Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,249)

Search Parameters:
Keywords = antibody stimulation

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
36 pages, 6047 KiB  
Review
Prevalence and Levels of Thyroid Autoantibodies in Polycystic Ovary Syndrome—Impact of TSH- and BMI-Matched Comparisons: A Systematic Review and Meta-Analysis
by Jakub Kwiatkowski, Nicole Akpang, Lucja Zaborowska and Artur Ludwin
Int. J. Mol. Sci. 2025, 26(15), 7525; https://doi.org/10.3390/ijms26157525 (registering DOI) - 4 Aug 2025
Abstract
Polycystic ovary syndrome (PCOS) is a complex condition affecting women of reproductive age, characterized by menstrual irregularities, hyperandrogenism, polycystic ovarian morphology, and low-grade inflammation accompanied by oxidative stress and increased autoimmune risk, particularly Hashimoto’s thyroiditis. Many studies have examined thyroid autoantibodies—anti-thyroid peroxidase antibodies [...] Read more.
Polycystic ovary syndrome (PCOS) is a complex condition affecting women of reproductive age, characterized by menstrual irregularities, hyperandrogenism, polycystic ovarian morphology, and low-grade inflammation accompanied by oxidative stress and increased autoimmune risk, particularly Hashimoto’s thyroiditis. Many studies have examined thyroid autoantibodies—anti-thyroid peroxidase antibodies (anti-TPO) and anti-thyroglobulin antibodies (anti-TG)—in PCOS; however, observed differences in baseline thyroid-stimulating hormone (TSH) levels and body mass indices (BMIs) impede a direct interpretation of the results. This systematic review and meta-analysis aimed to summarize the available evidence on the prevalence and levels of anti-TPO and anti-TG in women with PCOS. We conducted a systematic search of PubMed, Scopus, and Embase, which yielded 40 eligible, observational studies including 6045 women with PCOS and 4527 controls. Subgroup analyses were conducted separately for TSH- and BMI-matched populations. Anti-TPO prevalence (odds ratio [OR] = 2.03; 95% confidence interval [CI]: 1.35–3.04; p = 0.0006) and levels (standardized mean difference [SMD] = 0.63; 95% CI: 0.37–0.88; p < 0.00001) were significantly higher in PCOS patients. Anti-TG prevalence (OR = 1.92; 95% CI: 1.23–3.01; p = 0.004) and levels (SMD = 0.41; 95% CI: 0.18–0.64; p = 0.0004) were also significantly elevated. In matched subgroups, prevalence differences were no longer significant, though anti-TPO levels remained significantly elevated and anti-TG levels were borderline significant in the TSH-matched subgroup of PCOS women. Although differences in thyroid autoantibody prevalence in women with PCOS appear to be driven by elevated TSH levels and BMIs, the persistently increased antibody levels in the majority of matched subgroups suggest that PCOS itself may contribute independently to heightened autoimmune activation. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

18 pages, 823 KiB  
Article
Influence of a Th17-Inducing Cytokine Milieu on Phenotypical and Functional Properties of Regulatory T Cells in Chronic Inflammatory Arthritis
by Tobias Schwarz, Giovanni Almanzar, Marie Wulfheide, Robert Woidich, Marie-Therese Holzer, Timotheos Christoforou, Leonie Karle, David Radtke, Franziska Brauneiser, Thomas Haaf, Ramya Potabattula, Gabriela Ortega, Klaus-Peter Lesch, Arne Schäfer, Sandrine Benoit, Astrid Schmieder, Matthias Goebeler, Marc Schmalzing, Martin Feuchtenberger and Martina Prelog
Int. J. Mol. Sci. 2025, 26(15), 7339; https://doi.org/10.3390/ijms26157339 - 29 Jul 2025
Viewed by 262
Abstract
Considering the high plasticity of FoxP3+ regulatory T (Treg) cells and Interleukin (IL)-17-producing Th17 cells, we hypothesized that a Th17 inflammatory milieu may impair the functional properties of Treg cells in chronic inflammatory arthritides. Therefore, a cross-sectional explorative analysis was set up [...] Read more.
Considering the high plasticity of FoxP3+ regulatory T (Treg) cells and Interleukin (IL)-17-producing Th17 cells, we hypothesized that a Th17 inflammatory milieu may impair the functional properties of Treg cells in chronic inflammatory arthritides. Therefore, a cross-sectional explorative analysis was set up in patients with psoriatic arthritis (PsoA), rheumatoid arthritis, or spondyloarthritis to investigate the features of Th17 and Treg cells. T cell subpopulation counts, FOXP3 mRNA expression, CpG methylation of the FOXP3 gene, and the suppressive capacity of isolated Treg cells were determined. Ex vivo analysis of PsoA-derived peripheral blood lymphocytes showed a Th17-mediated inflammation. It was accompanied by demethylation of the FOXP3 promotor and Treg-specific demethylated region (TSDR) in Treg cells which, however, resulted neither in elevated FOXP3 mRNA expression nor in increased suppressive Treg cell capacity. To clarify this conundrum, in vitro stimulation of isolated Treg cells with Th17-inducing cytokines (IL-1β, IL-6, IL-23, TGFβ), recombinant IL-17, or the anti-IL-17A antibody secukinumab was performed, demonstrating that cell culture conditions polarizing towards Th17, but not IL-17 itself, impair the suppressive function of Treg cells, accompanied by diminished FOXP3 mRNA expression due to hypermethylation of the FOXP3 promotor and TSDR. This potential causal relationship between Th17 inflammation and impaired Treg cell function requires attention regarding the development of immunomodulatory therapies. Full article
(This article belongs to the Special Issue Molecular Mechanisms and Therapy in Autoimmune Disease)
Show Figures

