Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (476)

Search Parameters:
Keywords = antibody-based immunotherapies

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 3641 KiB  
Article
Affinity Affects the Functional Potency of Anti-GD2 Antibodies by Target-Mediated Drug Disposition
by Sascha Troschke-Meurer, Maxi Zumpe, Peter Moritz Ahrenberg, Torsten Ebeling, Nikolai Siebert, Piotr Grabarczyk and Holger N. Lode
Cancers 2025, 17(15), 2510; https://doi.org/10.3390/cancers17152510 - 30 Jul 2025
Viewed by 287
Abstract
Background/Objectives: High-risk neuroblastoma patients are treated with approved anti-ganglioside GD2 antibodies of moderate (dinutuximab beta; DB) and higher binding affinity (naxitamab; NAXI). We evaluated the functional potency of DB compared to NAXI and investigated the target-mediated drug disposition (TMDD). Methods: Tumor spheroids were [...] Read more.
Background/Objectives: High-risk neuroblastoma patients are treated with approved anti-ganglioside GD2 antibodies of moderate (dinutuximab beta; DB) and higher binding affinity (naxitamab; NAXI). We evaluated the functional potency of DB compared to NAXI and investigated the target-mediated drug disposition (TMDD). Methods: Tumor spheroids were generated from neuroblastoma cells with varying GD2 expression, stably expressing iRFP680 as a viability marker. Antibody-dependent cellular cytotoxicity (ADCC) and complement-dependent cytotoxicity (CDC) were assessed in a long-term life-cell viability assay using serial dilutions of the GD2 antibodies. Binding activity was determined by flow cytometry. Processes involved in TMDD were analyzed, including antibody binding to dead tumor cells and to soluble GD2 (sGD2), antibody internalization into tumor and immune cells and the impact of sGD2 on DB and NAXI-mediated ADCC. Results: DB and NAXI mediated a concentration-dependent ADCC response against GD2-positive spheroids and no response against GD2-negative spheroids. DB showed a significantly higher ADCC potency than NAXI in all GD2-positive spheroid models. Binding activity of DB and NAXI was not significantly different. However, the decrease of anti-GD2 antibody binding to viable GD2-positive tumor cells following co-incubation with dead GD2-positive tumor cells or sGD2 was significantly higher for NAXI than DB. Additionally, we found an increased internalization of NAXI compared to DB by tumor cells and particularly CD64+ monocytes. Finally, sGD2 impaired NAXI-mediated ADCC to a significantly greater extent than DB-mediated ADCC. Conclusions: DB has a higher ADCC potency over NAXI at clinically relevant concentrations, attributed to stronger TMDD effects of NAXI compared to DB. Full article
(This article belongs to the Special Issue Precision Medicine and Targeted Therapies in Neuroblastoma)
Show Figures

Graphical abstract

32 pages, 1691 KiB  
Review
Aptamers Targeting Immune Checkpoints for Tumor Immunotherapy
by Amir Mohammed Abker Abdu, Yanfei Liu, Rami Abduljabbar, Yunqi Man, Qiwen Chen and Zhenbao Liu
Pharmaceutics 2025, 17(8), 948; https://doi.org/10.3390/pharmaceutics17080948 - 22 Jul 2025
Viewed by 478
Abstract
Tumor immunotherapy has revolutionized cancer treatment by harnessing the immune system to recognize and eliminate malignant cells, with immune checkpoint inhibitors targeting programmed death receptor 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) demonstrating remarkable clinical success. However, challenges such [...] Read more.
Tumor immunotherapy has revolutionized cancer treatment by harnessing the immune system to recognize and eliminate malignant cells, with immune checkpoint inhibitors targeting programmed death receptor 1 (PD-1), programmed death-ligand 1 (PD-L1), and cytotoxic T-lymphocyte-associated protein-4 (CTLA-4) demonstrating remarkable clinical success. However, challenges such as treatment resistance, immune-related adverse effects, and high costs highlight the need for novel therapeutic approaches. Aptamers, short, single-stranded oligonucleotides with high specificity and affinity for target molecules, have emerged as promising alternatives to conventional antibody-based therapies. This review provides a comprehensive analysis of aptamer-based strategies targeting immune checkpoints, with a particular focus on PD-1/PD-L1 and CTLA-4. We summarize recent advances in aptamer design, including bispecific and multifunctional aptamers, and explore their potential in overcoming immune resistance and improving therapeutic efficacy. Additionally, we discuss strategies to enhance aptamer stability, bioavailability, and tumor penetration through chemical modifications and nanoparticle conjugation. Preclinical and early clinical studies have demonstrated that aptamers can effectively block immune checkpoint pathways, restore T-cell activity, and synergize with other immunotherapeutic agents to achieve superior anti-tumor responses. By systematically reviewing the current research landscape and identifying key challenges, this review aims to provide valuable insights into the future directions of aptamer-based cancer immunotherapy, paving the way for more effective and personalized treatment strategies. Full article
(This article belongs to the Special Issue Nanomedicines for Overcoming Tumor Immunotherapy Tolerance)
Show Figures

