Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,231)

Search Parameters:
Keywords = antibiotics resistance genes

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 1396 KB  
Article
Effects of Florfenicol on Intestinal Structure, Microbial Community and Antibiotic Resistance Genes in Penaeus vannamei
by Gengshen Wang, Xinyong Shi, Yi Yan, Jianjun Xie, Demin Zhang and Huajun Zhang
Microorganisms 2026, 14(1), 204; https://doi.org/10.3390/microorganisms14010204 - 15 Jan 2026
Viewed by 11
Abstract
Antibiotic feeding in shrimp farming is an optional practice conducted with the aim of preventing and controlling bacterial diseases. However, the administration of antibiotics can disrupt the microbiota of both shrimp and surrounding environment, potentially compromising host health. Given the limited effective antibiotic [...] Read more.
Antibiotic feeding in shrimp farming is an optional practice conducted with the aim of preventing and controlling bacterial diseases. However, the administration of antibiotics can disrupt the microbiota of both shrimp and surrounding environment, potentially compromising host health. Given the limited effective antibiotic options in aquaculture, it is crucial to evaluate the effects of florfenicol (FF) on the intestinal health of shrimp and the associated microbial communities. This study first investigated the impact of FF on the intestinal structure of Penaeus vannamei over two feeding durations (5 and 10 days), each followed by a 10-day basal diet recovery period. Simultaneously, variations in microbial communities and antibiotic resistance genes (ARGs) in both the intestine and rearing water were explored. The results showed that intestinal damage was aggravated with the extension of FF duration and gradually recovered after FF withdrawal. Significant changes in microbial composition and β-diversity were observed in both the rearing water and intestine following FF feeding. Extending the FF treatment to 10 days led to a reduced abundance of Rhodobacteraceae and an increased abundance of Flavobacteriaceae and Vibrionaceae in the intestine after 10 days of feeding the basic diet, which may pose a potential risk to shrimp health. Based on correlation analysis of ARGs, microbial communities and pathogenic bacteria, we speculated that rearing water may serve as a reservoir for ARGs dissemination compared to the shrimp intestine. These findings are of great importance for assessing the impact of administration duration under the FF therapeutic dose and highlight the potential risks associated with its overuse in shrimp farming. Full article
(This article belongs to the Section Gut Microbiota)
13 pages, 2699 KB  
Review
Regulatory Mechanisms of Zinc on Bacterial Antibiotic Resistance and Virulence in a One Health Context
by Yang Wang, Yue Li, Jingyi Wu, Mengge Shen, Aoqi Zhan, Yuxin Wang and Baobao Liu
Microbiol. Res. 2026, 17(1), 22; https://doi.org/10.3390/microbiolres17010022 - 15 Jan 2026
Viewed by 11
Abstract
Zinc (Zn), a ubiquitous environmental transition metal primarily existing as Zinc ions (Zn2+), plays a critical role in various biological processes. Its extensive application in agriculture, industry, and healthcare has led to significant environmental contamination. However, the mechanistic contribution of Zn [...] Read more.
Zinc (Zn), a ubiquitous environmental transition metal primarily existing as Zinc ions (Zn2+), plays a critical role in various biological processes. Its extensive application in agriculture, industry, and healthcare has led to significant environmental contamination. However, the mechanistic contribution of Zn2+ to bacterial antibiotic resistance and virulence remains insufficiently understood. This review explores the sources, cycling, and environmental accumulation of Zn2+ in a One Health context, emphasizing their impact on bacterial antibiotic resistance and virulence. Zn2+ promote bacterial antibiotic resistance by regulating efflux pumps, biofilm formation, expression and transfer of antibiotic resistance genes, as well as synergistic effects with other heavy metals and antibiotics. Meanwhile, Zn2+ promote bacterial virulence by regulating quorum sensing, secretion and metal homeostasis systems, as well as oxidative stress response and virulence factor expression. Additionally, it highlights the potential of targeting Zn homeostasis as a strategy to combat environmental antibiotic resistance. Collectively, these findings provide key insights into the mechanisms by which Zn2+ regulate bacterial antibiotic resistance and pathogenicity, offering valuable guidance for developing strategies to mitigate the global threat of antibiotic resistance. Full article
(This article belongs to the Special Issue Zoonotic Bacteria: Infection, Pathogenesis and Drugs—Second Edition)
Show Figures

