Recent Advances in Antibody Therapy for Alzheimer’s Disease: Focus on Bispecific Antibodies
Abstract
1. Introduction
2. Evolution of Antibody Therapies for Alzheimer’s Disease
2.1. Anti-Aβ Monoclonal Antibodies
2.2. Newly Reported Aβ-Targeting Monoclonal Antibodies
2.3. Emerging Antibody Targets: Tau and Neuroinflammation
2.4. Lessons from Early Failures
3. Bispecific Antibodies: A Paradigm Shift in AD Therapy
3.1. Design and Engineering of Bispecific Antibodies
3.2. Mechanisms of Action
3.3. Preclinical Advances and Classification of Bispecific Antibodies
3.4. Preclinical Advances
3.5. Clinical Development
3.6. Overcoming the Blood–Brain Barrier
3.7. Emerging Technologies and Future Directions
4. Challenges and Limitations
4.1. Safety Concerns
4.2. Manufacturing and Cost
4.3. Timing and Access
5. Conclusions
Funding
Conflicts of Interest
Abbreviations
AD | Alzheimer’s disease |
Aβ | amyloid-beta |
NFTs | neurofibrillary tangles |
mAbs | monoclonal antibodies |
FDA | Food and Drug Administration |
PET | positron emission tomography |
MMSE | mini-mental state examination |
ARIA | amyloid-related imaging abnormalities |
TREM2 | Triggering Receptor Expressed on Myeloid Cells 2 |
BBB | blood–brain barrier |
TfR1 | Transferrin Receptor 1 |
CDR-SB | Clinical Dementia Rating—Sum of Boxes |
MCI | mild cognitive impairment |
ARIA-E | ARIA-Edema |
ARIA-H | ARIA-Hemorrhage |
APOE4 | Apolipoprotein E ε4 |
CSF | cerebrospinal fluid |
iADRS | integrated Alzheimer’s Disease Rating Scale |
NLRP3 | NLR family pyrin domain containing 3 |
scFv | single-chain variable fragments |
BiTEs | bispecific T-cell engagers |
DVD-Ig | dual-variable-domain immunoglobulins |
LRP1 | low-density lipoprotein receptor-related protein 1 |
CNS | central nervous system |
BACE1 | Beta-site Amyloid Precursor Protein Cleaving Enzyme 1 |
GSK3β | Glycogen Synthase Kinase-3 Beta |
Kd | dissociation constants |
TAM | Tyro3, Axl, and MerTK |
NfL | neurofilament light |
sAPPβ | soluble Amyloid Precursor Protein β |
GFAP | glial fibrillary acidic protein |
AAV | Adeno-associated virus |
References
- Alzheimer’s Association. 2023 Alzheimer’s Disease Facts and Figures. Alzheimer’s Dement. 2023, 19, 1598–1695. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. Dementia Fact Sheet. 2023. Available online: https://www.alzint.org/resource/dementia-fact-sheet/ (accessed on 25 June 2025).
- GBD 2019 Dementia Forecasting Collaborators. Global, regional, and national burden of Alzheimer’s disease and other dementias, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol 2022, 21, 160–191. [Google Scholar] [CrossRef]
- Selkoe, D.J.; Hardy, J. The amyloid hypothesis of Alzheimer’s disease at 25 years. EMBO Mol. Med. 2016, 8, 595–608. [Google Scholar] [CrossRef] [PubMed]
- Jack, C.R., Jr.; Bennett, D.A.; Blennow, K.; Carrillo, M.C.; Dunn, B.; Haeberlein, S.B.; Holtzman, D.M.; Jagust, W.; Jessen, F.; Karlawish, J.; et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 2018, 14, 535–562. [Google Scholar] [CrossRef]
- Hardy, J.; Selkoe, D.J. The amyloid hypothesis of Alzheimer’s disease: Progress and problems. Science 2002, 297, 353–356. [Google Scholar] [CrossRef]