Graphical abstract

40 pages, 1203 KiB  
Review
Overview of Preclinical and Clinical Trials of Nanoparticles for the Treatment of Brain Metastases
by Muhammad Izhar, Mohamed Al Gharyani, Ahed H. Kattaa, Juan J. Cardona, Ruchit P. Jain, Elaheh Shaghaghian, Yusuke S. Hori, Fred C. Lam, Deyaaldeen Abu Reesh, Sara C. Emrich, Louisa Ustrzynski, Armine Tayag, Maciej S. Lesniak, Steven D. Chang and David J. Park
Pharmaceutics 2025, 17(7), 899; https://doi.org/10.3390/pharmaceutics17070899 - 11 Jul 2025
Viewed by 617
Abstract
Brain metastases (BM), which most commonly originate from lung, breast, or skin cancers, remain a major clinical challenge, with standard treatments such as stereotactic radiosurgery (SRS), surgical resection, and whole-brain radiation therapy (WBRT). The prognosis for patients with BM remains poor, with a [...] Read more.
Brain metastases (BM), which most commonly originate from lung, breast, or skin cancers, remain a major clinical challenge, with standard treatments such as stereotactic radiosurgery (SRS), surgical resection, and whole-brain radiation therapy (WBRT). The prognosis for patients with BM remains poor, with a median overall survival (OS) of just 10–16 months. Although recent advances in systemic therapies, including small molecule inhibitors, monoclonal antibodies, chemotherapeutics, and gene therapies, have demonstrated success in other malignancies, their effectiveness in central nervous system (CNS) cancers is significantly limited by poor blood–brain barrier (BBB) permeability and subtherapeutic drug concentrations in the brain. Nanoparticle-based drug delivery systems have emerged as a promising strategy to overcome these limitations by enhancing CNS drug penetration and selectively targeting metastatic brain tumor cells while minimizing off-target effects. This review summarizes recent preclinical and clinical developments in nanoparticle-based therapies for BM. It is evident from these studies that NPs can carry with them a range of therapeutics, including chemotherapy, immunotherapy, small molecule inhibitors, gene therapies, radiosensitizers, and modulators of tumor microenvironment to the BM. Moreover, preclinical studies have shown encouraging efficacy in murine models, highlighting the potential of these platforms to improve therapeutic outcomes. However, clinical translation remains limited, with few ongoing trials. To close this translational gap, future work must address clinical challenges such as trial design, regulatory hurdles, and variability in BBB permeability while developing personalized nanoparticle-based therapies tailored to individual tumor characteristics. Full article
(This article belongs to the Special Issue Development of Novel Tumor-Targeting Nanoparticles, 2nd Edition)
Show Figures

Figure 1

12 pages, 567 KiB  
Article
Toxicity Profiles of Antibody–Drug Conjugates: Synthesis and Graphical Insights to Optimize Patient-Centered Treatment Strategies for HER2-Negative Metastatic Breast Cancer
by Bérénice Collineau, Anthony Gonçalves, Marie Domon, Damien Bruyat, François Bertucci and Alexandre de Nonneville
Cancers 2025, 17(14), 2307; https://doi.org/10.3390/cancers17142307 - 11 Jul 2025
Viewed by 433
Abstract
Background: The treatment options for HER2-negative metastatic breast cancer include targeted therapies, cytotoxic chemotherapies, and immunotherapy. However, limited specificity and inevitable resistance highlight the need for novel agents. Antibody–drug conjugates (ADCs), such as trastuzumab deruxtecan (T-DXd) and sacituzumab govitecan (SG), represent a breakthrough [...] Read more.
Background: The treatment options for HER2-negative metastatic breast cancer include targeted therapies, cytotoxic chemotherapies, and immunotherapy. However, limited specificity and inevitable resistance highlight the need for novel agents. Antibody–drug conjugates (ADCs), such as trastuzumab deruxtecan (T-DXd) and sacituzumab govitecan (SG), represent a breakthrough by selectively delivering cytotoxic agents to tumor cells, potentially improving the therapeutic index. Despite demonstrated efficacy, ADCs present toxicity profiles similar to conventional chemotherapy, alongside unique adverse events. In clinical practice, oncologists may face scenarios where both T-DXd and SG are treatment options in HER2-negative mBC. To enable shared decision-making, it is crucial to present a comprehensive overview that includes both efficacy data and detailed toxicity profiles. Our objective was to provide a pooled and informative synthesis of toxicities from pivotal studies, including graphical representations, to support informed, patient-centered medical decisions. Methods: We reviewed safety data from phase 3 clinical trials in HER2-negative mBC: DESTINY-Breast04/DESTINY-Breast06 for T-DXd and ASCENT/TROPICS-02 for SG. Adverse event (AE) profiles, including frequency and severity, were extracted, and weighted means were calculated. Emerging ADCs such as datopotamab deruxtecan and patritumab deruxtecan were considered to contextualize future therapeutic decisions. Results: Tables, bar plots and radar plots were generated. T-DXd demonstrated high rates of nausea (69.2%), fatigue (47.2%), and neutropenia (35.6%), with 52.7% experiencing grade ≥ 3 AEs. Notably, pneumonitis occurred in 10.7%, with grade ≥ 3 in 2.6%. SG showed a distinct AE profile, with higher incidences of neutropenia (67.1%), with grade ≥ 3 in 51.3%, and diarrhea (60.8%). Conclusions: The choice between ADCs in HER2-negative metastatic BC when both T-DXd and SG are treatment options should consider toxicity profiles to optimize patient-centered treatment strategies. Tailoring ADC selection based on individual tolerance and preferences is critical for shared decision-making, and future research should focus on assessing the utility and acceptability of such clinical tools to guide treatment selection. Full article
(This article belongs to the Section Cancer Drug Development)
Show Figures

