, and Web of Science databases and included research articles in English published between 1999 and 2024, and 37 studies were confirmed as eligible. Results: Due to the heterogeneity of methodologies and concentrations evaluated, a narrative analysis was chosen, organizing the studies into three categories according to the application of the essential oil: direct addition, use in edible films and coatings, and encapsulation. The analysis included the main components of the essential oil, the activity analysis method, a concentration evaluation, storage conditions, the activities obtained, and a sensory evaluation. However, variability in methodologies and concentrations made direct comparison between studies difficult. Conclusions: Overall, this review confirms the effectiveness of clove essential oil in preserving meat and meat products but highlights the need to standardize its concentration and application conditions to optimize its use in the food industry. Full article
Show Figures

Figure 1

19 pages, 2214 KiB  
Article
Alginate Edible Films Containing Essential Oils: Characterization and Bioactive Potential
by Ana I. Lopes, Adma Melo, Tiago B. Afonso, Sara Silva, Lillian Barros, Freni K. Tavaria and Manuela Pintado
Polymers 2025, 17(9), 1188; https://doi.org/10.3390/polym17091188 - 27 Apr 2025
Cited by 1 | Viewed by 1257
Abstract
Essential oils (EOs) are natural substances rich in phenolic compounds with notable antimicrobial and antioxidant properties. However, they present some limitations, such as low stability and bioavailability. Incorporating EOs into polymeric films offers a novel approach to overcome these challenges while enhancing their [...] Read more.
Essential oils (EOs) are natural substances rich in phenolic compounds with notable antimicrobial and antioxidant properties. However, they present some limitations, such as low stability and bioavailability. Incorporating EOs into polymeric films offers a novel approach to overcome these challenges while enhancing their efficacy. In this study, we produced and thoroughly characterized alginate-based edible films incorporated with five different EOs—rosemary, eucalyptus, oregano, sage, and thyme. This is the first comprehensive investigation to include this diverse range of EOs in alginate films. Their antimicrobial and antioxidant activities were also evaluated. The results demonstrated that alginate films containing EOs exhibited significant bioactive properties. Notably, the film incorporated with oregano EO completely inhibited the growth of all tested bacteria and fungi and showed the highest antioxidant activity. Based on these findings, alginate films containing EOs present promising bioactive potential and could serve as biodegradable alternatives to conventional packaging materials, reducing environmental impact. However, further studies are necessary to assess their safety profile and confirm their viability as replacements for traditional food packaging. Future research should focus on evaluating cytotoxicity, genotoxicity, and the practical application of these films in food matrices. Full article
(This article belongs to the Special Issue Advances in Natural Polymers for Sustainable Food Packaging)
Show Figures

Graphical abstract

18 pages, 3298 KiB  
Article
From Emulsions to Films: The Role of Polysaccharide Matrices in Essential Oil Retention Within Active Packaging Films
by Elisa Othero Nahas, Guilherme F. Furtado, Melina S. Lopes and Eric Keven Silva
Foods 2025, 14(9), 1501; https://doi.org/10.3390/foods14091501 - 25 Apr 2025
Cited by 1 | Viewed by 624
Abstract
Essential oil-loaded edible films have emerged as promising natural systems for active food packaging due to their antimicrobial and antioxidant potential. However, retaining volatile bioactives within hydrophilic matrices remains challenging. In this regard, this study compared the performance of carboxymethylcellulose (CMC), citrus peel [...] Read more.
Essential oil-loaded edible films have emerged as promising natural systems for active food packaging due to their antimicrobial and antioxidant potential. However, retaining volatile bioactives within hydrophilic matrices remains challenging. In this regard, this study compared the performance of carboxymethylcellulose (CMC), citrus peel pectin (CPP), and potato starch (PS) edible films as encapsulating systems of orange (Citrus sinensis L. Osbeck) essential oil using Tween 80 as surfactant and glycerol as a plasticizer. Film-forming emulsions were characterized regarding droplet size distribution and rheological behavior. Films were analyzed by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), and thermogravimetric analysis (TGA). Limonene retention was quantitatively determined post-drying through gas chromatography. CMC-based films exhibited the highest retention (~65%), primarily due to their higher viscosity, which limited oil droplet mobility and volatilization. Despite presenting similar internal porosity, PS films showed significantly lower retention (~53%), attributed to larger droplet size and lower viscosity. CPP films, with the smallest droplets and intermediate viscosity, showed similar limonene retention to PS-based films, highlighting that high internal porosity may compromise encapsulation efficacy. The results emphasize that matrix viscosity and emulsion stability are critical determinants of essential oil retention. Although polysaccharide films, particularly CMC, are promising carriers, further structural and processing optimizations are required to enhance their encapsulation performance for commercial applications. Full article
Show Figures

