Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (27)

Search Parameters:
Keywords = antifungal effectors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1872 KB  
Article
Divergent Immunomodulatory Roles of Fungal DNA in Shaping Treg and Inflammatory Responses
by Dongmei Li, Idalia Cruz, Yahui Feng, Maha Moussa, Jie Cheng, Digvijay Patil, Alexander Kroemer and Joseph A. Bellanti
J. Fungi 2025, 11(11), 760; https://doi.org/10.3390/jof11110760 - 22 Oct 2025
Viewed by 1031
Abstract
Fungal communities in the gut influence host immunity, yet most studies have focused on cell wall components rather than genetic materials. Here, we explore how fungal genomic DNA (gDNA) from Candida albicans, Saccharomyces cerevisiae, and Cryptococcus neoformans modulate immune responses in [...] Read more.
Fungal communities in the gut influence host immunity, yet most studies have focused on cell wall components rather than genetic materials. Here, we explore how fungal genomic DNA (gDNA) from Candida albicans, Saccharomyces cerevisiae, and Cryptococcus neoformans modulate immune responses in human CD4+ T cells, murine splenocytes, and THP-1-derived macrophages. We find that C. albicans gDNA promotes the development of regulatory T cells and increases IL-10, fostering immune tolerance and preserving CD4+ T cell viability in an inflammatory setting. S. cerevisiae gDNA induces moderate Treg responses with restrained effector T cell expansion and higher checkpoint gene expression, entirely consistent with its commensal nature. In contrast, C. neoformans gDNA elicits a strongly inflammatory profile, promoting Th1/Th17 cells and driving high cytokine production. Mechanistically, C. albicans and S. cerevisiae gDNA dampen DNA-sensing pathways and enhance immune checkpoint molecules that act as brakes against overactivation, while C. neoformans gDNA robustly activates innate sensing pathways with limited checkpoint induction. These species-specific signaling profiles reveal that fungal gDNA itself can influence whether the immune system adopts a tolerant or inflammatory response toward fungi. This discovery highlights fungal genomic DNA as a previously underappreciated regulator of host–fungus interactions, offering new insight into commensal persistence, pathogenic invasion, and the potential for DNA-based antifungal interventions. Full article
(This article belongs to the Special Issue New Perspectives on Fungal Immunology)
Show Figures

Figure 1

21 pages, 790 KB  
Review
Computational Approaches for Discovering Virulence Factors in Coccidioides
by Arianna D. Daniel, Vikram Senthil and Katrina K. Hoyer
J. Fungi 2025, 11(10), 754; https://doi.org/10.3390/jof11100754 - 21 Oct 2025
Viewed by 982
Abstract
Emerging respiratory dimorphic fungi, including Coccidioides, pose a growing public health threat due to their ability to cause severe disease and the limited therapeutic options. A growing gap exists between rapidly expanding computational data and slower traditional experimental methods for virulence factor [...] Read more.
Emerging respiratory dimorphic fungi, including Coccidioides, pose a growing public health threat due to their ability to cause severe disease and the limited therapeutic options. A growing gap exists between rapidly expanding computational data and slower traditional experimental methods for virulence factor identification, limiting progress in fungal pathogenesis research and therapeutic development. This review presents a framework for integrating computational and experimental methodologies to accelerate virulence discovery in Coccidioides. We examine predictive tools for adhesins, transporters, secreted effectors, carbohydrate-active enzymes (CAZymes), and secondary metabolites, plus therapeutic target prioritization strategies based on druggability, selectivity, essentiality, and precedent. Examples from Coccidioides and other World Health Organization-designated emerging fungi highlight how computational pipelines clarify pathogenic mechanisms and guide experimental design. We also assess machine learning, structural prediction, and reverse vaccinology approaches for enhance target discovery. By applying computational advances to Coccidioides research with experimental validation, this integrated approach can guide future antifungal drug and vaccine development. Full article
(This article belongs to the Special Issue Proteomic Studies of Pathogenic Fungi and Hosts)
Show Figures