Figure 1

17 pages, 1548 KiB  
Article
CD19-ReTARGTPR: A Novel Fusion Protein for Physiological Engagement of Anti-CMV Cytotoxic T Cells Against CD19-Expressing Malignancies
by Anne Paulien van Wijngaarden, Isabel Britsch, Matthias Peipp, Douwe Freerk Samplonius and Wijnand Helfrich
Cancers 2025, 17(14), 2300; https://doi.org/10.3390/cancers17142300 - 10 Jul 2025
Viewed by 426
Abstract
Background/Objectives: The physiological activation of cytotoxic CD8pos T cells (CTLs) relies on the engagement of the TCR/CD3 complex with cognate peptide-HLA class I (pHLA-I) on target cells, triggering cell lysis with appropriate cytokine release and minimized off-target toxicity. In contrast, current [...] Read more.
Background/Objectives: The physiological activation of cytotoxic CD8pos T cells (CTLs) relies on the engagement of the TCR/CD3 complex with cognate peptide-HLA class I (pHLA-I) on target cells, triggering cell lysis with appropriate cytokine release and minimized off-target toxicity. In contrast, current immunotherapies for CD19-expressing hematological malignancies, such as chimeric antigen receptor (CAR) T cells and bispecific T cell engagers (BiTEs), bypass TCR/pHLA interactions, resulting in CTL hyperactivation and excessive cytokine release, which frequently cause severe immune-related adverse events (irAEs). Thus, there is a pressing need for T cell-based therapies that preserve physiological activation while maintaining antitumor efficacy. Methods: To address this, we developed CD19-ReTARGTPR, a novel fusion protein consisting of the immunodominant cytomegalovirus (CMV) pp65-derived peptide TPRVTGGAM (TPR) covalently presented by a soluble HLA-B*07:02/β2-microglobulin complex fused to a high-affinity CD19-targeting Fab antibody fragment. The treatment of CD19-expressing cancer cells with CD19-ReTARGTPR makes them recognizable for pre-existing anti-CMVpp65 CTLs via physiological TCR-pHLA engagement. Results: Our preclinical data demonstrate that CD19-ReTARGTPR efficiently redirects anti-CMV CTLs to eliminate CD19-expressing cancer cells, including both established cell lines and primary chronic lymphocytic leukemia (CLL) cells. Unlike CD19-directed CAR T cells or the CD19/CD3 BiTE blinatumomab, CD19-ReTARGTPR mediated robust cytotoxic activity without triggering supraphysiological cytokine release. Importantly, this approach retained efficacy even against cancer cells with low CD19 expression. Conclusions: In summary, we provide a robust proof-of-concept study and show that CD19-ReTARGTPR offers a promising alternative strategy for T cell redirection, enabling the selective and effective killing of CD19-expressing malignancies while minimizing cytokine-driven toxicities through physiological CTL activation pathways. Full article
(This article belongs to the Special Issue New Insights of Hematology in Cancer)
Show Figures

Graphical abstract

15 pages, 2011 KiB  
Review
Targeting Exosomal PD-L1 as a New Frontier in Cancer Immunotherapy
by Laura Denisa Dragu, Mihaela Chivu-Economescu, Ioana Madalina Pitica, Lilia Matei, Coralia Bleotu, Carmen Cristina Diaconu and Laura Georgiana Necula
Curr. Issues Mol. Biol. 2025, 47(7), 525; https://doi.org/10.3390/cimb47070525 - 8 Jul 2025
Viewed by 700
Abstract
This manuscript assesses the critical role of exosomal PD-L1 (ExoPD-L1) in immune suppression, tumor progression, and resistance to therapy. ExoPD-L1 has been identified as a key mediator of tumor immune evasion, contributing to systemic immunosuppression beyond the tumor microenvironment (TME) due to its [...] Read more.
This manuscript assesses the critical role of exosomal PD-L1 (ExoPD-L1) in immune suppression, tumor progression, and resistance to therapy. ExoPD-L1 has been identified as a key mediator of tumor immune evasion, contributing to systemic immunosuppression beyond the tumor microenvironment (TME) due to its capacity to travel to distant anatomical sites. In this context, the review aims to elaborate on the mechanisms by which exosomal PD-L1 interacts with T cell receptors and modulates both the tumor microenvironment and immune responses, impacting patient outcomes. We further explore emerging therapeutic strategies that target ExoPD-L1 to enhance the effectiveness of immunotherapy. Blocking ExoPD-L1 offers a novel approach to counteracting immune escape in cancer. Promising strategies include inhibiting exosome biogenesis with GW4869 or Rab inhibitors, neutralizing ExoPD-L1 with targeted antibodies, and silencing PD-L1 expression through RNA interference (RNAi) or CRISPR-based methods. While each approach presents certain limitations, their integration into combination therapies holds significant potential to improve the efficacy of immune checkpoint inhibitors. Future research should focus on optimizing these strategies for clinical application, with particular attention to improving delivery specificity and minimizing off-target effects. Full article
Show Figures