Figure 1

21 pages, 1625 KiB  
Article
Disrupting Defenses: Effects of Bisphenol A and Its Analogs on Human Antibody Production In Vitro
by Francesca Carlotta Passoni, Martina Iulini, Valentina Galbiati, Marina Marinovich and Emanuela Corsini
Life 2025, 15(8), 1203; https://doi.org/10.3390/life15081203 - 28 Jul 2025
Viewed by 238
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical with estrogen-like activity, known to impair immune function. BPA may act as a pro-inflammatory agent, reducing immune response efficacy, increasing bacterial load in E. coli infections, and altering immune responses in parasitic infections (Leishmania major, Nippostrongylus [...] Read more.
Bisphenol A (BPA) is an endocrine-disrupting chemical with estrogen-like activity, known to impair immune function. BPA may act as a pro-inflammatory agent, reducing immune response efficacy, increasing bacterial load in E. coli infections, and altering immune responses in parasitic infections (Leishmania major, Nippostrongylus brasiliensis, Toxocara canis) through cytokine and regulatory T-cell modulation. Following its ban in food contact materials in Europe, several analogs have been introduced. This study assessed the immunotoxicity of BPA and six analogs, namely BPAP, BPE, BPP, BPS-MAE, BPZ, and TCBPA, by evaluating in vitro the antibody production. Peripheral blood mononuclear cells from healthy male and female donors were exposed to increasing concentrations of each compound for 24 h. After stimulation with rhIL-2 and ODN2006, IgM and IgG secretion were measured on day six. All compounds suppressed antibody production in a concentration-dependent manner, with some sex-related differences. IC50 values showed BPP as the most potent suppressor, and BPE as the weakest. Similarly, IC20 values confirmed these differences in potency, except for BPA being the weakest for IgM in males. Overall, te results do not support the idea that BPA analogs are safer than BPA. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

22 pages, 1005 KiB  
Review
New Approaches to the Treatment of Alzheimer’s Disease
by Marta Kruk-Słomka, Dominika Kuceł, Maria Małysz, Adrianna Machnikowska, Jolanta Orzelska-Górka and Grażyna Biała
Pharmaceuticals 2025, 18(8), 1117; https://doi.org/10.3390/ph18081117 - 26 Jul 2025
Viewed by 408
Abstract
Alzheimer’s disease (AD) is one of the most common chronic neurodegenerative disorders worldwide. It is characterized by progressive memory loss and cognitive decline, leading to dementia. The pathogenesis of the disease is primarily attributed to two pathological protein structures: amyloid-beta (Aβ) plaques and [...] Read more.
Alzheimer’s disease (AD) is one of the most common chronic neurodegenerative disorders worldwide. It is characterized by progressive memory loss and cognitive decline, leading to dementia. The pathogenesis of the disease is primarily attributed to two pathological protein structures: amyloid-beta (Aβ) plaques and tau protein neurofibrils. The current treatment strategies for AD are mainly symptomatic, highlighting the urgent need for the development of new, more effective therapies for the disease. The purpose of this paper is to provide a comprehensive and scientific review of the latest research regarding novel therapeutic options in the treatment of AD. In recent years, research has focused on more advanced and diversified strategies, including immunotherapy, gene therapy, tyrosine kinase inhibitors, therapies targeting mitochondrial function, and neurogenesis-related process modulation. One of the most promising treatment strategies for AD is immunotherapy. Intensive research is currently underway on both passive immunization, which involves the administration of monoclonal antibodies, and active immunization through vaccinations that stimulate the body to produce specific antibodies. Further research into novel therapeutic directions is essential, particularly concerning the role of the immune system in the pathogenesis of AD. Immunization appears to be a highly promising approach to developing effective methods for preventing AD or delaying the progression of this disease. Full article
(This article belongs to the Special Issue NeuroImmunoEndocrinology)
Show Figures