Figure 1

18 pages, 6639 KB  
Article
Genome-Based Evaluation of Safety and Probiotic Traits in Infant Feces-Sourced Bifidobacterium animalis subsp. lactis BD1
by Meng Tian, Zihao Liu, Jiahang Li, Jialin Wang, Dayong Ren and Yue Leng
Foods 2026, 15(2), 316; https://doi.org/10.3390/foods15020316 - 15 Jan 2026
Viewed by 39
Abstract
Bifidobacterium animalis subsp. lactis is a widely used probiotic, yet its efficacy is highly strain-specific, and growing antibiotic resistance necessitates rigorous safety evaluations. We used whole-genome sequencing and in vitro assays to characterize the safety and probiotic traits of infant feces-sourced strain BD1, [...] Read more.
Bifidobacterium animalis subsp. lactis is a widely used probiotic, yet its efficacy is highly strain-specific, and growing antibiotic resistance necessitates rigorous safety evaluations. We used whole-genome sequencing and in vitro assays to characterize the safety and probiotic traits of infant feces-sourced strain BD1, which shows preliminary mood-modulating and anti-inflammatory potential. The BD1 genome showed a favorable safety profile. VFDB analysis identified 139 low-similarity homologs, with no major toxins detected. Only four chromosomally encoded antibiotic resistance genes were found; phenotypic testing confirmed resistance solely to tetracycline and mupirocin. Although the tetracycline resistance gene tet(W) was identified in genomic island GI01, the absence of associated mobile genetic elements results in a negligible risk of its mobilization. Functional annotation highlighted a dominant metabolic capacity for carbohydrate and amino acid metabolism. BD1 is rich in CAZymes, enabling superior utilization of diverse substrates (starch, sucrose, galactose). Enrichment in lipid metabolism pathways (glycerolipid, sphingolipid) further suggests potential for enhancing fermented product flavor. In vitro assessment demonstrated moderate gastrointestinal tolerance and strong bile salt tolerance. Surface properties showed pronounced cell surface hydrophobicity and confirmed biofilm-forming potential. In conclusion, BD1 exhibits robust safety, metabolic versatility, and strong probiotic characteristics, supporting its development as a functional probiotic strain. Full article
Show Figures

Graphical abstract

15 pages, 760 KB  
Article
Combined Antimicrobial Effects of Lactiplantibacillus plantarum-Derived Biosurfactant and Supercritical CO2-Extracted Rosmarinus officinalis Against Multidrug-Resistant Staphylococcus aureus
by Najla Haddaji, Nadia Leban, Wissal Rouihem, Ali Saud Almalg, Muna O. Alamoudi, Hatem Majdoub and Abdelkarim Mahdhi
Fermentation 2026, 12(1), 50; https://doi.org/10.3390/fermentation12010050 - 15 Jan 2026
Viewed by 51
Abstract
The global prevalence of antibiotic-resistant bacteria, such as Staphylococcus aureus, presents a substantial challenge to public health, necessitating the development of innovative therapeutic strategies to combat these infections. This study examined the synergistic effects of a biosurfactant (BS) derived from Lactiplantibacillus plantarum [...] Read more.
The global prevalence of antibiotic-resistant bacteria, such as Staphylococcus aureus, presents a substantial challenge to public health, necessitating the development of innovative therapeutic strategies to combat these infections. This study examined the synergistic effects of a biosurfactant (BS) derived from Lactiplantibacillus plantarum and a novel extract from Rosmarinus officinalis (RoME) obtained through supercritical CO2 extraction against S. aureus sourced from the microbiology laboratory at King Salman Hospital in Ha’il, Saudi Arabia. Antibacterial efficacy was determined using minimum inhibitory concentration (MIC) assays, assessments of bacterial membrane damage, and qRT-PCR analysis of genes associated with antibiotic resistance. The findings revealed that the S. aureus strain exhibited resistance to multiple antibiotics with a resistance score of 0.44. RoME and BS demonstrated MICs of 0.125 mg/mL and 0.5 mg/mL, respectively. The assays indicated significant bacterial membrane damage and reduced expression of the norA, mdeA, and sel genes, which are implicated in resistance and virulence, respectively. The combination of BSs with plant extracts may provide innovative approaches for treating infections caused by multidrug-resistant bacteria, highlighting the potential of probiotic-derived BSs in combination with plant extracts. Full article
Show Figures