Figure 1

15 pages, 351 KiB  
Review
Recent Advances in Antibody Therapy for Alzheimer’s Disease: Focus on Bispecific Antibodies
by Han-Mo Yang
Int. J. Mol. Sci. 2025, 26(13), 6271; https://doi.org/10.3390/ijms26136271 - 28 Jun 2025
Viewed by 900
Abstract
Alzheimer’s disease (AD) impacts more than half a million people worldwide, with no cure available. The regulatory approval of three anti-amyloid monoclonal antibodies (mAbs), including aducanumab, lecanemab, and donanemab, has established immunotherapy as a therapeutic approach to modify disease progression. Its multifactorial pathology, [...] Read more.
Alzheimer’s disease (AD) impacts more than half a million people worldwide, with no cure available. The regulatory approval of three anti-amyloid monoclonal antibodies (mAbs), including aducanumab, lecanemab, and donanemab, has established immunotherapy as a therapeutic approach to modify disease progression. Its multifactorial pathology, which involves amyloid-β (Aβ) plaques, tau neurofibrillary tangles, neuroinflammation, and cerebrovascular dysfunction, limits the efficacy of single-target therapies. The restricted blood–brain barrier (BBB) penetration and amyloid-related imaging abnormalities (ARIA), together with small treatment effects, demonstrate the necessity for advanced biologic therapies. Protein engineering advancements have created bispecific antibodies that bind to pathological proteins (e.g., Aβ, tau) and BBB shuttle receptors to boost brain delivery and dual therapeutic effects. This review combines existing information about antibody-based therapy in AD by focusing on bispecific antibody formats and their preclinical and clinical development, as well as biomarker-based patient selection and upcoming combination strategies. The combination of rationally designed bispecific antibodies with fluid and imaging biomarkers could show potential for overcoming existing therapeutic challenges and delivering significant clinical advantages. Full article
(This article belongs to the Special Issue New Insights in Antibody Therapy)
Show Figures

Figure 1

16 pages, 20299 KiB  
Article
Biodistribution of a Mucin 4-Selective Monoclonal Antibody: Defining a Potential Therapeutic Agent Against Pancreatic Cancer
by Achyut Dahal, Jerome Schlomer, Laura Bassel, Serguei Kozlov and Joseph J. Barchi
Int. J. Mol. Sci. 2025, 26(13), 6042; https://doi.org/10.3390/ijms26136042 - 24 Jun 2025
Viewed by 464
Abstract
We have previously reported on a novel monoclonal antibody (mAb) we designated F5, which was raised against a glycopeptide derived from the tandem repeat (TR) region of Mucin-4 (MUC4), a heavily O-glycosylated protein that is overexpressed in many pancreatic cancer cells. This mAb [...] Read more.
We have previously reported on a novel monoclonal antibody (mAb) we designated F5, which was raised against a glycopeptide derived from the tandem repeat (TR) region of Mucin-4 (MUC4), a heavily O-glycosylated protein that is overexpressed in many pancreatic cancer cells. This mAb was highly specific for the MUC4 glycopeptide antigen in glycan microarrays, ELISA and SPR assays, selectively stained tissue derived from advanced-stage tumors, and bound MUC4+ tumor cells in flow cytometry assays. The mAb was also unique in that it did not cross-react with other commercial anti-MUC4 mAbs that were raised in a similar but non-glycosylated TR sequence. Here we describe the selective conjugation of a novel near-infrared dye to this mAb and in vivo biodistribution of this labeled mAb to various MUC4-expressing tumors in mice. The labeled mAb were selectively distributed to both cell-derived xenograft (CDX) flank tumors and patient-derived xenograft (PDX) tumors that expressed MUC4 compared to those that were MUC4-negative. Organ distribution analysis showed high uptake in MUC4+ relative to MUC4 tumors. These results suggest that mAb F5 may be used to develop MUC4-targeted, passive antibody-based immunotherapies against Pancreatic Ductal Adenocarcinomas (PDACs) which are notorious for being refractory to many chemo- and radiotherapies Full article
(This article belongs to the Special Issue The Role of Glycans in Immune Regulation)
Show Figures