Figure 1

20 pages, 3249 KiB  
Article
Granulocyte-Macrophage Colony-Stimulating Factor Inhibition Ameliorates Innate Immune Cell Activation, Inflammation, and Salt-Sensitive Hypertension
by Hannah L. Smith, Bethany L. Goodlett, Gabriella C. Peterson, Emily N. Zamora, Ava R. Gostomski and Brett M. Mitchell
Cells 2025, 14(15), 1144; https://doi.org/10.3390/cells14151144 - 24 Jul 2025
Viewed by 333
Abstract
Hypertension (HTN) is a major contributor to global morbidity and manifests in several variants, including salt-sensitive hypertension (SSHTN). SSHTN is defined by an increase in blood pressure (BP) in response to high dietary salt, and is associated with heightened cardiovascular risk, renal damage, [...] Read more.
Hypertension (HTN) is a major contributor to global morbidity and manifests in several variants, including salt-sensitive hypertension (SSHTN). SSHTN is defined by an increase in blood pressure (BP) in response to high dietary salt, and is associated with heightened cardiovascular risk, renal damage, and immune system activation. However, the role of granulocyte-macrophage colony-stimulating factor (GM-CSF) has not yet been explored in the context of SSHTN. Previously, we reported that GM-CSF is critical in priming bone marrow-derived (BMD)-macrophages (BMD-Macs) and BMD-dendritic cells (BMD-DCs) to become activated (CD38+) in response to salt. Further exploration revealed these cells differentiated into BMD-M1 Macs, CD38+ BMD-M1 Macs, BMD-type-2 conventional DCs (cDC2s), and CD38+ BMD-cDC2s. Additionally, BMD-monocytes (BMDMs) grown with GM-CSF and injected into SSHTN mice traffic to the kidneys and differentiate into Macs, CD38+ Macs, DCs, and CD38+ DCs. In the current study, we treated SSHTN mice with an anti-GM-CSF antibody (aGM) and found that preventive aGM treatment mitigated BP, prevented renal inflammation, and altered renal immune cells. In mice with established SSHTN, aGM treatment attenuated BP, reduced renal inflammation, and differentially affected renal immune cells. Adoptive transfer of aGM-treated BMDMs into SSHTN mice resulted in decreased renal trafficking. Additionally, aGM treatment of BMD-Macs, CD38+ BMD-M1 Macs, BMD-DCs, and CD38+ BMD-cDC2s led to decreased pro-inflammatory gene expression. These findings suggest that GM-CSF plays a role in SSHTN and may serve as a potential therapeutic target. Full article
Show Figures

Graphical abstract

15 pages, 2688 KiB  
Article
Recombinant Tetrameric Neuraminidase Subunit Vaccine Provides Protection Against Swine Influenza A Virus Infection in Pigs
by Ao Zhang, Bin Tan, Jiahui Wang and Shuqin Zhang
Vaccines 2025, 13(8), 783; https://doi.org/10.3390/vaccines13080783 - 23 Jul 2025
Viewed by 348
Abstract
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza [...] Read more.
Background/Objectives: Swine influenza A virus (swIAV), a prevalent respiratory pathogen in porcine populations, poses substantial economic losses to global livestock industries and represents a potential threat to public health security. Neuraminidase (NA) has been proposed as an important component for universal influenza vaccine development. NA has potential advantages as a vaccine antigen in providing cross-protection, with specific antibodies that have a broad binding capacity for heterologous viruses. In this study, we evaluated the immunogenicity and protective efficacy of a tetrameric recombinant NA subunit vaccine in a swine model. Methods: We constructed and expressed structurally stable soluble tetrameric recombinant NA (rNA) and prepared subunit vaccines by mixing with ISA 201 VG adjuvant. The protective efficacy of rNA-ISA 201 VG was compared to that of a commercial whole inactivated virus vaccine. Pigs received a prime-boost immunization (14-day interval) followed by homologous viral challenge 14 days post-boost. Results: Both rNA-ISA 201 VG and commercial vaccine stimulated robust humoral responses. Notably, the commercial vaccine group exhibited high viral-binding antibody titers but very weak NA-specific antibodies, whereas rNA-ISA 201 VG immunization elicited high NA-specific antibody titers alongside substantial viral-binding antibodies. Post-challenge, both immunization with rNA-ISA 201 VG and the commercial vaccine were effective in inhibiting viral replication, reducing viral load in porcine respiratory tissues, and effectively mitigating virus-induced histopathological damage, as compared to the PBS negative control. Conclusions: These findings found that the anti-NA immune response generated by rNA-ISA 201 VG vaccination provided protection comparable to that of a commercial inactivated vaccine that primarily induces an anti-HA response. Given that the data are derived from one pig per group, there is a requisite to increase the sample size for more in-depth validation. This work establishes a novel strategy for developing next-generation SIV subunit vaccines leveraging NA as a key immunogen. Full article
(This article belongs to the Special Issue Vaccine Development for Swine Viral Pathogens)
Show Figures