- Heneka, M.T.; Carson, M.J.; El Khoury, J.; Landreth, G.E.; Brosseron, F.; Feinstein, D.L.; Jacobs, A.H.; Wyss-Coray, T.; Vitorica, J.; Ransohoff, R.M.; et al. Neuroinflammation in Alzheimer’s disease. Lancet Neurol. 2015, 14, 388–405. [Google Scholar] [CrossRef]
- Kinney, J.W.; Bemiller, S.M.; Murtishaw, A.S.; Leisgang, A.M.; Salazar, A.M.; Lamb, B.T. Inflammation as a central mechanism in Alzheimer’s disease. Alzheimer’s Dement. 2018, 4, 575–590. [Google Scholar] [CrossRef]
- Palmqvist, S.; Janelidze, S.; Quiroz, Y.T.; Zetterberg, H.; Lopera, F.; Stomrud, E.; Su, Y.; Chen, Y.; Serrano, G.E.; Leuzy, A.; et al. Discriminative Accuracy of Plasma Phospho-tau217 for Alzheimer Disease vs Other Neurodegenerative Disorders. JAMA Neurol. 2020, 77, 955–965. [Google Scholar] [CrossRef]
- Li, X.; Feng, X.; Sun, X.; Hou, N.; Han, F.; Li, Y. Global, Regional, and National Burden of Alzheimer’s Disease and Other Dementias, 1990–2019. Front. Aging Neurosci. 2022, 14, 937486. [Google Scholar] [CrossRef]
- Doody, R.S.; Raman, R.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; He, F.; Sun, X.; Thomas, R.G.; et al. A phase 3 trial of semagacestat for treatment of Alzheimer’s disease. N. Engl. J. Med. 2013, 369, 341–350. [Google Scholar] [CrossRef]
- Gilman, S.; Koller, M.; Black, R.S.; Jenkins, L.; Griffith, S.G.; Fox, N.C.; Eisner, L.; Kirby, L.; Rovira, M.B.; Forette, F.; et al. Clinical Effects of Aβ Immunization (AN1792) in Patients with Alzheimer’s Disease in an Interrupted Trial. Neurology 2005, 64, 1553–1562. [Google Scholar] [CrossRef] [PubMed]
- Haeberlein, S.B.; Aisen, P.; Barkhof, F.; Chalkias, S.; Chen, T.; Cohen, S.; Dent, G.; Hansson, O.; Harrison, K.; von Hehn, C.; et al. Two randomized phase 3 studies of aducanumab in early Alzheimer’s disease. J. Prev. Alzheimer’s Dis. 2022, 9, 197–210. [Google Scholar] [CrossRef] [PubMed]
- Van Dyck, C.H.; Swanson, C.J.; Aisen, P.; Bateman, R.J.; Chen, C.; Gee, M.; Kanekiyo, M.; Li, D.; Reyderman, L.; Cohen, S.; et al. Lecanemab in early Alzheimer’s disease. N. Engl. J. Med. 2023, 388, 9–21. [Google Scholar] [CrossRef]
- Sims, J.R.; Zimmer, J.A.; Evans, C.D.; Lu, M.; Ardayfio, P.; Sparks, J.; Wessels, A.M.; Shcherbinin, S.; Wang, H.; Nery, E.S.M.; et al. Donanemab in early symptomatic Alzheimer disease: The TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA 2023, 330, 512–527. [Google Scholar] [CrossRef]
- Cummings, J.; Osse, A.M.L.; Cammann, D.; Powell, J.; Chen, J. Anti-Amyloid Monoclonal Antibodies for the Treatment of Alzheimer’s Disease. BioDrugs 2024, 38, 5–22. [Google Scholar] [CrossRef]
- Loomis, S.J.; Miller, R.; Castrillo-Viguera, C.; Umans, K.; Cheng, W.; O’Gorman, J.; Hughes, R.; Budd Haeberlein, S.; Whelan, C.D. Genome-Wide Association Studies of ARIA From the Aducanumab Phase 3 ENGAGE and EMERGE Studies. Neurology 2024, 102, e207919. [Google Scholar] [CrossRef]
- Pardridge, W.M. Delivery of biologics across the blood-brain barrier with Molecular Trojan Horse Technology. BioDrugs 2017, 31, 503–519. [Google Scholar] [CrossRef]
- Salloway, S.; Sperling, R.; Fox, N.C.; Blennow, K.; Klunk, W.; Raskind, M.; Sabbagh, M.; Honig, L.S.; Porsteinsson, A.P.; Ferris, S.; et al. Two phase 3 trials of bapineuzumab in mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 2014, 370, 322–333. [Google Scholar] [CrossRef]