Graphical abstract

27 pages, 730 KiB  
Review
Management of Advanced Ovarian Cancer: Current Clinical Practice and Future Perspectives
by Dimitrios Papageorgiou, Galateia Liouta, Evangelia Pliakou, Eleftherios Zachariou, Ioakeim Sapantzoglou, Ioannis Prokopakis and Emmanuel N. Kontomanolis
Biomedicines 2025, 13(7), 1525; https://doi.org/10.3390/biomedicines13071525 - 22 Jun 2025
Viewed by 2016
Abstract
Ovarian cancer is the most lethal gynecologic malignancy, which causes 313,959 new cases and 207,252 deaths worldwide annually. The lack of specific symptoms, together with no effective screening tools, results in 75% of patients receiving their diagnosis at an advanced stage. The combination [...] Read more.
Ovarian cancer is the most lethal gynecologic malignancy, which causes 313,959 new cases and 207,252 deaths worldwide annually. The lack of specific symptoms, together with no effective screening tools, results in 75% of patients receiving their diagnosis at an advanced stage. The combination of cytoreductive surgery with platinum-based chemotherapy plays a pivotal role in the treatment of advanced epithelial ovarian cancer, but patients still experience poor long-term survival because of frequent relapses and chemotherapy resistance. The treatment landscape has evolved because bevacizumab and Poly-ADP Ribose Polymerase inhibitors now serve as frontline and maintenance therapies for homologous recombination-deficient tumors. Treatment decisions for recurrent disease depend on platinum sensitivity assessment, which determines the appropriate therapeutic approach, while targeted agents deliver significant benefits to specific patient groups. The development of antibody-drug conjugates such as mirvetuximab soravtansine and immunotherapy, including checkpoint inhibitors and cancer vaccines, demonstrates promising investigative potential. The precision of therapy improves through the use of emerging biomarkers and molecular profiling techniques. The future management of this disease may change because of innovative approaches that include adoptive cell therapy, cytokine therapy, and oncolytic viruses. The progress made in ovarian cancer treatment still faces challenges when it comes to drug resistance, survival improvement, and life quality preservation. The development of translational research alongside clinical trials remains essential to bridge treatment gaps while creating personalized therapies based on molecular and clinical tumor characteristics. Full article
(This article belongs to the Special Issue Advanced Research in Gynecologic Oncology)
Show Figures

Figure 1

12 pages, 1213 KiB  
Article
Synthesis and In Vitro Evaluation of a Scandium-44 Radiolabeled Nanobody as a PD-L1 PET Imaging Probe
by Viktoria E. Krol, Aditya Bansal, Manasa Kethamreddy, Jason R. Ellinghuysen, Daniel J. Vail, Fabrice Lucien-Matteoni, Haidong Dong, Sean S. Park and Mukesh K. Pandey
Pharmaceutics 2025, 17(6), 796; https://doi.org/10.3390/pharmaceutics17060796 - 19 Jun 2025
Viewed by 510
Abstract
Background/Objective: Noninvasive PET imaging-based assessment of PD-L1 expression is of high clinical value for better patient selection and treatment response rates to PD-L1 immunotherapies. Due to their shorter biological half-life and faster clearance from the blood pool, radiolabeled antibody fragments are an [...] Read more.
Background/Objective: Noninvasive PET imaging-based assessment of PD-L1 expression is of high clinical value for better patient selection and treatment response rates to PD-L1 immunotherapies. Due to their shorter biological half-life and faster clearance from the blood pool, radiolabeled antibody fragments are an attractive alternative for imaging than their full-length IgG counterpart. This work investigated the radiosynthesis and in vitro cell uptake of anti-PD-L1-B11-nanobody radiolabeled with 44Sc (t1/2 = 4.04 h) as an alternative to anti-PD-L1-B11-IgG, better suited for longer half-life radioisotopes such as 89Zr (t1/2 = 78.41 h). Methods: The proteins were conjugated with p-SCN-Bn-DTPA and radiolabeled at room temperature with 44Sc, achieving a radiochemical yield of a RCY of 94.8 ± 3.1% (n = 3) for [44Sc]Sc-B11-IgG and 73.6 ± 12.1% (n = 3) for [44Sc]Sc-B11-nanobody, before purification. Results: Significantly higher uptake in the PD-L1+ cells than PD-L1KO cells was observed for both probes. However, high non-specific uptake, particularly of the radiolabeled B11-nanobody, was also observed which may negatively impact its potential as a molecular imaging probe. Conclusions: Due to the high non-specific uptake in vitro, the 44Sc radiolabeled nanobody was not progressed to further in vivo evaluation. These results should, however, not discourage future evaluations of other nanobody based probes radiolabeled with 44Sc, due to their well-matched biological and physical half-life. Full article
(This article belongs to the Section Nanomedicine and Nanotechnology)
Show Figures