Figure 1

23 pages, 509 KB  
Review
Invasive Fungal Disease After Chimeric Antigen Receptor-T Immunotherapy in Adult and Pediatric Patients
by Paschalis Evangelidis, Konstantinos Tragiannidis, Athanasios Vyzantiadis, Nikolaos Evangelidis, Panagiotis Kalmoukos, Timoleon-Achilleas Vyzantiadis, Athanasios Tragiannidis, Maria Kourti and Eleni Gavriilaki
Pathogens 2025, 14(2), 170; https://doi.org/10.3390/pathogens14020170 - 8 Feb 2025
Cited by 7 | Viewed by 2695
Abstract
Invasive fungal diseases (IFDs) have been documented among the causes of post-chimeric antigen receptor-T (CAR-T) cell immunotherapy complications, with the incidence of IFDs in CAR-T cell therapy recipients being measured between 0% and 10%, globally. IFDs are notorious for their potentially life-threatening nature [...] Read more.
Invasive fungal diseases (IFDs) have been documented among the causes of post-chimeric antigen receptor-T (CAR-T) cell immunotherapy complications, with the incidence of IFDs in CAR-T cell therapy recipients being measured between 0% and 10%, globally. IFDs are notorious for their potentially life-threatening nature and challenging diagnosis and treatment. In this review, we searched the recent literature aiming to examine the risk factors and epidemiology of IFDs post-CAR-T infusion. Moreover, the role of antifungal prophylaxis is investigated. CAR-T cell therapy recipients are especially vulnerable to IFDs due to several risk factors that contribute to the patient’s immunosuppression. Those include the underlying hematological malignancies, the lymphodepleting chemotherapy administered before the treatment, existing leukopenia and hypogammaglobinemia, and the use of high-dose corticosteroids and interleukin-6 blockers as countermeasures for immune effector cell-associated neurotoxicity syndrome and cytokine release syndrome, respectively. IFDs mostly occur within the first 60 days following the infusion of the T cells, but cases even a year after the infusion have been described. Aspergillus spp., Candida spp., and Pneumocystis jirovecii are the main cause of these infections following CAR-T cell therapy. More real-world data regarding the epidemiology of IFDs and the role of antifungal prophylaxis in this population are essential. Full article
(This article belongs to the Special Issue Rare Fungal Infection Studies)
Show Figures

Figure 1

18 pages, 1027 KB  
Review
Antimicrobial Potential of Scorpion-Venom-Derived Peptides
by Zhiqiang Xia, Lixia Xie, Bing Li, Xiangyun Lv, Hongzhou Zhang and Zhijian Cao
Molecules 2024, 29(21), 5080; https://doi.org/10.3390/molecules29215080 - 27 Oct 2024
Cited by 11 | Viewed by 6406
Abstract
The frequent and irrational use of antibiotics by humans has led to the escalating rise of antimicrobial resistance (AMR) with a high rate of morbidity-mortality worldwide, which poses a challenge to the development of effective treatments. A large number of host defense peptides [...] Read more.
The frequent and irrational use of antibiotics by humans has led to the escalating rise of antimicrobial resistance (AMR) with a high rate of morbidity-mortality worldwide, which poses a challenge to the development of effective treatments. A large number of host defense peptides from different organisms have gained interest due to their broad antibacterial spectrum, rapid action, and low target resistance, implying that these natural sources might be a new alternative to antimicrobial drugs. As important effectors of prey capture, defense against other animal attacks, and competitor deterrence, scorpion venoms have been developed as important candidate sources for modern drug development. With the rapid progress of bioanalytical and high throughput sequencing techniques, more and more scorpion-venom-derived peptides, including disulfide-bridged peptides (DBPs) and non-disulfide-bridged peptides (NDBPs), have been recently identified as having massive pharmacological activities in channelopathies, pathogen infections, and cancer treatments. In this review, we summarize the molecular diversity and corresponding structural classification of scorpion venom peptides with antibacterial, antifungal, and/or antiparasitic activity. We also aim to improve the understanding of the underlying mechanisms by which scorpion-venom-derived peptides exert these antimicrobial functions, and finally highlight their key aspects and prospects for antimicrobial therapeutic or pharmaceutical application. Full article
Show Figures