- Brinkmann, U.; Kontermann, R.E. The making of bispecific antibodies. MAbs 2017, 9, 182–212. [Google Scholar] [CrossRef]
- Spiess, C.; Zhai, Q.; Carter, P.J. Alternative molecular formats and therapeutic applications for bispecific antibodies. Mol. Immunol. 2015, 67, 95–106. [Google Scholar] [CrossRef]
- Walsh, S.; Govia, I.; Peters, R.; Richard, E.; Stephan, B.C.; Wilson, N.; Wallace, L.; Anstey, K.J.; Brayne, C. Alzheimer’s disease drug development pipeline: 2023. Alzheimer’s Dement. 2023, 19, 951–979. [Google Scholar] [CrossRef]
- Klein, G.; Delmar, P.; Kerchner, G.A.; Hofmann, C.; Abi-Saab, D.; Davis, A.; Voyle, N.; Baudler, M.; Fontoura, P.; Doody, R. Risk management for amyloid-related imaging abnormalities. J. Prev. Alzheimer’s Dis. 2021, 8, 147–155. [Google Scholar] [CrossRef]
- Haeberlein, S.B.; von Hehn, C.; Tian, Y.; Chalkias, S.; Muralidharan, K.K.; Chen, T.; Wu, S.; Skordos, L.; Nisenbaum, L.; Rajagovindan, R.; et al. Emerge and engage topline results: Phase 3 studies of aducanumab. Alzheimer’s Dement. 2020, 16 (Suppl. S2), e047259. [Google Scholar] [CrossRef]
- Mallinckrodt, C.; Tian, Y.; Aisen, P.S.; Barkhof, F.; Cohen, S.; Dent, G.; Hansson, O.; Harrison, K.; Iwatsubo, T.; Vellas, B.; et al. Investigating Partially Discordant Results in Phase 3 Studies of Aducanumab. J. Prev. Alzheimers Dis. 2023, 10, 171–177. [Google Scholar] [CrossRef]
- Salloway, S.; Chalkias, S.; Barkhof, F.; Burkett, P.; Barakos, J.; Purcell, D.; Suhy, J.; Forrestal, F.; Tian, Y.; Umans, K.; et al. Amyloid-related imaging abnormalities in patients with Alzheimer’s disease treated with aducanumab. JAMA Neurol. 2022, 79, 13–21. [Google Scholar] [CrossRef]
- Post-Marketing Study of Aducanumab. 2020. Available online: http://clinicaltrials.gov (accessed on 21 May 2025).
- Sinha, P.; Barocas, J.A. Cost-Effectiveness of Aducanumab to Prevent Alzheimer’s Disease Progression at Current List Price. Alzheimers Dement. (N. Y.) 2022, 8, e12256. [Google Scholar] [CrossRef]
- Chen, C.; Katayama, S.; Lee, J.H.; Lee, J.Y.; Nakagawa, M.; Torii, K.; Ogawa, T.; Dash, A.; Irizarry, M.; Dhadda, S.; et al. Clarity AD: Asian Regional Analysis of a Phase III Trial of Lecanemab in Early Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2025, 12, 100160. [Google Scholar] [CrossRef]
- Franklin, G.L. Cost-effectiveness of lecanemab for early AD. Neurology 2024, 102, e209308. [Google Scholar] [CrossRef]
- Mintun, M.A.; Lo, A.C.; Duggan Evans, C.; Wessels, A.M.; Ardayfio, P.A.; Andersen, S.W.; Shcherbinin, S.; Sparks, J.; Sims, J.R.; Brys, M.; et al. Donanemab in early Alzheimer’s disease. N. Engl. J. Med. 2021, 384, 1691–1704. [Google Scholar] [CrossRef]
- Manly, J.J.; Deters, K.D. Donanemab for Alzheimer Disease—Who Benefits and Who Is Harmed? JAMA 2023, 330, 510–511. [Google Scholar] [CrossRef]
- Huang, J.; Long, X.; Chen, C. A Real-World Safety Surveillance Study of Aducanumab Through the FDA Adverse Event Reporting System. Front. Pharmacol. 2025, 16, 1522058. [Google Scholar] [CrossRef] [PubMed]
- Long-Term Study of Donanemab. 2023. Available online: http://clinicaltrials.gov (accessed on 21 May 2025).