Figure 1

31 pages, 3443 KiB  
Review
Integrated Biotechnological Strategies for the Sustainability and Quality of Mediterranean Sea Bass (Dicentrarchus labrax) and Sea Bream (Sparus aurata)
by Sebastiano Rosati, Lucia Maiuro, Silvia Jane Lombardi, Nicolaia Iaffaldano, Michele Di Iorio, Michela Cariglia, Francesco Lopez, Martina Cofelice, Patrizio Tremonte and Elena Sorrentino
Foods 2025, 14(6), 1020; https://doi.org/10.3390/foods14061020 - 17 Mar 2025
Cited by 2 | Viewed by 1043
Abstract
This review examines the current state of the supply chain management for Dicentrarchus labrax (sea bass) and Sparus aurata (sea bream), two key commercial fish species in the Mediterranean. It provides a comprehensive analysis of sustainable innovations in aquaculture, processing, and packaging, with [...] Read more.
This review examines the current state of the supply chain management for Dicentrarchus labrax (sea bass) and Sparus aurata (sea bream), two key commercial fish species in the Mediterranean. It provides a comprehensive analysis of sustainable innovations in aquaculture, processing, and packaging, with particular attention to circular economy-based biopreservation techniques. A major focus is on the Integrated Multi-Trophic Aquaculture (IMTA) system, an advanced farming approach that enhances sustainability, promotes circular resource utilization, and improves fish welfare. By fostering ecological balance through the co-cultivation of multiple species, IMTA contributes to the overall quality of fish products for human consumption. Beyond aquaculture, the review addresses the critical challenge of food loss, which stems from the high perishability of fish during storage and processing. In this regard, it highlights recent advancements in biopreservation strategies, including the application of antagonistic microorganisms, their metabolites, and plant-derived extracts. Particular attention is given to the development of edible antimicrobial films, with a focus on the valorization of citrus processing by-products for their production. By centering on innovations specific to the Mediterranean context, this review underscores that a holistic, integrative approach to supply chain management is essential for transitioning the aquaculture sector toward greater efficiency and sustainability. Full article
(This article belongs to the Section Foods of Marine Origin)
Show Figures

Graphical abstract

18 pages, 1115 KiB  
Article
Development of Gelatin-Based Renewable Packaging with Melaleuca alternifolia Essential Oil for Chicken Breast Preservation
by Rene Pereira de Lima, Daniela de Almeida Carrea, Vitor Augusto dos Santos Garcia, Cristina Tostes Filgueiras, Farayde Matta Fakhouri and José Ignacio Velasco
Polymers 2025, 17(5), 646; https://doi.org/10.3390/polym17050646 - 27 Feb 2025
Cited by 1 | Viewed by 882
Abstract
The aim of this study was to develop gelatin-based films incorporating Melaleuca alternifolia essential oil (MEO) and assess their application on refrigerated chicken breasts. The results showed that MEO exhibited antimicrobial activity against Pseudomonas aeruginosa and Salmonella sp., with inhibition zones of 17 [...] Read more.
The aim of this study was to develop gelatin-based films incorporating Melaleuca alternifolia essential oil (MEO) and assess their application on refrigerated chicken breasts. The results showed that MEO exhibited antimicrobial activity against Pseudomonas aeruginosa and Salmonella sp., with inhibition zones of 17 mm and 9 mm, respectively. The minimum inhibitory concentration (MIC) was 10% for P. aeruginosa and 15% for Salmonella sp., demonstrating greater efficacy against P. aeruginosa. The antioxidant analysis using the ABTS method revealed activity of 1309 ± 18.0 μM Trolox/g, while the FRAP method resulted in 446 ± 5.78 μM FeSO4/g. The characterization of the oil by gas chromatography identified major compounds, including 2-carene, γ-terpinene, terpine-4-ol, and α-terpineol. Incorporating the oil into gelatin films resulted in structural changes, such as an increase in thickness (from 0.059 to 0.127 mm) and water vapor permeability. Furthermore, the addition of MEO conferred homogeneous properties to the films with no visible cracks. The incorporation of MEO into gelatin films has shown ABTS antioxidant activity, and FRAP results showed a significant increase with higher MEO concentrations. The packaged samples retained more mass than the control group, which lost about 90% of its weight during storage. Texture analysis revealed only an 8% variation in the Melaleuca-coated samples compared to 19.6% in the control group. These findings indicate that gelatin films containing Melaleuca essential oil effectively improve the shelf life of chicken breasts. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