Figure 1

18 pages, 4044 KiB  
Article
Preparation and Immunogenicity Evaluation of a Ferritin-Based GnRH Nanoparticle Vaccine
by Ying Xu, Weihao Zhao, Yuhan Zhu, Bo Sun, Congmei Wu and Yuhe Yin
Vaccines 2025, 13(8), 781; https://doi.org/10.3390/vaccines13080781 - 23 Jul 2025
Viewed by 336
Abstract
Objectives: Research on the immunocastration vaccine is of great significance for animal management. In this study, the gonadotropin-releasing hormone (GnRH) ferritin nanoparticle vaccine was constructed using Spy Catcher-Spy Tag (SC-ST) as a delivery system; Methods: The Spy Catcher was constructed to [...] Read more.
Objectives: Research on the immunocastration vaccine is of great significance for animal management. In this study, the gonadotropin-releasing hormone (GnRH) ferritin nanoparticle vaccine was constructed using Spy Catcher-Spy Tag (SC-ST) as a delivery system; Methods: The Spy Catcher was constructed to fuse with the expression vector pET-30a-SF of ferritin nanoparticles. Two polypeptides, STG1: Spy Tag-GnRH I-PADRE and STG2: Spy Tag-GnRH I-GnRH II, coupled to SF in vitro to form two nanoparticles, were designed and synthesized to detect castration effects in mice. We mixed them with the adjuvant MONTANIDE ISA 206 VG to explore the adjuvant’s effect on immunogenicity; Results: All immunized groups produced anti-GnRH specific antibodies after the second immunization, which was significantly higher in the immunized group and the combined adjuvant group than in the control group, and the immune response could still be detected at the 12th week. The concentrations of testosterone, follicle-stimulating hormone, and luteinizing hormone in serum were significantly decreased. The number of sperm in the epididymis of mice in each immune group was significantly reduced, and the rate of sperm deformity was high; Conclusions: The two ferritin-based GnRH nanoparticles developed in this study can significantly cause testicular atrophy, decreased gonadal hormone concentration, decreased sperm count, and increased deformity rate in male mice. These findings provide experimental evidence supporting their potential application in animal immunocastration. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

12 pages, 484 KiB  
Review
Navigating Hyperhemolysis in Sickle Cell Disease: Insights from Literature
by Sruthi Vellanki, Nishanth Thalambedu, Anup Kumar Trikannad Ashwini Kumar, Sravya Vellanki, Medhavi Honhar, Rachel Hendrix, Denese Harris, Mamatha Gaddam, Sunny R. K. Singh, Shivi Jain, Muthu Kumaran, Cesar Gentille and Ankur Varma
Diagnostics 2025, 15(14), 1835; https://doi.org/10.3390/diagnostics15141835 - 21 Jul 2025
Viewed by 387
Abstract
Sickle cell disease (SCD) is a prevalent genetic disorder caused by a mutation in the beta-globin gene. Hyperhemolysis (HS) is a severe complication involving the rapid destruction of both transfused and endogenous red blood cells, commonly found in SCD. This literature review explores [...] Read more.
Sickle cell disease (SCD) is a prevalent genetic disorder caused by a mutation in the beta-globin gene. Hyperhemolysis (HS) is a severe complication involving the rapid destruction of both transfused and endogenous red blood cells, commonly found in SCD. This literature review explores the clinical presentation, diagnosis, pathogenesis, and management of HS in SCD. HS can manifest acutely or in a delayed manner, complicating diagnosis due to overlapping symptoms and varying reticulocyte responses. Immunohematological assessments often reveal delayed positivity in direct antiglobulin tests and antibody screens. HS typically presents severe anemia, jaundice, hemoglobinuria, and hemodynamic instability. Diagnostic markers include elevated bilirubin and lactate dehydrogenase levels alongside a reduced reticulocyte count. The management of HS is primarily empirical, with no clinical trials to support standardized treatment protocols. First-line treatments involve steroids and intravenous immunoglobulins (IVIG), which modulate immune responses and mitigate hemolysis. Refractory cases may require additional agents such as rituximab, eculizumab, tocilizumab, and, in some instances, plasma exchange or erythropoietin-stimulating agents. Novel therapeutic approaches, including bortezomib and Hemopure, have shown promise but require further investigation. Current management strategies are empirical, underscoring the need for robust clinical trials to establish effective treatment protocols that ultimately improve outcomes for SCD patients experiencing HS. Full article
(This article belongs to the Special Issue Diagnosis and Prognosis of Hematological Disease)
Show Figures