- Bateman, R.J.; Smith, J.; Donohue, M.C.; Delmar, P.; Abbas, R.; Salloway, S.; Wojtowicz, J.; Blennow, K.; Bittner, T.; Black, S.E.; et al. Two Phase 3 Trials of Gantenerumab in Early Alzheimer’s Disease. N. Engl. J. Med. 2023, 389, 1862–1876. [Google Scholar] [CrossRef]
- Ostrowitzki, S.; Bittner, T.; Sink, K.M.; Mackey, H.; Rabe, C.; Honig, L.S.; Cassetta, E.; Woodward, M.; Boada, M.; van Dyck, C.H.; et al. Evaluating the Safety and Efficacy of Crenezumab vs Placebo in Adults With Early Alzheimer Disease: Two Phase 3 Randomized Placebo-Controlled Trials. JAMA Neurol. 2022, 79, 1113–1121. [Google Scholar] [CrossRef] [PubMed]
- Doody, R.S.; Thomas, R.G.; Farlow, M.; Iwatsubo, T.; Vellas, B.; Joffe, S.; Kieburtz, K.; Raman, R.; Sun, X.; Aisen, P.S.; et al. Phase 3 trials of solanezumab for mild-to-moderate Alzheimer’s disease. N. Engl. J. Med. 2014, 370, 311–321. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, C.; Li, Y.; Niu, S.; Liang, X.; Zhang, Z.; Luo, Q.; Luo, H. Dynamic Changes in the Levels of Amyloid-beta(42) Species in the Brain and Periphery of APP/PS1 Mice and Their Significance for Alzheimer’s Disease. Front. Mol. Neurosci. 2021, 14, 723317. [Google Scholar] [CrossRef]
- Zhang, L.; Du, X.; Su, Y.; Niu, S.; Li, Y.; Liang, X.; Luo, H. Quantitative assessment of AD markers using naked eyes: Point-of-care testing with paper-based lateral flow immunoassay. J. Nanobiotechnol. 2021, 19, 366. [Google Scholar] [CrossRef] [PubMed]
- Kayed, R.; Head, E.; Sarsoza, F.; Saing, T.; Cotman, C.W.; Necula, M.; Margol, L.; Wu, J.; Breydo, L.; Thompson, J.L.; et al. Fibril specific, conformation dependent antibodies recognize a generic epitope common to amyloid fibrils and fibrillar oligomers that is absent in prefibrillar oligomers. Mol. Neurodegener. 2007, 2, 18. [Google Scholar] [CrossRef]
- Englund, H.; Sehlin, D.; Johansson, A.S.; Nilsson, L.N.; Gellerfors, P.; Paulie, S.; Lannfelt, L.; Pettersson, F.E. Sensitive ELISA detection of amyloid-beta protofibrils in biological samples. J. Neurochem. 2007, 103, 334–345. [Google Scholar] [CrossRef]
- Pradier, L.; Blanchard-Bregeon, V.; Bohme, A.; Debeir, T.; Menager, J.; Benoit, P.; Barneoud, P.; Taupin, V.; Bertrand, P.; Dugay, P.; et al. SAR228810: An antibody for protofibrillar amyloid beta peptide designed to reduce the risk of amyloid-related imaging abnormalities (ARIA). Alzheimer’s Res. Ther. 2018, 10, 117. [Google Scholar] [CrossRef]
- Delnomdedieu, M.; Duvvuri, S.; Li, D.J.; Atassi, N.; Lu, M.; Brashear, H.R.; Liu, E.; Ness, S.; Kupiec, J.W. First-In-Human safety and long-term exposure data for AAB-003 (PF-05236812) and biomarkers after intravenous infusions of escalating doses in patients with mild to moderate Alzheimer’s disease. Alzheimer’s Res. Ther. 2016, 8, 12. [Google Scholar] [CrossRef]
- Congdon, E.E.; Sigurdsson, E.M. Tau-targeting therapies for Alzheimer’s disease. Nat. Rev. Neurol. 2018, 14, 399–415. [Google Scholar] [CrossRef] [PubMed]
- Teng, E.; Manser, P.T.; Pickthorn, K.; Brunstein, F.; Blendstrup, M.; Sanabria Bohorquez, S.M.; Wildsmith, K.R.; Toth, B.; Dolton, M.; Ramakrishnan, V.; et al. Safety and Efficacy of Semorinemab in Individuals with Prodromal to Mild Alzheimer Disease: A Randomized Clinical Trial. JAMA Neurol. 2022, 79, 758–767. [Google Scholar] [CrossRef] [PubMed]
- West, T.; Hu, Y.; Verghese, P.B.; Bateman, R.J.; Braunstein, J.B.; Fogelman, I.; Budur, K.; Florian, H.; Mendonca, N.; Holtzman, D.M. Preclinical and clinical development of ABBV-8E12. J. Prev. Alzheimer’s Dis. 2017, 4, 236–241. [Google Scholar] [CrossRef]
- Schlepckow, K.; Monroe, K.M.; Kleinberger, G.; Cantuti Castelvetri, L.; Parhizkar, S.; Xia, D.; Willem, M.; Werner, G.; Pettkus, N.; Brunner, B.; et al. Enhancing Protective Microglial Activities with a Dual Function TREM2 Antibody to the Stalk Region. EMBO Mol. Med. 2020, 12, e11227. [Google Scholar] [CrossRef]
- Phase II Study of AL002 in Early Alzheimer’s Disease. 2025. Available online: http://clinicaltrials.gov (accessed on 20 May 2025).