Figure 1

18 pages, 1771 KiB  
Article
Analysis of Early EEG Changes After Tocilizumab Treatment in New-Onset Refractory Status Epilepticus
by Yong-Won Shin, Sang Bin Hong and Sang Kun Lee
Brain Sci. 2025, 15(6), 638; https://doi.org/10.3390/brainsci15060638 - 13 Jun 2025
Viewed by 666
Abstract
Background/Objectives: New-onset refractory status epilepticus (NORSE) is a rare neurologic emergency that often requires immunotherapy despite an unclear etiology and poor response to standard treatments. Tocilizumab, an anti-interleukin-6 monoclonal antibody, has shown promise in case reports; however, objective early biomarkers of treatment [...] Read more.
Background/Objectives: New-onset refractory status epilepticus (NORSE) is a rare neurologic emergency that often requires immunotherapy despite an unclear etiology and poor response to standard treatments. Tocilizumab, an anti-interleukin-6 monoclonal antibody, has shown promise in case reports; however, objective early biomarkers of treatment response remain lacking. We investigated early electroencephalography (EEG) changes following tocilizumab administration in NORSE patients using both quantitative and qualitative analyses. Methods: We retrospectively analyzed six NORSE patients who received tocilizumab and underwent continuous EEG monitoring during the period of its administration, following the failure of first- and second-line immunotherapies. Clinical characteristics, treatment history, and EEG recordings were collected. EEG features were analyzed from 2 h before to 1 day after tocilizumab treatment. Quantitative EEG metrics included relative band power, spectral ratios, permutation and spectral entropy, and connectivity metrics (coherence, weighted phase lag index [wPLI]). Temporal EEG trajectories were clustered to identify distinct response patterns. Results: Changes in spectral power and band ratios were heterogeneous and not statistically significant. Among entropy metrics, spectral entropy in the theta band showed a significant reduction at 1 day post-treatment. Connectivity metrics, particularly wPLI, demonstrated a consistent decline after treatment. Clustering of subject–channel trajectories revealed distinct patterns including monotonic changes, indicating individual variation in response. Visual EEG review corroborated qualitative improvements in all cases. Conclusions: Tocilizumab was associated with measurable early EEG changes in NORSE, supported by visually noticeable EEG changes. Quantitative EEG may serve as a useful early biomarker for treatment response in NORSE and assist in monitoring the critical phase. Further validation in larger cohorts and standardized protocols is warranted to confirm these findings and refine EEG-based biomarkers. Full article
(This article belongs to the Section Neurotechnology and Neuroimaging)
Show Figures