34 pages, 1738 KiB  
Review
Extending the Shelf Life of Apples After Harvest Using Edible Coatings as Active Packaging—A Review
by Magdalena Mikus and Sabina Galus
Appl. Sci. 2025, 15(2), 767; https://doi.org/10.3390/app15020767 - 14 Jan 2025
Cited by 5 | Viewed by 3677
Abstract
Extending the shelf life of perishable food, such as apples, and storing them in cold conditions and/or controlled atmospheres have been of great interest in the last decades. Apples are very valuable fruits with many health benefits, but during storage at ambient conditions, [...] Read more.
Extending the shelf life of perishable food, such as apples, and storing them in cold conditions and/or controlled atmospheres have been of great interest in the last decades. Apples are very valuable fruits with many health benefits, but during storage at ambient conditions, they ripen quickly and lose moisture, causing lower crispness or other negative effects, resulting in waste problems. There has been growing attention to protective edible coatings or active packaging films based on biopolymers and natural bioactive substances. Edible coatings and films allow for combination with functional ingredients or compounds, affecting the maintenance of the postharvest quality of fruits and vegetables. They also ensure the preservation of the sensory characteristics of food, and they can have antimicrobial or antioxidant properties. All these aspects play a significant role in the storage of apples, which can also help prevent waste, which is in line with the circular economy approach. The functionality of coatings and films is closely related to the type, content, and composition of active compounds, as well as their interaction with biopolymers. Active coatings with the addition of different functional compounds, such as plant extracts, phenolic acids, and nanoparticles, can be an alternative solution affecting the postharvest quality of apples during storage, maintaining the fruit’s stability, and thus minimising their waste. The most important issues related to the latest reports on improving the postharvest quality of apples using edible coatings incorporated with various active substances were evaluated. Agricultural conditions and factors that affect the postharvest quality of apples were described. The requirements for protective coatings for apples should be focused on low-cost materials, including waste-based resources, good miscibility, and compatibility of components. Those factors combined with the storage conditions may result in shelf life extension or retention of the postharvest quality of apples, regardless of the variety or cultivation techniques. Full article
(This article belongs to the Special Issue Feature Review Papers in Section ‘Food Science and Technology')
Show Figures