- Ising, C.; Venegas, C.; Zhang, S.; Scheiblich, H.; Schmidt, S.V.; Vieira-Saecker, A.; Schwartz, S.; Albasset, S.; McManus, R.M.; Tejera, D.; et al. NLRP3 inflammasome activation drives tau pathology. Nature 2019, 575, 669–673. [Google Scholar] [CrossRef]
- Wisniewski, T.; Goñi, F. Immunotherapy for Alzheimer’s disease. Biochem. Pharmacol. 2014, 88, 499–507. [Google Scholar] [CrossRef]
- Blennow, K.; Zetterberg, H. Biomarkers for Alzheimer’s Disease: Current Status and Prospects for the Future. J. Intern. Med. 2018, 284, 643–663. [Google Scholar] [CrossRef]
- Lazennec, G.; Rajarathnam, K.; Richmond, A. Antibody-based therapies for Alzheimer’s disease: Challenges and opportunities. Trends Mol. Med. 2023, 29, 1044–1057. [Google Scholar] [CrossRef]
- Fan, G.; Wang, Z.; Hao, M.; Li, J. Bispecific antibodies: Design and therapeutic applications. J. Hematol. Oncol. 2015, 8, 130. [Google Scholar] [CrossRef]
- Zheng, F.; Pang, Y.; Li, L.; Pang, Y.; Zhang, J.; Wang, X.; Raes, G. Applications of Nanobodies in Brain Diseases. Front. Immunol. 2022, 13, 978513. [Google Scholar] [CrossRef]
- Glaser, R.; Venus, J. Engineering bispecific antibodies with defined chain pairing. N. Biotechnol. 2017, 39, 167–173. [Google Scholar] [CrossRef]
- Ridgway, J.B.; Presta, L.G.; Carter, P. Knobs-into-holes engineering of antibody CH3 domains. Protein Eng. 1996, 9, 617–621. [Google Scholar] [CrossRef] [PubMed]
- Klein, C.; Schaefer, W.; Regula, J.T.; Dumontet, C.; Brinkmann, U.; Bacac, M.; Umaña, P. Engineering therapeutic bispecific antibodies using CrossMab technology. Methods 2019, 154, 21–31. [Google Scholar] [CrossRef]
- Li, Z.; Jiang, X.; Wang, Y.; Kim, Y. Applied Machine Learning in Alzheimer’s Disease Research: Omics, Imaging, and Clinical Data. Emerg. Top. Life Sci. 2021, 5, 765–777. [Google Scholar] [CrossRef]
- Kariolis, M.S.; Wells, R.C.; Getz, J.A.; Kwan, W.; Mahon, C.S.; Tong, R.; Kim, D.J.; Srivastava, A.; Bedard, C.; Henne, K.R.; et al. Brain Delivery of Therapeutic Proteins Using an Fc Fragment Blood–Brain Barrier Transport Vehicle in Mice and Monkeys. Sci. Transl. Med. 2020, 12, eaay1359. [Google Scholar] [CrossRef]
- Labrijn, A.F.; Janmaat, M.L.; Reichert, J.M.; Parren, P.W.H.I. Bispecific Antibodies: A Mechanistic Review of the Pipeline. Nat. Rev. Drug Discov. 2019, 18, 585–608. [Google Scholar] [CrossRef]
- Blake, L.A.; De La Cruz, A.; Wu, B. Targeted protein degradation in neurodegenerative diseases. Semin. Cell Dev. Biol. 2024, 154, 90–99. [Google Scholar] [CrossRef]
- de Nooij, J.C. Dual targeting of amyloid-beta and tau in Alzheimer’s disease. Curr. Opin. Neurobiol. 2022, 76, 102597. [Google Scholar] [CrossRef]