Figure 1

10 pages, 241 KiB  
Review
Advanced Basal Cell Carcinoma: A Narrative Review on Current Systemic Treatments and the Neoadjuvant Approach
by Andrea Paradisi, Maria Mannino, Francesco Brunetti, Enrico Bocchino, Alessandro Di Stefani and Ketty Peris
J. Pers. Med. 2025, 15(6), 226; https://doi.org/10.3390/jpm15060226 - 1 Jun 2025
Cited by 1 | Viewed by 756
Abstract
Background/Objectives: Systemic therapy with hedgehog pathway inhibitors (HHIs) and anti-programmed cell death protein 1 (PD-1) antibodies represent the first- and second-line treatment options for advanced basal cell carcinoma (aBCC), respectively. A shift in the treatment paradigms toward the neoadjuvant approach is gaining increasing [...] Read more.
Background/Objectives: Systemic therapy with hedgehog pathway inhibitors (HHIs) and anti-programmed cell death protein 1 (PD-1) antibodies represent the first- and second-line treatment options for advanced basal cell carcinoma (aBCC), respectively. A shift in the treatment paradigms toward the neoadjuvant approach is gaining increasing interest in aBCC management, whereby prior systemic therapy followed by surgery is likely to yield more favorable outcomes. The aim of this narrative review is to summarize the current evidence on systemic treatment options and the neoadjuvant approach for aBCC management. Methods: We performed a non-systematic review of the literature based on PubMed as search engine. Results: The pivotal phase II trials ERIVANCE and BOLT investigated the efficacy and safety profile of vismodegib and sonidegib, respectively, with reported objective response rates (ORRs) of 60.3% and 56% in laBCC patients, respectively. The pivotal phase II trial NCT03132636 investigated the efficacy and safety profile of cemiplimab in patients who progressed or were intolerant to prior HHI therapy, with an ORR of 32.1% in laBCC patients. Real-life studies confirmed the effectiveness and safety profile of HHI and anti-PD-1 immunotherapy. Several phase I/II clinical trials are currently investigating HHIs and immune-checkpoint inhibitors in the neoadjuvant setting followed by surgery for aBCC patients, with the aim of providing more favorable treatment outcomes, especially when upfront surgery would result in functional and/or aesthetic sequelae. Conclusions: Advanced BCC treatment is challenging, and the neoadjuvant approach followed by surgery is expected to reduce surgical complexity, increase tissue preservation, and improve patients’ satisfaction. Full article
(This article belongs to the Special Issue Dermatology: Molecular Mechanisms, Diagnosis and Therapeutic Targets)
15 pages, 975 KiB  
Systematic Review
Efficacy and Safety of TROP-2-Targeting Antibody–Drug Conjugate Treatment in Previously Treated Patients with Advanced Non-Small Cell Lung Cancer: A Systematic Review and Pooled Analysis of Reconstructed Patient Data
by Sara Stumpo, Andrea Carlini, Francesco Mantuano, Alessandro Di Federico, Barbara Melotti, Francesca Sperandi, Valentina Favorito and Andrea De Giglio
Cancers 2025, 17(11), 1750; https://doi.org/10.3390/cancers17111750 - 23 May 2025
Viewed by 1138
Abstract
Background: Docetaxel is the standard of care for advanced non-small cell lung cancer (NSCLC) after platinum-based chemotherapy and/or immunotherapy but is associated with modest clinical outcomes and considerable toxicity. Sacituzumab govitecan and datopotamab deruxtecan are trophoblast cell surface antigen (TROP)-2-directed antibody–drug conjugates (ADCs) [...] Read more.
Background: Docetaxel is the standard of care for advanced non-small cell lung cancer (NSCLC) after platinum-based chemotherapy and/or immunotherapy but is associated with modest clinical outcomes and considerable toxicity. Sacituzumab govitecan and datopotamab deruxtecan are trophoblast cell surface antigen (TROP)-2-directed antibody–drug conjugates (ADCs) that showed encouraging activity in pretreated patients with advanced NSCLC. This systematic review and pooled analysis aims to comprehensively assess the efficacy and safety of anti-TROP-2 ADCs compared to docetaxel in pretreated patients with advanced NSCLC. Methods: A systematic search through PubMed and EMBASE before 31 January 2025 was performed to identify eligible studies. Randomized controlled phase III trials comparing an anti-TROP-2 regimen to docetaxel in patients with pretreated advanced NSCLC were included. Overall survival (OS), progression-free survival (PFS), and grade ≥ 3 treatment-related adverse events (TRAEs) were extracted from the identified trials. A pooled analysis of reconstructed patient data and meta-analysis employing the random-effect model were used to summarize the efficacy and safety outcomes. Results: Across the two trials included, 1207 patients were enrolled, 598 in the TROP-2 ADC arm and 609 in the docetaxel arm. Anti-TROP-2 treatment did not produce significant improvements in OS (HR: 0.90; 95% CI, 0.78–1.03; P = 0.13) and PFS (HR: 0.84; 95% CI, 0.68–1.02; P = 0.08), compared to docetaxel, even in patients with a nonsquamous histology (OS HR: 0.86; 95% CI, 0.73–1.01; P = 0.06; PFS HR: 0.76; 95% CI, 0.52–1.12; P = 0.17). Across the subgroup analyses, a statistically significant improvement in OS was observed in patients with actionable genomic alterations (AGAs) (HR: 0.63; 95% CI, 0.41–0.95; P = 0.03). Compared to docetaxel, the anti-TROP-2 regimen demonstrated a lower risk of developing grade ≥ 3 TRAEs (RR: 0.76; 95% CI, 0.55–1.05; P = 0.09). Conclusions: The anti-TROP-2 regimen showed a better safety profile but failed to demonstrate a relevant clinical improvement over docetaxel. Anti-TROP-2 ADCs could find a role in the management of patients with AGAs. Full article
(This article belongs to the Special Issue Novel Therapeutic Targets for Metastatic Lung Cancer)
Show Figures

Figure 1

13 pages, 2302 KiB  
Article
Immunotherapy Platform That Conjugates Antigen to Complement C3-Targeted Liposomes Induces a Robust Adaptive Immune Response
by R. G. Barber, Steven Cherry, Sydney Stephens, Kristine Mann, Holly A. Martinson and Max Kullberg
Int. J. Mol. Sci. 2025, 26(11), 4985; https://doi.org/10.3390/ijms26114985 - 22 May 2025
Viewed by 576
Abstract
The activation of immunosuppressed antigen-presenting cells (APCs) in the tumor microenvironment is a key goal in modern cancer immunotherapy. Our laboratory utilizes a liposome-based immunotherapy platform that binds endogenous complement to deliver antigen, adjuvant, and therapeutic agents to APCs in vivo. The liposomes [...] Read more.
The activation of immunosuppressed antigen-presenting cells (APCs) in the tumor microenvironment is a key goal in modern cancer immunotherapy. Our laboratory utilizes a liposome-based immunotherapy platform that binds endogenous complement to deliver antigen, adjuvant, and therapeutic agents to APCs in vivo. The liposomes contain external linker groups, which readily bind complement protein C3, and mediate liposomal uptake via complement receptor 3 into APCs. To test the ability of a model antigen to bind to these external linker groups on C3-liposomes and elicit a robust adaptive immune response, we conjugated a modified ovalbumin peptide (OVA-C) to the liposomes and incorporated a toll-like receptor (TLR) 4 agonist, monophosphoryl lipid A (MPLA), in the liposomal membrane. Adaptive immune responses from C57BL/6 mice were analyzed by ELISA and ELISpot. Mice vaccinated with OVA-C liposomes elicited significantly greater humoral and cellular adaptive responses relative to controls. Furthermore, female mice vaccinated with MPLA + OVA-C liposomes produced significantly more IgG antibodies than males vaccinated with the same liposomes. In conclusion, antigen binding on the exterior of C3-liposomes markedly improves antigen loading efficiency and still allows for complement C3-targeted delivery to APCs. These data demonstrate the initiation of a robust cellular and humoral immune response using a new liposomal delivery platform. Full article
(This article belongs to the Special Issue Nanomedicine in Gene Therapy and Immunotherapy)
Show Figures