Figure 1

13 pages, 3902 KB  
Article
Multiple Chitin- or Avirulent Strain-Triggered Immunity Induces Microbiome Reassembly in Rice
by Sauban Musa Jibril, Chun Wang, Chao Yang, Hao Qu, Xinyun Yang, Kexin Yang, Chengyun Li and Yi Wang
Microorganisms 2024, 12(7), 1323; https://doi.org/10.3390/microorganisms12071323 - 28 Jun 2024
Cited by 3 | Viewed by 1931
Abstract
Magnaporthe oryzae is one of the most important fungal pathogens of rice. Chitin and avirulent strains can induce two layers of immunity response, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI), in rice with cognate R genes. However, little is known [...] Read more.
Magnaporthe oryzae is one of the most important fungal pathogens of rice. Chitin and avirulent strains can induce two layers of immunity response, pathogen-associated molecular pattern (PAMP)-triggered immunity (PTI) and effector-triggered immunity (ETI), in rice with cognate R genes. However, little is known about the assembly of the rice microbiome induced by PTI and ETI in rice. In this study, we investigate the impact of continuous treatment of the avirulent M. oryzae strain with AvrPi9 and chitin on the bacterial endophytic community of rice varieties harboring resistant gene Pi9 and their antagonistic activity against rice blast fungus. Analysis of the 16S rRNA showed a significant increase in the diversity and microbial co-occurrence network complexity and the number of beneficial taxa—Bacillus, Pseudomonas, Microbacterium, and Stenotrophomonas spp.—following the chitin and avirulent strain treatments. The antifungal assay with bacterial endophytes recovered from the leaves showed few bacteria with antagonistic potential in rice treated with avirulent strains, suggesting that the sequential treatment of the avirulent strain decreased the antagonistic bacteria against M. oryzae. Moreover, we identified Bacillus safensis Ch_66 and Bacillus altitudinis Nc_68 with overall antagonistic activities in vivo and in vitro. Our findings provide a novel insight into rice microbiome assembly in response to different innate immunity reactions. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

13 pages, 2933 KB  
Article
Disrupting the Dok3–Card9 Interaction with Synthetic Peptides Enhances Antifungal Effector Functions of Human Neutrophils
by Jia Tong Loh, Joey Kay Hui Teo, Srinivasaraghavan Kannan, Chandra S. Verma, Hong-Hwa Lim and Kong-Peng Lam
Pharmaceutics 2023, 15(7), 1780; https://doi.org/10.3390/pharmaceutics15071780 - 21 Jun 2023
Cited by 4 | Viewed by 2212
Abstract
Invasive fungal disease is an emerging and serious public health threat globally. The expanding population of susceptible individuals, together with the rapid emergence of multidrug-resistant fungi pathogens, call for the development of novel therapeutic strategies beyond the limited repertoire of licensed antifungal drugs. [...] Read more.
Invasive fungal disease is an emerging and serious public health threat globally. The expanding population of susceptible individuals, together with the rapid emergence of multidrug-resistant fungi pathogens, call for the development of novel therapeutic strategies beyond the limited repertoire of licensed antifungal drugs. Card9 is a critical signaling molecule involved in antifungal defense; we have previously identified Dok3 to be a key negative regulator of Card9 activity in neutrophils. In this study, we identified two synthetic peptides derived from the coiled-coil domain of Card9, which can specifically block Dok3–Card9 binding. We showed that these peptides are cell-permeable, non-toxic, and can enhance antifungal cytokine production and the phagocytosis of human neutrophils upon fungal infection. Collectively, these data provide a proof of concept that disrupting the Dok3–Card9 interaction can boost the antifungal effector functions of neutrophils; they further suggest the potential utility of these peptide inhibitors as an immune-based therapeutic to fight fungal infection. Full article
(This article belongs to the Section Gene and Cell Therapy)
Show Figures