- Thomson, S.B.; Stam, A.; Brouwers, C.; Fodale, V.; Bresciani, A.; Vermeulen, M.; Mostafavi, S.; Petkau, T.L.; Hill, A.; Yung, A.; et al. TREM2 bispecific antibodies for Alzheimer’s disease. Brain 2023, 146, 2312–2324. [Google Scholar] [CrossRef]
- Jung, H.; Lee, S.Y.; Lim, S.; Choi, H.R.; Choi, Y.; Kim, M.; Kim, S.; Lee, Y.; Han, K.H.; Chung, W.-S.; et al. Anti-inflammatory Clearance of Amyloid-β by a Chimeric Gas6 Fusion Protein. Nat. Med. 2022, 28, 1729–1738. [Google Scholar] [CrossRef]
- Penny, L.K.; Lofthouse, R.; Arastoo, M.; Porter, A.; Palliyil, S.; Harrington, C.R.; Wischik, C.M. Considerations for Biomarker Strategies in Clinical Trials Investigating Tau-Targeting Therapeutics for Alzheimer’s Disease. Transl. Neurodegener. 2024, 13, 25. [Google Scholar] [CrossRef] [PubMed]
- Palmqvist, S.; Janelidze, S.; Stomrud, E.; Zetterberg, H.; Blennow, K.; Hansson, O. Stages of Tau Accumulation in Alzheimer’s Disease Defined by CSF and Plasma p-tau181 in Relation to Amyloid Pathology. Alzheimers Dement. 2022, 18, 715–728. [Google Scholar] [CrossRef]
- Litvinchuk, A.; Huynh, T.V.; Shi, Y.; Jackson, R.J.; Finn, M.B.; Manis, M.; Francis, C.M.; Tran, A.C.; Sullivan, P.M.; Ulrich, J.D.; et al. Apolipoprotein E4 Reduction with Antisense Oligonucleotides Decreases Neurodegeneration in a Tauopathy Model. Ann. Neurol. 2021, 89, 952–966. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Shen, W.; Guo, R.; Xue, Y.; Peng, W.; Sima, J.; Yang, J.; Sharov, A.; Srikantan, S.; Yang, J.; et al. CD33 modulates TREM2: Convergence of Alzheimer loci. Nat. Neurosci. 2013, 16, 1319–1322. [Google Scholar] [CrossRef]
- Ghosh, A.K.; Osswald, H.L. BACE1 (β-Secretase) Inhibitors for the Treatment of Alzheimer’s Disease. Chem. Soc. Rev. 2014, 43, 6765–6813. [Google Scholar] [CrossRef]
- Kochenderfer, J.N. LRP1-targeted antibodies for Alzheimer’s disease. Mol. Ther. 2024, 32, 1567–1578. [Google Scholar] [CrossRef]
- Sayas, C.L.; Ávila, J. GSK-3 and Tau: A Key Duet in Alzheimer’s Disease. Cells 2021, 10, 721. [Google Scholar] [CrossRef]
- Sehlin, D.; Hultqvist, G.; Michno, W.; Aguilar, X.; Dahlén, A.D.; Cerilli, E.; Bucher, N.M.; Lopes van den Broek, S.; Syvänen, S. Bispecific Brain-Penetrant Antibodies for Treatment of Alzheimer’s Disease. J. Prev. Alzheimers Dis. 2025, 12, 100214. [Google Scholar] [CrossRef]
- Heneka, M.T.; Kummer, M.P.; Stutz, A.; Delekate, A.; Schwartz, S.; Vieira-Saecker, A.; Griep, A.; Axt, D.; Remus, A.; Tzeng, T.-C.; et al. NLRP3 is activated in Alzheimer’s disease. Nature 2013, 493, 674–678. [Google Scholar] [CrossRef]
- Phase II Extension Study of AL002. 2025. Available online: http://clinicaltrials.gov (accessed on 20 May 2025).