Figure 1

22 pages, 1650 KiB  
Systematic Review
Efficacy and Safety of Antibody-Drug Conjugates for Lung Cancer Therapy: A Systematic Review of Randomized and Non-Randomized Clinical Trials
by Matteo Gallina, Anna Carollo, Anna Gallina, Sofia Cutaia, Sergio Rizzo and Alessio Provenzani
Pharmaceutics 2025, 17(5), 608; https://doi.org/10.3390/pharmaceutics17050608 - 3 May 2025
Cited by 1 | Viewed by 1264
Abstract
Background/Objectives: Lung cancer is the leading cause of cancer-related deaths worldwide. Non-Small-Cell Lung Cancer (NSCLC) accounts for 80–90% of all lung cancers. Antibody-Drug Conjugates (ADCs) represent an expanding targeted therapy option for the treatment of NSCLC. The aim is to perform a [...] Read more.
Background/Objectives: Lung cancer is the leading cause of cancer-related deaths worldwide. Non-Small-Cell Lung Cancer (NSCLC) accounts for 80–90% of all lung cancers. Antibody-Drug Conjugates (ADCs) represent an expanding targeted therapy option for the treatment of NSCLC. The aim is to perform a systematic literature review to evaluate the efficacy and safety profiles of ADCs currently undergoing clinical trials for the treatment of NSCLC. Methods: The study adhered to the Preferred Reporting Items for Systematic reviews and Meta-Analyses (PRISMA) statement. Literature searches were conducted in PubMed, ClinicalTrial.gov and Web of Science databases, covering the period from 2014 to 2024. Only randomized and non-randomized phase II-IV clinical trials focusing on ADC-based therapies for adult patients affected by NSCLC were selected. The Revised Cochrane Risk-of-Bias Tool for Randomized Trials (RoB 2.0) and the Risk of Bias in Non-randomized Studies of Interventions (ROBINS-I) were used to evaluate the overall risk of bias in the included randomized and non-randomized studies, respectively. While GRADE (Grading of Recommendations, Assessment, Development and Evaluations) methodology was used to assess the certainty of the evidence. Efficacy endpoints were categorized based on primary outcomes while safety was assessed through the frequency and severity of Treatment-Emergent Adverse Events (TEAEs), and a qualitative summary of the findings was conducted. Results: A total of seven studies, including three randomized, three non-randomized, and one without specific allocation, were included, comprising 1287 patients, with 693 (54%) men, and an average age of 63 years old. Two studies were deemed to have a low risk of bias, while six had a moderate risk or some concerns. Five ADCs were evaluated: trastuzumab deruxtecan (T-DXd), trastuzumab emtansine (T-DM1), telisotuzumab vedotin, patritumab deruxtecan, and datopotamab deruxtecan (Dato-DXd). T-DXd demonstrated superior efficacy in HER2-overexpressing and HER2-mutant NSCLC, with an ORR of 52.9% and 49.0%, respectively. However, HER2-mutant patients exhibited a longer median DOR (16.8 vs. 6.2 months) but a higher incidence of grade ≥ 3 TEAEs (38.6% vs. 22%). T-DM1 showed modest efficacy, with an ORR of 20% in HER2-overexpressing NSCLC and 6.7% in HER2-mutant patients. Dato-DXd demonstrated improved ORR (26.4% vs. 12.8%) and PFS (4.4 vs. 3.7 months) compared to docetaxel. Patritumab deruxtecan achieved an ORR of 39% in EGFR-mutant NSCLC, while telisotuzumab vedotin exhibited limited activity in c-MET-positive NSCLC (ORR 9%, median DOR 7.5 months). Frequency and severity of TEAEs varied across ADCs, with ILD being a major concern, highlighting the need for strict patient monitoring and early intervention to mitigate severe adverse events. Conclusions: ADCs represent a promising advancement in NSCLC treatment, offering targeted therapeutic options beyond conventional chemotherapy and immunotherapy. T-DXd has emerged as the most effective ADC for HER2-mutant NSCLC with manageable safety profile, whereas Dato-DXd provides a viable alternative for TROP2-expressing tumors. While ADCs offer significant clinical benefits, careful patient selection and proactive management of adverse events remain crucial. Ongoing and future trials will further refine the role of ADCs in personalized NSCLC treatment, potentially expanding their tumor-agnostic use to broader patient populations. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

Back to TopTop