Figure 1

17 pages, 1438 KiB  
Review
Pathogenesis of Autoimmunity/Systemic Lupus Erythematosus (SLE)
by Shunichi Shiozawa
Cells 2025, 14(14), 1080; https://doi.org/10.3390/cells14141080 - 15 Jul 2025
Viewed by 582
Abstract
SLE is characterized by the generation of a variety of autoantibodies including anti-dsDNA autoantibodies, causing damage in various organs. If autoimmunity is defined by the generation of a variety of autoantibodies against the self, SLE is the only disease to qualify. Identification of [...] Read more.
SLE is characterized by the generation of a variety of autoantibodies including anti-dsDNA autoantibodies, causing damage in various organs. If autoimmunity is defined by the generation of a variety of autoantibodies against the self, SLE is the only disease to qualify. Identification of the SLE-causing factor must fulfill the following criteria: (i) the factor induces SLE, (ii) the factor is operating in active SLE and (iii) SLE heals after removal of the factor. All candidate factors are reviewed from this viewpoint in this review. As to the cause of SLE, high levels of interferon α can induce SLE; however, interferon α in most patients did not reach this high level. BAFF (B cell activating factor of the TNF family) is increased in SLE. BAFF itself induced some manifestation of SLE, whereas removal of interferon α or BAFF by an antibody (Ab) did not heal SLE. BXSB male mice with a duplicated TLR7 gene develop SLE; however, the gene Sle1 is also required for the development of SLE. In addition, sanroque mice develop a variety of autoantibodies and SLE; the sanroque mutation, which disrupts one of the repressors of ICOS, results in increased CCR7lo CXCR5+Tfh cells, IL-21 and SLE. ICOS+T follicular helper (Tfh) cells increase in SLE and SLE-model (NZBxNZW)F1 mice, and the blockade of Tfh development ameliorated SLE, indicating the importance of Tfh cells in the pathogenesis of SLE. Self-organized criticality theory shows that SLE is caused by repeated infection, wherein SLE-inducing pathogens can vary individually depending on one’s HLA; however, the pathogen presented on HLA stimulates the T cell receptor (TCR) strongly beyond self-organized criticality. This stimulation generates TCR-revised, autoreactive DOCK8+Tfh cells, which induced a variety of autoantibodies and SLE. The SARS-CoV-2 virus is an example pathogen because SLE occurs after SARS-CoV-2 infection and vaccination. DOCK8+Tfh cells and SLE decreased after conventional or anti-DOCK Ab therapies. Thus, DOCK8+Tfh cells newly generated after repeated infection fulfill the criteria (i), (ii) and (iii) as the cause of SLE. Full article
Show Figures

Figure 1

18 pages, 4140 KiB  
Article
Immune Responses Induced by Recombinant Membrane Proteins of Mycoplasma agalactiae in Goats
by Beatriz Almeida Sampaio, Maysa Santos Barbosa, Matheus Gonçalves de Oliveira, Manoel Neres Santos Júnior, Bruna Carolina de Brito Guimarães, Emilly Stefane Souza Andres, Ágatha Morgana Bertoti da Silva, Camila Pacheco Gomes, Rafaela de Souza Bittencourt, Thiago Macêdo Lopes Correia, Lucas Santana Coelho da Silva, Jurandir Ferreira da Cruz, Rohini Chopra-Dewasthaly, Guilherme Barreto Campos, Jorge Timenetsky, Bruno Lopes Bastos and Lucas Miranda Marques
Vaccines 2025, 13(7), 746; https://doi.org/10.3390/vaccines13070746 - 11 Jul 2025
Viewed by 491
Abstract
Background/Objectives: Contagious agalactia (CA) is a disease typically caused by Mycoplasma agalactiae, affecting small ruminants worldwide and being endemic in certain countries. CA causes severe economic losses due to mastitis, agalactia, and arthritis. As an alternative to existing immunoprophylactic measures, this study [...] Read more.
Background/Objectives: Contagious agalactia (CA) is a disease typically caused by Mycoplasma agalactiae, affecting small ruminants worldwide and being endemic in certain countries. CA causes severe economic losses due to mastitis, agalactia, and arthritis. As an alternative to existing immunoprophylactic measures, this study aimed to develop a recombinant subunit vaccine against M. agalactiae and evaluate its specific immune response in goats. Methods: Goats were divided into three groups: group 1 received recombinant proteins (P40 and MAG_1560), group 2 received formalin-inactivated M. agalactiae, and group 3 received Tris-buffered saline (negative control). All solutions were emulsified in Freund’s adjuvant. Animals were monitored for 181 days. IgG antibody production was assessed by ELISA, and peripheral blood mononuclear cells (PBMCs) were analyzed by real-time PCR for the expression of IL-1β, IFN-γ, IL-12, and MHC class II genes. Results: M. agalactiae-specific antibody response was observed for six months in the sera of animals from group 1. Analysis of cytokine gene expression revealed increased IL-1β mRNA levels over time in both experimental groups. In group 1, IFN-γ mRNA levels increased with P40 stimulation and decreased with MAG_1560. IL-12 mRNA expression decreased over time in group 1 with P40 stimulation, whereas group 2 showed increased IL-12 expression for both proteins. MHC-II expression was stimulated in both groups. Conclusions: The recombinant proteins induced antibody production and cytokine expression, demonstrating immunogenic potential and supporting their promise as vaccine candidates capable of eliciting both humoral and cellular immune responses against M. agalactiae. Full article
(This article belongs to the Section Veterinary Vaccines)
Show Figures