Figure 1

26 pages, 10411 KB  
Article
Identification of Potential Phytochemical/Antimicrobial Agents against Pseudoperonospora cubensis Causing Downy Mildew in Cucumber through In-Silico Docking
by Nagaraju Jhansirani, Venkatappa Devappa, Chittarada Gopal Sangeetha, Shankarappa Sridhara, Kodegandlu Subbanna Shankarappa and Mooventhiran Mohanraj
Plants 2023, 12(11), 2202; https://doi.org/10.3390/plants12112202 - 2 Jun 2023
Cited by 4 | Viewed by 3108
Abstract
Compatibility interactions between the host and the fungal proteins are necessary to successfully establish a disease in plants by fungi or other diseases. Photochemical and antimicrobial substances are generally known to increase plant resilience, which is essential for eradicating fungus infections. Through homology [...] Read more.
Compatibility interactions between the host and the fungal proteins are necessary to successfully establish a disease in plants by fungi or other diseases. Photochemical and antimicrobial substances are generally known to increase plant resilience, which is essential for eradicating fungus infections. Through homology modeling and in silico docking analysis, we assessed 50 phytochemicals from cucumber (Cucumis sativus), 15 antimicrobial compounds from botanical sources, and six compounds from chemical sources against two proteins of Pseudoperonospora cubensis linked to cucumber downy mildew. Alpha and beta sheets made up the 3D structures of the two protein models. According to Ramachandran plot analysis, the QNE 4 effector protein model was considered high quality because it had 86.8% of its residues in the preferred region. The results of the molecular docking analysis showed that the QNE4 and cytochrome oxidase subunit 1 proteins of P. cubensis showed good binding affinities with glucosyl flavones, terpenoids and flavonoids from phytochemicals, antimicrobial compounds from botanicals (garlic and clove), and chemically synthesized compounds, indicating the potential for antifungal activity. Full article
(This article belongs to the Special Issue Antimicrobial Activity of Natural Compounds)
Show Figures

Figure 1

17 pages, 3510 KB  
Article
Trichosporon asahii PLA2 Gene Enhances Drug Resistance to Azoles by Improving Drug Efflux and Biofilm Formation
by Xiaoping Ma, Hong Liu, Zhen Liu, Ya Wang, Zhijun Zhong, Guangneng Peng and Yu Gu
Int. J. Mol. Sci. 2023, 24(10), 8855; https://doi.org/10.3390/ijms24108855 - 16 May 2023
Cited by 9 | Viewed by 3185
Abstract
Trichosporon asahii is an opportunistic pathogen that can cause severe or even fatal infections in patients with low immune function. sPLA2 plays different roles in different fungi and is also related to fungal drug resistance. However, the mechanism underlying its drug resistance to [...] Read more.
Trichosporon asahii is an opportunistic pathogen that can cause severe or even fatal infections in patients with low immune function. sPLA2 plays different roles in different fungi and is also related to fungal drug resistance. However, the mechanism underlying its drug resistance to azoles has not yet been reported in T. asahii. Therefore, we investigated the drug resistance of T. asahii PLA2 (TaPLA2) by constructing overexpressing mutant strains (TaPLA2OE). TaPLA2OE was generated by homologous recombination of the recombinant vector pEGFP-N1-TaPLA2, induced by the CMV promoter, with Agrobacterium tumefaciens. The structure of the protein was found to be typical of sPLA2, and it belongs to the phospholipase A2_3 superfamily. TaPLA2OE enhanced antifungal drug resistance by upregulating the expression of effector genes and increasing the number of arthrospores to promote biofilm formation. TaPLA2OE was highly sensitive to sodium dodecyl sulfate and Congo red, indicating impaired cell wall integrity due to downregulation of chitin synthesis or degradation genes, which can indirectly affect fungal resistance. In conclusion, TaPLA2 overexpression enhanced the resistance to azoles of T. asahii by enhancing drug efflux and biofilm formation and upregulating HOG-MAPK pathway genes; therefore, it has promising research prospects. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Fungal Pathogenesis and Antifungal Resistance)
Show Figures