Figure 1

20 pages, 14008 KB  
Article
The Antimicrobial Peptide CRAMP-34 Eradicates Escherichia coli Biofilms by Interfering with the kduD-Dependent Network
by Hongzao Yang, Jing Xiong, Sisi Su, Zhuo Yang, Wu Yang, Lianci Peng, Suhui Zhang, Jinjie Qiu, Yuzhang He and Hongwei Chen
Antibiotics 2026, 15(1), 83; https://doi.org/10.3390/antibiotics15010083 - 14 Jan 2026
Viewed by 137
Abstract
Background/Objectives: Bacterial biofilms formed by Escherichia coli pose a significant challenge in veterinary medicine due to their intrinsic resistance to antibiotics. Antimicrobial peptides (AMPs) represent a promising alternative. AMPs exert their bactericidal activity by binding to negatively charged phospholipids in bacterial membranes [...] Read more.
Background/Objectives: Bacterial biofilms formed by Escherichia coli pose a significant challenge in veterinary medicine due to their intrinsic resistance to antibiotics. Antimicrobial peptides (AMPs) represent a promising alternative. AMPs exert their bactericidal activity by binding to negatively charged phospholipids in bacterial membranes via electrostatic interactions, leading to membrane disruption and rapid cell lysis. Methods: In vitro assays including MIC determination, biofilm eradication testing (crystal violet, colony counts, and CLSM), swimming motility, and EPS quantification were performed. CRISPR/Cas9 was used to construct and complement a kduD mutant. A transposon mutagenesis library was screened for biofilm-defective mutants. In an in vivo murine excisional wound infection model treated with the mouse cathelicidin-related antimicrobial peptide (CRAMP-34), wound closure and bacterial burden were monitored. Gene expression changes were analyzed via RT-qPCR. Results: CRAMP-34 effectively eradicated pre-formed biofilms of a clinically relevant, porcine-origin E. coli strain and promoted wound healing in the murine infection model. We conducted a genome-wide transposon mutagenesis screen, which identified kduD as a critical gene for robust biofilm formation. Functional characterization revealed that kduD deletion drastically impairs flagellar motility and alters exopolysaccharide production, leading to defective biofilm architecture without affecting growth. Notably, the anti-biofilm activity of CRAMP-34 phenocopied aspects of the kduD deletion, including motility inhibition and transcriptional repression of a common set of biofilm-related genes. Conclusions: This research highlights CRAMP-34 as a potent anti-biofilm agent and unveils kduD as a previously unrecognized regulator of E. coli biofilm development, which is also targeted by CRAMP-34. Full article
(This article belongs to the Special Issue Antimicrobial Resistance in Biofilm-Associated Infections)
Show Figures

Figure 1

19 pages, 3601 KB  
Article
Isolation and Characterization of Brevibacillus parabrevis S09T2, a Novel Ochratoxin A-Degrading Strain with Application Potential
by Jinqi Xiao, Qingping Wu, Junhui Wu, Xin Wang, Shixuan Huang, Xiaojuan Yang, Xianhu Wei, Youxiong Zhang, Xiuying Kou, Yuwei Wu and Ling Chen
Foods 2026, 15(2), 295; https://doi.org/10.3390/foods15020295 - 14 Jan 2026
Viewed by 145
Abstract
Ochratoxin A (OTA), a fungal secondary metabolite, is frequently detected in grains, herbal products, and other agricultural commodities, posing potential food safety risks. Among existing detoxification strategies, biological degradation is considered both specific and environmentally sustainable. In this study, a novel OTA-degrading bacterium, [...] Read more.
Ochratoxin A (OTA), a fungal secondary metabolite, is frequently detected in grains, herbal products, and other agricultural commodities, posing potential food safety risks. Among existing detoxification strategies, biological degradation is considered both specific and environmentally sustainable. In this study, a novel OTA-degrading bacterium, Brevibacillus parabrevis S09T2, was isolated from soil using OTA as the sole carbon source. The strain exhibited no hemolytic activity and carried no virulence or antibiotic resistance genes, indicating a favorable safety profile. S09T2 efficiently degraded OTA, removing over 93% of 5–8 μg/mL OTA within 24 h at 37 °C, and almost completely degrading OTA concentrations up to 10 μg/mL within 72 h. UPLC-HRMS analysis identified ochratoxin α (OTα) and phenylalanine as the only degradation products, confirming detoxification via amide bond hydrolysis. The intracellular enzyme responsible for this reaction displayed notable thermostability, achieving near-complete degradation of 1 μg/mL OTA at 50 °C within 6 h. Moreover, the cell lysate significantly reduced OTA levels in Plumeria rubra extract, a widely consumed functional food, demonstrating applicability in complex food matrices. Collectively, these findings highlight S09T2 as a promising candidate for OTA detoxification and support its potential use in food and feed safety applications. Full article
Show Figures