Figure 1

12 pages, 230 KiB  
Article
Hashimoto’s Thyroiditis and Female Infertility: A Clinical and Statistical Investigation of Endocrine and Ovarian Markers
by Emilia Cristina Popa, Laura Maghiar, Teodor Andrei Maghiar, Ilarie Brihan, Laura Monica Georgescu, Bianca Anamaria Toderaș, Liliana Sachelarie, Loredana Liliana Hurjui and Anca Huniadi
J. Clin. Med. 2025, 14(13), 4770; https://doi.org/10.3390/jcm14134770 - 6 Jul 2025
Viewed by 603
Abstract
Background: Hashimoto’s thyroiditis (HT), the most prevalent autoimmune thyroid disorder in reproductive-age women, has been linked to diminished ovarian reserve and subfertility. This study aimed to evaluate the relationship between HT and key fertility parameters, including hormonal markers and reproductive outcomes, while also [...] Read more.
Background: Hashimoto’s thyroiditis (HT), the most prevalent autoimmune thyroid disorder in reproductive-age women, has been linked to diminished ovarian reserve and subfertility. This study aimed to evaluate the relationship between HT and key fertility parameters, including hormonal markers and reproductive outcomes, while also exploring the potential impact of thyroid hormone replacement therapy. Methods: A retrospective observational study was conducted on 86 women undergoing fertility evaluation. Participants were divided into two groups based on anti-thyroid peroxidase antibodies (ATPO): the HT group (n = 49) and the control group (n = 37). Among women with HT, 57% were receiving levothyroxine (Euthyrox®) at the time of assessment. Variables analyzed included serum levels of anti-Müllerian hormone (AMH), thyroid-stimulating hormone (TSH), insulin resistance index (HOMA-IR), number of oocytes retrieved, blastocysts formed, pregnancies achieved, and live births. Statistical methods included t-tests, Mann–Whitney U tests, Pearson/Spearman correlations, and linear regression models. Results: Women in the HT group had slightly lower AMH levels and oocyte counts compared to controls, though these differences did not reach statistical significance. TSH values were higher in the HT group and showed a significant negative correlation with blastocyst formation (p = 0.03). Although TSH also showed negative trends with oocyte count, pregnancies, and live births, these correlations did not reach statistical significance. A post-hoc subgroup analysis revealed that HT patients receiving levothyroxine tended to have higher numbers of oocytes retrieved and blastocysts formed compared to untreated HT patients, suggesting a possible beneficial effect of thyroid hormone replacement, although the differences were not statistically significant. Conclusions: HT is associated with subtle but clinically relevant impairments in ovarian reserve and reproductive potential. Thyroid hormone replacement may offer modest benefits and should be considered in the individualized management of fertility in women with thyroid autoimmunity. Full article
(This article belongs to the Special Issue Female Infertility: Clinical Diagnosis and Treatment)
15 pages, 1171 KiB  
Article
Virus-like Particles Produced in the Baculovirus System Protect Hares from European Brown Hare Syndrome Virus (EBHSV) Infection
by Giulio Severi, Lucia Anzalone, Laura Madeo, Anna Serroni, Claudia Colabella, Antonella Di Paolo, Pier Mario Mangili, Elisabetta Manuali, Andrea Felici, Monica Cagiola, Antonio Lavazza, Lorenzo Capucci, Giovanni Pezzotti and Antonio De Giuseppe
Vaccines 2025, 13(7), 731; https://doi.org/10.3390/vaccines13070731 - 5 Jul 2025
Viewed by 432
Abstract
Background/Objectives: European Brown Hare Syndrome (EBHS) is an acute and highly contagious viral disease of hares that causes considerable economic losses on wild and captive-reared hares. No preventive treatments are currently available to defeat the disease. Immunoprophylactic and biosafety measures could be applied [...] Read more.
Background/Objectives: European Brown Hare Syndrome (EBHS) is an acute and highly contagious viral disease of hares that causes considerable economic losses on wild and captive-reared hares. No preventive treatments are currently available to defeat the disease. Immunoprophylactic and biosafety measures could be applied to prevent EBHS only in captive-reared hares, where vaccination is proposed as an effective strategy. Due to the lack of a cellular substrate for virus growth, commercially available vaccines are autovaccines produced from inactivated liver suspensions of hares dead for EBHS. Therefore, using a recombinant vaccine based on VP60 major capsid protein seems a viable alternative to overcome such a problem. Methods: the 6xHis C-terminal tagged VP60 protein of EBHSV was expressed and produced in baculovirus, purified by affinity chromatography and the self-assembled recombinant (rEVP60-His6) protein. To establish the protective properties of rEVP60-His6-based VLPs, hares were immunised with 50 and 100 µg of VLPs and parenterally challenged with EBHSV. Results: all hares vaccinated with 100 µg of VLPs survived after the experimental infection, demonstrating the excellent protective ability of this prototype VLPs-based vaccine. Conclusions: self-assembled EBHSV rEVP60-His6 protein was successfully produced following a rapid, simple, low-cost protocol. Although the protective efficacy of such VLPs were experimentally demonstrated, some key aspects remain to be clarified, including the duration of protection, the entity of the antibody response, and the ability to stimulate cell-mediated response. Last, an additional aspect to be evaluated is whether the use of an adjuvant can determine whether its presence improves the performance of the recombinant VLPs vaccine. Full article
(This article belongs to the Special Issue Virus-Like Particle Vaccine Development)
Show Figures