Figure 1

28 pages, 1934 KB  
Review
Unraveling the Role of Antimicrobial Peptides in Insects
by Sylwia Stączek, Małgorzata Cytryńska and Agnieszka Zdybicka-Barabas
Int. J. Mol. Sci. 2023, 24(6), 5753; https://doi.org/10.3390/ijms24065753 - 17 Mar 2023
Cited by 71 | Viewed by 12789
Abstract
Antimicrobial peptides (AMPs) are short, mainly positively charged, amphipathic molecules. AMPs are important effectors of the immune response in insects with a broad spectrum of antibacterial, antifungal, and antiparasitic activity. In addition to these well-known roles, AMPs exhibit many other, often unobvious, functions [...] Read more.
Antimicrobial peptides (AMPs) are short, mainly positively charged, amphipathic molecules. AMPs are important effectors of the immune response in insects with a broad spectrum of antibacterial, antifungal, and antiparasitic activity. In addition to these well-known roles, AMPs exhibit many other, often unobvious, functions in the host. They support insects in the elimination of viral infections. AMPs participate in the regulation of brain-controlled processes, e.g., sleep and non-associative learning. By influencing neuronal health, communication, and activity, they can affect the functioning of the insect nervous system. Expansion of the AMP repertoire and loss of their specificity is connected with the aging process and lifespan of insects. Moreover, AMPs take part in maintaining gut homeostasis, regulating the number of endosymbionts as well as reducing the number of foreign microbiota. In turn, the presence of AMPs in insect venom prevents the spread of infection in social insects, where the prey may be a source of pathogens. Full article
(This article belongs to the Special Issue Antimicrobial Peptides and Immunology)
Show Figures

Figure 1

20 pages, 1166 KB  
Review
Bioactive Metabolite Production in the Genus Pyrenophora (Pleosporaceae, Pleosporales)
by Marco Masi, Jesús García Zorrilla and Susan Meyer
Toxins 2022, 14(9), 588; https://doi.org/10.3390/toxins14090588 - 27 Aug 2022
Cited by 10 | Viewed by 4114
Abstract
The genus Pyrenophora includes two important cereal crop foliar pathogens and a large number of less well-known species, many of which are also grass pathogens. Only a few of these have been examined in terms of secondary metabolite production, yet even these few [...] Read more.
The genus Pyrenophora includes two important cereal crop foliar pathogens and a large number of less well-known species, many of which are also grass pathogens. Only a few of these have been examined in terms of secondary metabolite production, yet even these few species have yielded a remarkable array of bioactive metabolites that include compounds produced through each of the major biosynthetic pathways. There is little overlap among species in the compounds identified. Pyrenophora tritici-repentis produces protein toxin effectors that mediate host-specific responses as well as spirocyclic lactams and at least one anthraquinone. Pyrenophora teres produces marasmine amino acid and isoquinoline derivatives involved in pathogenesis on barley as well as nonenolides with antifungal activity, while P. semeniperda produces cytochalasans and sesquiterpenoids implicated in pathogenesis on seeds as well as spirocyclic lactams with phytotoxic and antibacterial activity. Less well-known species have produced some unusual macrocyclic compounds in addition to a diverse array of anthraquinones. For the three best-studied species, in silico genome mining has predicted the existence of biosynthetic pathways for a much larger array of potentially toxic secondary metabolites than has yet been produced in culture. Most compounds identified to date have potentially useful biological activity. Full article
(This article belongs to the Special Issue Biological Activities and Potential Applications of Phytotoxins)
Show Figures

Figure 1

13 pages, 2516 KB  
Article
BEM2, a RHO GTPase Activating Protein That Regulates Morphogenesis in S. cerevisiae, Is a Downstream Effector of Fungicidal Action of Fludioxonil
by Anupam Sharma, Yogita Martoliya and Alok K. Mondal
J. Fungi 2022, 8(7), 754; https://doi.org/10.3390/jof8070754 - 21 Jul 2022
Cited by 2 | Viewed by 2315
Abstract
Fludioxonil belongs to the phenylpyrrole group of fungicides with a broad antifungal spectrum that has been widely used in agricultural practices for the past thirty years. Although fludioxonil is known to exert its fungicidal action through group III hybrid histidine kinases, the downstream [...] Read more.
Fludioxonil belongs to the phenylpyrrole group of fungicides with a broad antifungal spectrum that has been widely used in agricultural practices for the past thirty years. Although fludioxonil is known to exert its fungicidal action through group III hybrid histidine kinases, the downstream effector of its cytotoxicity is poorly understood. In this study, we utilized a S. cerevisiae model to decipher the cytotoxic effect of fludioxonil. Through genome wide transposon mutagenesis, we have identified Bem2, a Rho GTPase activating protein, which is involved in this process. The deletion of BEM2 resulted in fludioxonil resistance. Our results showed that both the GAP and morphogenesis checkpoint activities of Bem2 were important for this. We also provided the genetic evidence that the role of Bem2 in the cell wall integrity (CWI) pathway and cell cycle regulation could contribute to the fludioxonil resistance phenotype. Full article
Show Figures