Figure 1

9 pages, 535 KiB  
Proceeding Paper
Edible Films with Protein and Bioactive Compounds from Arthrospira sp.
by Valter F. R. Martins, Fátima Poças, Manuela Pintado, Rui M. S. C. Morais and Alcina M. M. B. Morais
Biol. Life Sci. Forum 2024, 40(1), 6; https://doi.org/10.3390/blsf2024040006 - 2 Jan 2025
Cited by 2 | Viewed by 960
Abstract
Arthrospira sp. is an alternative source of protein in the food chain, but it may also be considered a source of phenolic compounds with interesting properties, such as antioxidant and antimicrobial properties. In active packaging, these two properties are essential. In the present [...] Read more.
Arthrospira sp. is an alternative source of protein in the food chain, but it may also be considered a source of phenolic compounds with interesting properties, such as antioxidant and antimicrobial properties. In active packaging, these two properties are essential. In the present work, two extracts were produced: one extract rich in protein and another in bioactives. These two extracts were used in the production of an edible film composed of alginate (2%) + protein extract (0.5%) + bioactive extract (0.25%) with high antioxidant activity: ABTS of 1537.50 ± 191.87 and DPPH of 190.75 ± 15.53 µM TE/mg film. All the edible films produced had good physical properties, such as 100% solubility in water and ethanolic solutions. The films with alginate and protein-rich extract and or without bioactive-rich extract presented lower water vapor permeability—12.28 ± 3.01 g⋅mm−2⋅day−1⋅kPa−1 and 14.39 ± 3.64 g⋅mm⋅m−2⋅day−1⋅kPa−1, respectively—than the alginate film. In addition, the film with alginate- and protein-rich extract presented an acceptable color. Full article
(This article belongs to the Proceedings of The 5th International Electronic Conference on Foods)
Show Figures

Figure 1

20 pages, 2444 KiB  
Article
Development of a Multifunctional Chitosan-Based Composite Film from Crab Shell (Portunus segnis) and Algae (Ulva lactuca) with Enhanced Antioxidant and Antimicrobial Properties for Active Food Packaging
by Imen Zaghbib, Johar Amin Ahmed Abdullah and Alberto Romero
Foods 2025, 14(1), 53; https://doi.org/10.3390/foods14010053 - 27 Dec 2024
Cited by 4 | Viewed by 1748
Abstract
Eco-friendly, bioactive and edible films from renewable resources are increasingly regarded as viable replacements for petroleum-based packaging. This study investigates the application of Ulva lactuca macroalgae powder (ULP) as an active additive in crab (Portunus segnis) chitosan-based films for natural food [...] Read more.
Eco-friendly, bioactive and edible films from renewable resources are increasingly regarded as viable replacements for petroleum-based packaging. This study investigates the application of Ulva lactuca macroalgae powder (ULP) as an active additive in crab (Portunus segnis) chitosan-based films for natural food packaging. Films with ULP concentrations of 0.5, 1.5, and 2.5% were prepared using a solvent-casting method with glycerol as a plasticizer. Their physicochemical, mechanical, functional, and biological properties were evaluated comprehensively. Fourier-transform infrared spectroscopy revealed intermolecular interactions between ULP’s polyphenolic compounds and the chitosan matrix, enhancing the films’ structural integrities. ULP’s incorporation reduced the moisture content, water solubility, lightness (L*), redness (a*), and whiteness index values while significantly (p < 0.05) increasing the yellowness (b*), total color difference (ΔE), yellowness index (YI), tensile strength (TS), and elongation at break (EB). The antioxidant activity improved in a concentration-dependent manner, as evidenced by the high free-radical scavenging capacity. Moreover, antimicrobial tests showed significant inhibitory effects against pathogenic strains. Biodegradability tests confirmed that the films decomposed entirely within 12 days under soil burial conditions, reinforcing their environmental compatibility. These results highlight the multifunctional potential of chitosan–ULP composite films, combining enhanced mechanical properties, bioactivity, and sustainability. By utilizing renewable and biodegradable materials, this work contributes to reducing waste and promoting resource efficiency, aligning with the principles of a circular economy and environmental preservation. Full article
(This article belongs to the Special Issue Advances in the Development of Sustainable Food Packaging)
Show Figures