Figure 1

20 pages, 6090 KiB  
Review
Rotavirus Reverse Genetics Systems and Oral Vaccine Delivery Vectors for Mucosal Vaccination
by Jun Wang, Songkang Qin, Kuanhao Li, Xin Yin, Dongbo Sun and Jitao Chang
Microorganisms 2025, 13(7), 1579; https://doi.org/10.3390/microorganisms13071579 - 4 Jul 2025
Viewed by 341
Abstract
Mucosal immunization represents a promising strategy for preventing enteric infections. Rotavirus (RV), a leading gastrointestinal pathogen distinguished by its remarkable stability and segmented double-stranded RNA genome, has been engineered into a versatile oral vaccine vector through advanced reverse genetics systems. The clinical efficacy [...] Read more.
Mucosal immunization represents a promising strategy for preventing enteric infections. Rotavirus (RV), a leading gastrointestinal pathogen distinguished by its remarkable stability and segmented double-stranded RNA genome, has been engineered into a versatile oral vaccine vector through advanced reverse genetics systems. The clinical efficacy of live-attenuated RV vaccines highlights their unique capacity to concurrently induce mucosal IgA responses and systemic neutralizing antibodies, positioning them as a multiple action vector for multiple immune protection. In this review, we summarize the RV colonization of the intestine and stimulation of intestinal immunity, as well as recent advancements in RV reverse genetics, and focus on their application in the rational design of a multivalent mucosal vaccine vector targeting enteric pathogens considering the advantages and challenges of RV as a vector. We further propose molecular strategies to overcome genetic instability in recombinant RV vectors, including the codon optimization of heterologous inserts. These insights provide a theoretical foundation for developing next-generation mucosal immunization platforms with enhanced safety, stability, and cross-protective efficacy. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