Figure 1

19 pages, 7627 KB  
Article
Antimicrobial Activity of Cathelicidin-Derived Peptide from the Iberian Mole Talpa occidentalis
by Andrea Otazo-Pérez, Patricia Asensio-Calavia, Sergio González-Acosta, Victoria Baca-González, Manuel R. López, Antonio Morales-delaNuez and José Manuel Pérez de la Lastra
Vaccines 2022, 10(7), 1105; https://doi.org/10.3390/vaccines10071105 - 10 Jul 2022
Cited by 8 | Viewed by 3015
Abstract
The immune systems of all vertebrates contain cathelicidins, a family of antimicrobial peptides. Cathelicidins are a type of innate immune effector that have a number of biological functions, including a well-known direct antibacterial action and immunomodulatory function. In search of new templates for [...] Read more.
The immune systems of all vertebrates contain cathelicidins, a family of antimicrobial peptides. Cathelicidins are a type of innate immune effector that have a number of biological functions, including a well-known direct antibacterial action and immunomodulatory function. In search of new templates for antimicrobial peptide discovery, we have identified and characterized the cathelicidin of the small mammal Talpa occidentalis. We describe the heterogeneity of cathelicidin in the order Eulipotyphla in relation to the Iberian mole and predict its antibacterial activity using bioinformatics tools. In an effort to correlate these findings, we derived the putative active peptide and performed in vitro hemolysis and antimicrobial activity assays, confirming that Iberian mole cathelicidins are antimicrobial. Our results showed that the Iberian mole putative peptide, named To-KL37 (KLFGKVGNLLQKGWQKIKNIGRRIKDFFRNIRPMQEA) has antibacterial and antifungal activity. Understanding the antimicrobial defense of insectivores may help scientists prevent the spread of pathogens to humans. We hope that this study can also provide new, effective antibacterial peptides for future drug development. Full article
Show Figures

Figure 1

20 pages, 2752 KB  
Article
Performance of Novel Antimicrobial Protein Bg_9562 and In Silico Predictions on Its Properties with Reference to Its Antimicrobial Efficiency against Rhizoctonia solani
by Pranathi Karnati, Rekha Gonuguntala, Kalyani M. Barbadikar, Divya Mishra, Gopaljee Jha, Vellaisamy Prakasham, Priyanka Chilumula, Hajira Shaik, Maruthi Pesari, Raman Meenakshi Sundaram and Kannan Chinnaswami
Antibiotics 2022, 11(3), 363; https://doi.org/10.3390/antibiotics11030363 - 8 Mar 2022
Cited by 7 | Viewed by 4071
Abstract
Bg_9562 is a potential broad-spectrum antifungal effector protein derived from the bacteria Burkholderia gladioli strain NGJ1 and is effective against Rhizoctonia solani, the causal agent of sheath blight in rice. In the present study, in vitro antifungal assays showed that Bg_9562 was [...] Read more.
Bg_9562 is a potential broad-spectrum antifungal effector protein derived from the bacteria Burkholderia gladioli strain NGJ1 and is effective against Rhizoctonia solani, the causal agent of sheath blight in rice. In the present study, in vitro antifungal assays showed that Bg_9562 was efficient at 35 °C and 45 °C and ineffective either at high acidic pH (3.0) or alkaline pH (9.5) conditions. Compatibility studies between the native bioagents Trichoderma asperellum TAIK1 and Bacillus subtilis BIK3 indicated that Bg_9562 was compatible with the bioagents. A field study using foliar spray of the Bg_9562 protein indicated the need of formulating the protein before its application. In silico analysis predicted that Bg_9562 possess 111 amino acid residues (46 hydrophobic residues, 12 positive and 8 negative residues) with the high aliphatic index of 89.92, attributing to its thermostability with a half-life of 30 h. Bg_9562 (C491H813N137O166S5) possessed a protein binding potential of 1.27 kcal/mol with a better possibility of interacting and perturbing the membrane, the main target for antimicrobial proteins. The secondary structure revealed the predominance of random coils in its structure, and the best 3D model of Bg_9562 was predicted using an ab initio method with Robetta and AlphaFold 2. The predicted binding ligands were nucleic acids and zinc with confidence scores of 0.07 and 0.05, respectively. The N-terminal region (1–14 residues) and C-terminal region (101 to 111) of Bg_9562 residues were predicted to be disordered regions. Stability and binding properties of the protein from the above studies would help to encapsulate Bg_9562 using a suitable carrier to maintain efficiency and improve delivery against Rhizoctonia solani in the most challenging rice ecosphere. Full article
(This article belongs to the Special Issue Antimicrobial Peptides and How to Find Them)
Show Figures