- Phase I/II Study of Anti-Aβ/Anti-TfR1 Bispecific Antibody. 2025. Available online: http://clinicaltrials.gov (accessed on 20 May 2025).
- Kim, K.Y.; Shin, K.Y.; Chang, K.-A. GFAP as a Potential Biomarker for Alzheimer’s Disease: A Systematic Review and Meta-Analysis. Cells 2023, 12, 1309. [Google Scholar] [CrossRef]
- Sehlin, D.; Fang, X.T.; Cato, L.; Antoni, G.; Lannfelt, L.; Syvanen, S. Antibody-based PET imaging of amyloid beta in mouse models of Alzheimer’s disease. Nat. Commun. 2016, 7, 10759. [Google Scholar] [CrossRef] [PubMed]
- Hultqvist, G.; Syvanen, S.; Fang, X.T.; Lannfelt, L.; Sehlin, D. Bivalent Brain Shuttle Increases Antibody Uptake by Monovalent Binding to the Transferrin Receptor. Theranostics 2017, 7, 308–318. [Google Scholar] [CrossRef] [PubMed]
- Pornnoppadol, G.; Bond, L.G.; Lucas, M.J.; Zupancic, J.M.; Kuo, Y.H.; Zhang, B.; Greineder, C.F.; Tessier, P.M. Bispecific antibody shuttles targeting CD98hc mediate efficient and long-lived brain delivery of IgGs. Cell Chem. Biol. 2024, 31, 361–372. [Google Scholar] [CrossRef]
- Chew, K.S.; Wells, R.C.; Moshkforoush, A.; Chan, D.; Lechtenberg, K.J.; Tran, H.L.; Chow, J.; Kim, D.J.; Robles-Colmenares, Y.; Srivastava, D.B.; et al. CD98hc is a target for brain delivery of biotherapeutics. Nat. Commun. 2023, 14, 5053. [Google Scholar] [CrossRef]
- Wu, D.; Chen, Q.; Chen, X.; Han, F.; Chen, Z.; Wang, Y. The blood-brain barrier: Structure, regulation, and drug delivery. Signal Transduct. Target. Ther. 2023, 8, 217. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, K.; Xie, J.; Liang, X.; Gong, H.; Luo, Q.; Luo, H. Abeta(42) and ROS dual-targeted multifunctional nanocomposite for combination therapy of Alzheimer’s disease. J. Nanobiotechnol. 2024, 22, 278. [Google Scholar]
- Pardridge, W.M. Receptor-mediated drug delivery of bispecific therapeutic antibodies through the blood-brain barrier. Front. Drug Deliv. 2023, 3, 1227816. [Google Scholar] [CrossRef]
- Zhang, Y.; Wang, Q.; Liu, Y.; Chen, X.; Ding, Y.; Fan, G.; Liu, Y.; Chen, X. Enhancing Precision Medicine: Bispecific Antibody-Mediated Targeted Delivery of Lipid Nanoparticles for Potential Cancer Therapy. Int. J. Pharm. 2024, 654, 123990. [Google Scholar] [CrossRef]
- Scott, K.; Klaus, S.P. Focused Ultrasound Therapy for Alzheimer’s Disease: Exploring the Potential for Targeted Amyloid Disaggregation. Front. Neurol. 2024, 15, 1426075. [Google Scholar] [CrossRef]
- Niazi, S.K.; Mariam, Z.; Magoola, M. Engineered Antibodies to Improve Efficacy against Neurodegenerative Disorders. Int. J. Mol. Sci. 2024, 25, 6683. [Google Scholar] [CrossRef]
- Thapar, N.; Eid, M.A.F.; Raj, N.; Kantas, T.; Billing, H.S.; Sadhu, D. Application of CRISPR/Cas9 in the Management of Alzheimer’s Disease and Parkinson’s Disease: A Review. Ann. Med. Surg. 2023, 86, 329–335. [Google Scholar] [CrossRef]
- World Health Organization. Dementia Care in Low-Resource Settings. 2024. Available online: https://www.who.int/news-room/fact-sheets/detail/dementia (accessed on 25 June 2025).
- Phase I Study of Anti-Aβ/Anti-TREM2 Bispecific Antibody. 2025. Available online: http://clinicaltrials.gov (accessed on 20 May 2025).