Figure 1

19 pages, 7683 KiB  
Article
Effect of Sheep’s Whey Edible Coatings with a Bioprotective Culture, Kombucha Tea or Oregano Essential Oil on Cheese Characteristics
by Carlos D. Pereira, Hanna Varytskaya, Oliwia Łydzińska, Katarzyna Szkolnicka, David Gomes and Arona Pires
Foods 2024, 13(24), 4132; https://doi.org/10.3390/foods13244132 - 20 Dec 2024
Cited by 2 | Viewed by 958
Abstract
Films and coatings based on biopolymers have been extensively studied in recent years since they have less impact on the environment, can be obtained from renewable sources, have good coating and film-forming capacity, are biodegradable and can have interesting nutritional properties. In the [...] Read more.
Films and coatings based on biopolymers have been extensively studied in recent years since they have less impact on the environment, can be obtained from renewable sources, have good coating and film-forming capacity, are biodegradable and can have interesting nutritional properties. In the present study, sheep’s cheese whey powder (SCWP) was used to produce edible cheese coatings. Six types of cheese samples were produced: without coating (CON); treated with natamycin (NAT); with SCWP coating without antimicrobials (WCO); with SCWP coating with a commercial bioprotective culture (WFQ); with SCWP coating with kombucha tea (WKO); and with SCWP coating with oregano essential oil (WEO). At the end of the ripening period, all the cheeses were classified as full-fat and semihard, according to the Portuguese standard. The higher hardness and adhesiveness values of samples CON, WFQ and WKO were in line with the lower moisture in defatted cheese observed in these samples, indicating that future work should address the improvement of water vapor barrier properties of the whey-based coating. The samples treated with natamycin and with oregano essential oil presented significantly lower values for hardness. Differences were also observed on titratable acidity and aw, both between samples and because of ripening time. The color parameters of cheese samples also presented differences, chiefly in the rind, but the highest differences observed resulted from ripening time rather than between samples. In all cases, the counts of lactobacilli and lactococci surpassed log 7 CFU/g by the end of ripening. Regarding yeast and mold counts, the samples CON and WCO presented the highest values by the end of the ripening period (>log 4 CFU/g), while sample NAT presented the lowest value (ca. log 3 CFU/g). Samples WFQ, WKO and WEO presented values which were ca. 0.5 log cycles lower than samples CON and WCO. Hence, the use of SCWP alongside bioprotective culture, kombucha tea or oregano essential oil had a positive impact in the reduction of mold counts on cheese surfaces. Future work should also evaluate the joint use of different antimicrobials. Full article
(This article belongs to the Special Issue Probiotics in the Dairy Product: Trends, Advances and Opportunities)
Show Figures

Figure 1

13 pages, 669 KiB  
Article
A Taguchi Approach for Optimization of Antimicrobial Effect of Whey Protein Based Edible Film Fermented by Bacillus clausii
by Ali Raza Khan, Elif Sezer, Özge Aslan and Arzu Çağrı-Mehmetoglu
Polymers 2024, 16(23), 3375; https://doi.org/10.3390/polym16233375 - 29 Nov 2024
Cited by 2 | Viewed by 939
Abstract
Bacillus clausii, an antagonistic bacterium, was utilized to develop antimicrobial edible films based on whey protein concentrate. This study employed a Taguchi test (3 × 3) to evaluate the impact of temperature, pH, and protein concentration on film properties. Optimal growth of [...] Read more.
Bacillus clausii, an antagonistic bacterium, was utilized to develop antimicrobial edible films based on whey protein concentrate. This study employed a Taguchi test (3 × 3) to evaluate the impact of temperature, pH, and protein concentration on film properties. Optimal growth of B. clausii occurred at 6% (w/v) protein and pH 9.5. The resulting film solutions demonstrated antimicrobial activity, exhibiting inhibition zones against Aspergillus niger, Penicillium expansum, Staphylococcus aureus, and Escherichia coli, with inhibition zone diameters of 13.68 mm, 16.88 mm, 11.38 mm, and 17.15 mm, respectively. The optimum antimicrobial property of the films was observed when the incubation condition of pH 8.5, 35 °C and 6% (w/v) protein. Survival rates of B. clausii in the dry film were 86% at 4 °C and 87% at 25 °C over 14 days. Additionally, the highest tensile strength (TS) and percent elongation at break (%E) for the films were recorded at 3.14 MPa (pH = 9.5, 37 °C, 8% protein) and 27.63% (pH = 9.0, 35 °C, 10% protein), respectively. These findings demonstrate the potential for developing effective antimicrobial films through 24-h fermentation of B. clausii in the film solution. This antimicrobial film shows potential for use in wound dressings or food packaging applications. Full article
(This article belongs to the Special Issue Recent Advances in Biodegradable Polymers for Medical Applications)
Show Figures

Figure 1

Back to TopTop