Figure 1

18 pages, 2016 KB  
Article
Extracellular Vesicles from Fusarium graminearum Contain Protein Effectors Expressed during Infection of Corn
by Donovan Garcia-Ceron, Rohan G. T. Lowe, James A. McKenna, Linda M. Brain, Charlotte S. Dawson, Bethany Clark, Oliver Berkowitz, Pierre Faou, James Whelan, Mark R. Bleackley and Marilyn A. Anderson
J. Fungi 2021, 7(11), 977; https://doi.org/10.3390/jof7110977 - 17 Nov 2021
Cited by 46 | Viewed by 6821
Abstract
Fusarium graminearum (Fgr) is a devastating filamentous fungal pathogen that causes diseases in cereals, while producing mycotoxins that are toxic for humans and animals, and render grains unusable. Low efficiency in managing Fgr poses a constant need for identifying novel [...] Read more.
Fusarium graminearum (Fgr) is a devastating filamentous fungal pathogen that causes diseases in cereals, while producing mycotoxins that are toxic for humans and animals, and render grains unusable. Low efficiency in managing Fgr poses a constant need for identifying novel control mechanisms. Evidence that fungal extracellular vesicles (EVs) from pathogenic yeast have a role in human disease led us to question whether this is also true for fungal plant pathogens. We separated EVs from Fgr and performed a proteomic analysis to determine if EVs carry proteins with potential roles in pathogenesis. We revealed that protein effectors, which are crucial for fungal virulence, were detected in EV preparations and some of them did not contain predicted secretion signals. Furthermore, a transcriptomic analysis of corn (Zea mays) plants infected by Fgr revealed that the genes of some of the effectors were highly expressed in vivo, suggesting that the Fgr EVs are a mechanism for the unconventional secretion of effectors and virulence factors. Our results expand the knowledge on fungal EVs in plant pathogenesis and cross-kingdom communication, and may contribute to the discovery of new antifungals. Full article
(This article belongs to the Special Issue Plant and Fungal Interactions)
Show Figures

Figure 1

17 pages, 1426 KB  
Review
Insights on the Functional Role of Beta-Glucans in Fungal Immunity Using Receptor-Deficient Mouse Models
by Mark Joseph Maranan Desamero, Soo-Hyun Chung and Shigeru Kakuta
Int. J. Mol. Sci. 2021, 22(9), 4778; https://doi.org/10.3390/ijms22094778 - 30 Apr 2021
Cited by 11 | Viewed by 5739
Abstract
Understanding the host anti-fungal immunity induced by beta-glucan has been one of the most challenging conundrums in the field of biomedical research. During the last couple of decades, insights on the role of beta-glucan in fungal disease progression, susceptibility, and resistance have been [...] Read more.
Understanding the host anti-fungal immunity induced by beta-glucan has been one of the most challenging conundrums in the field of biomedical research. During the last couple of decades, insights on the role of beta-glucan in fungal disease progression, susceptibility, and resistance have been greatly augmented through the utility of various beta-glucan cognate receptor-deficient mouse models. Analysis of dectin-1 knockout mice has clarified the downstream signaling pathways and adaptive effector responses triggered by beta-glucan in anti-fungal immunity. On the other hand, assessment of CR3-deficient mice has elucidated the compelling action of beta-glucans in neutrophil-mediated fungal clearance, and the investigation of EphA2-deficient mice has highlighted its novel involvement in host sensing and defense to oral mucosal fungal infection. Based on these accounts, this review focuses on the recent discoveries made by these gene-targeted mice in beta-glucan research with particular emphasis on the multifaceted aspects of fungal immunity. Full article
Show Figures

Figure 1

Back to TopTop