13 pages, 1488 KiB  
Article
Respiratory Syncytial Virus Induces B Cell Activating Factor (BAFF) in Airway Epithelium: A Potential Avenue for Mucosal Vaccine Development
by Wael Alturaiki and Brian Flanagan
Viruses 2025, 17(7), 946; https://doi.org/10.3390/v17070946 - 4 Jul 2025
Viewed by 553
Abstract
Respiratory syncytial virus (RSV) is a major etiological agent of lower respiratory tract infections, particularly among infants and the elderly. Activation of B cells in the mucosa and the production of specific neutralizing antibodies are essential for protective immunity against pulmonary infection. B-cell [...] Read more.
Respiratory syncytial virus (RSV) is a major etiological agent of lower respiratory tract infections, particularly among infants and the elderly. Activation of B cells in the mucosa and the production of specific neutralizing antibodies are essential for protective immunity against pulmonary infection. B-cell activating factor (BAFF) is a critical survival factor for B cells and has been associated with antiviral responses; however, its regulation during RSV infection remains poorly understood. This study examined BAFF regulation in BEAS-2B cells exposed to RSV or IFN-β. The treatments resulted in a progressive increase in gene expression over time, accompanied by higher protein levels. BAFF mRNA peaked at 12 h post-infection and declined by 48 h, coinciding with the release of soluble BAFF protein into the culture supernatant. Pre-treatment with anti-IFN-β antibodies prior to RSV infection reduced both BAFF mRNA and protein levels, indicating that IFN-β plays a regulatory role in BAFF production by airway epithelial cells. Western blot analysis revealed membrane-bound BAFF (~31 kDa) in non-infected cells, with elevated expression at 24 h post-infection. By 48 h, this form was cleaved into a soluble ~17 kDa form, which was detected in the supernatant. Immunostaining further demonstrated reduced surface expression of membrane-bound BAFF in RSV-infected cells compared to uninfected controls, suggesting that RSV infection promotes the cleavage and release of BAFF into the extracellular environment. Additionally, the release of BAFF was not affected by furin convertase inhibition or ER–Golgi transport blockade, indicating a potentially novel cleavage mechanism. Co-culturing BAFF produced by BEAS-2B cells with isolated B cells enhanced B cell viability. Overall, these results indicate that RSV infection stimulates BAFF production in airway epithelial cells through a pathway involving IFN-β, potentially contributing to B cell activation and promoting local antibody-mediated immunity. Understanding this mechanism may offer valuable insights for improving mucosal vaccine strategies and enhancing immunity against respiratory pathogens. Full article
(This article belongs to the Section Viral Immunology, Vaccines, and Antivirals)
Show Figures

Figure 1

27 pages, 5667 KiB  
Article
Pre-Vaccination Immune Profiles and Responsiveness to Innate Stimuli Predict Reactogenicity and Antibody Magnitude Following mRNA Vaccination
by Amanda E. Zelkoski, Emilie Goguet, Emily Samuels Darcey, Mohamad-Gabriel Alameh, Hooda Said, Simon Pollett, John H. Powers, Eric D. Laing, Cara Olsen, Edward Mitre and Allison M. W. Malloy
Vaccines 2025, 13(7), 718; https://doi.org/10.3390/vaccines13070718 - 1 Jul 2025
Viewed by 698
Abstract
Background: While mRNA vaccines effectively limit hospitalization and severe COVID-19 disease, the precise early innate immune mechanisms associated with their efficacy and reactogenicity remain underexplored. The identification of innate immune correlates prior to vaccination could provide mechanistic insights and potentially predict responses. Methods: [...] Read more.
Background: While mRNA vaccines effectively limit hospitalization and severe COVID-19 disease, the precise early innate immune mechanisms associated with their efficacy and reactogenicity remain underexplored. The identification of innate immune correlates prior to vaccination could provide mechanistic insights and potentially predict responses. Methods: We developed an in vitro model to study the innate immune activation of pre-vaccination peripheral blood mononuclear cells (PBMCs) collected from participants enrolled in a well-characterized COVID-19 BioNTech/Pfizer BNT162b2 vaccine (BNT162b2 vaccine) cohort. Pre-vaccination PBMCs were stimulated with empty lipid nanoparticle (LNP), mRNA-LNP, or Toll-like receptor (TLR) agonists. Using multiparameter spectral flow cytometry, we analyzed the baseline immune state, innate responsiveness to stimuli, and cytokine profiles of study participants. These pre-vaccination in vitro results were analyzed for correlations with post-vaccination symptoms and spike-specific IgG responses. Results: Baseline dendritic cell (DC) states inversely correlated with the magnitude of symptoms following BNT162b2 vaccination. Heightened conventional (cDC) and weaker plasmacytoid DC (pDC) responses to RNA stimuli correlated with the magnitude of an acute IgG response. IgG durability modestly correlated with a lower pDC state but higher cDC2 and monocyte baseline states and inversely correlated with TLR3 agonist responsiveness. Conclusions: The pre-vaccination assessment of innate immune function and resting states can be used to fit models potentially predictive of immunogenicity and reactogenicity to BNT162b2 vaccination. Pre-vaccination DC states may influence reactogenicity, while the response to RNA may impact antibody responses. Our data suggest that pre-vaccination assessment offers insights into the innate mechanisms driving mRNA vaccine responses and has predictive potential. Full article
(This article belongs to the Section Nucleic Acid (DNA and mRNA) Vaccines)
Show Figures

Figure 1

Back to TopTop