Antibody | Target | Clinical Trial | Efficacy | Safety (ARIA) | Approval Status | Cost/Year |
---|---|---|---|---|---|---|
Aducanumab | Aβ aggregates | EMERGE (n = 1638) | 60% plaque reduction, 22% CDR-SB slowing | ARIA-E: 35%, ARIA-H: 19% | FDA Accelerated (2021) | ~$28,000 |
Lecanemab | Aβ protofibrils | CLARITY-AD (n = 1795) | 60-centiloid reduction, 27% CDR-SB slowing | ARIA-E: 12.6%, ARIA-H: 17.3% | FDA Full (2023) | ~$26,500 |
Donanemab | Pyroglutamate Aβ | TRAILBLAZER-ALZ 2 (n = 1736) | 80% plaque clearance, 35% iADRS slowing | ARIA-E: 24%, ARIA-H: 31% | FDA Full (2024) | ~$32,000 |
Gantenerumab | Aβ fibrils | GRADUATE (n = 1965) | 50% plaque reduction (preclinical) | ARIA-E: 25%, ARIA-H: 15% | Failed Phase III | N/A |
Crenezumab | Aβ oligomers | CREAD (n = 813) | Modest preclinical effects | ARIA-E: 10%, ARIA-H: 5% | Failed Phase III | N/A |
Platform | Advantages | Disadvantages | Suitability for AD |
---|---|---|---|
CrossMab | High purity (>95%), stable | Complex production | High; long half-life for CNS delivery |
Knobs-into-Holes | Scalable, versatile | Moderate immunogenicity | High; cost-effective for AD |
Genmab DuoBody | High yield, natural IgG structure | Limited CNS data | Moderate; needs further validation |
BiTE | Potent immune activation | Short half-life, poor CNS penetration | Low; unsuitable for chronic AD therapy |
WuXiBody | Flexible design | Complex manufacturing, high cost | Moderate; scalability challenges |
SMABody | Simplified production | Limited preclinical data | Moderate; emerging for AD |
YBODY | High stability, dual targeting | Complex engineering | High; promising for multi-target AD |
FIT-Ig | High affinity, scalable | Moderate immunogenicity | High; suitable for CNS applications |
Strategy | Mechanism | Preclinical Outcome | Suitability for Bispecific Antibodies |
---|---|---|---|
TfR1-mediated transcytosis | Binds TfR1 on BBB endothelial cells | 10-fold uptake, 30% CSF Aβ42 reduction (Tg2576) | High; scalable but off-target risks |
CD98hc-mediated transcytosis | Binds CD98hc on BBB endothelial cells | 8-fold uptake, reduced hippocampal Aβ (APP/PS1) | High; lower off-target effects |
RVG peptide delivery | Targets nicotinic acetylcholine receptors | 3-fold uptake in 5xFAD mice | Moderate; limited uptake efficiency |
Insulin receptor transport | Binds insulin receptors on BBB | 5-fold uptake in APP/PS1 mice | Moderate; complex receptor targeting |
Lipid nanoparticles | Encapsulates antibodies for delivery | 12-fold uptake, reduced p-tau181 (Tg2576) | High; scalable but stability concerns |
Focused ultrasound | Transiently opens BBB | Reduced plaques, restored memory (5xFAD) | Promising; requires specialized equipment |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, H.-M. Recent Advances in Antibody Therapy for Alzheimer’s Disease: Focus on Bispecific Antibodies. Int. J. Mol. Sci. 2025, 26, 6271. https://doi.org/10.3390/ijms26136271
Yang H-M. Recent Advances in Antibody Therapy for Alzheimer’s Disease: Focus on Bispecific Antibodies. International Journal of Molecular Sciences. 2025; 26(13):6271. https://doi.org/10.3390/ijms26136271
Chicago/Turabian StyleYang, Han-Mo. 2025. "Recent Advances in Antibody Therapy for Alzheimer’s Disease: Focus on Bispecific Antibodies" International Journal of Molecular Sciences 26, no. 13: 6271. https://doi.org/10.3390/ijms26136271
APA StyleYang, H.-M. (2025). Recent Advances in Antibody Therapy for Alzheimer’s Disease: Focus on Bispecific Antibodies. International Journal of Molecular Sciences, 26(13), 6271. https://doi.org/10.3390/ijms26136271