Graphical abstract

18 pages, 1961 KB  
Article
Multitarget Mechanisms of (‒)‒Epigallocatechin-3-Gallate Against MRSA: From SraP L-Lectin Targeting to Synergistic Antibiotic Effects
by Ping Zheng, Peihua Zhang, Yuan Li, Jinzhao Long, Fang Liu and Haiyan Yang
Pathogens 2026, 15(1), 90; https://doi.org/10.3390/pathogens15010090 - 13 Jan 2026
Viewed by 92
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), a major global public health threat due to its broad resistance, urgently requires the development of new antibiotic alternatives. (‒)‒Epigallocatechin-3-gallate (EGCG) is considered a natural bioactive compound with anti-MRSA properties. The L-Lectin module of serine-rich adhesin for platelets (SraP) [...] Read more.
Methicillin-resistant Staphylococcus aureus (MRSA), a major global public health threat due to its broad resistance, urgently requires the development of new antibiotic alternatives. (‒)‒Epigallocatechin-3-gallate (EGCG) is considered a natural bioactive compound with anti-MRSA properties. The L-Lectin module of serine-rich adhesin for platelets (SraP) is considered an important target for blocking MRSA-infected hosts. This study aims to investigate the mechanism of action of EGCG against MRSA. Surface plasmon resonance (SPR), cell adhesion and invasion, biofilm formation, checkerboard assays, RNA sequencing (RNA-seq) and quantitative real-time polymerase chain reaction (qRT-PCR) were performed. The results showed that EGCG bound to SraP L Lectin with high affinity and effectively inhibited MRSA colonization. Additionally, EGCG significantly suppressed pyrimidine metabolism and downregulated related genes, thereby potentially inhibiting bacterial growth. It also markedly reduced the expression of multiple genes associated with β-lactam resistance and inhibited biofilm formation. A strong synergistic effect was observed between EGCG and the bactericidal agent ceftriaxone (CRO). When combined with 10 μg/mL EGCG, CRO required 75% less dosage and exhibited a prolonged antimicrobial effect. In conclusion, EGCG exerts anti-MRSA effects through multiple pathways and represents a promising candidate as an alternative therapeutic agent against MRSA infections. Full article
(This article belongs to the Section Bacterial Pathogens)
Show Figures

Figure 1

20 pages, 9516 KB  
Article
Denitrifiers Make Great Contribution to Antibiotic Resistance Genes Dissemination in the Gut of Earthworms
by Maria Rafraf Ali, Yongjing Chen, Mingjun Li, Muhammad Jafir, Mamona Rafraf Ali, Guowei Zhou and Qingye Sun
Int. J. Mol. Sci. 2026, 27(2), 797; https://doi.org/10.3390/ijms27020797 - 13 Jan 2026
Viewed by 92
Abstract
Antibiotic resistance genes (ARGs) pose a serious threat to the environment worldwide. The guts of soil animals are a hotspot for ARGs and denitrification in soils. However, it is unclear how denitrification affects the spread of ARG in the earthworm’s gut. In this [...] Read more.
Antibiotic resistance genes (ARGs) pose a serious threat to the environment worldwide. The guts of soil animals are a hotspot for ARGs and denitrification in soils. However, it is unclear how denitrification affects the spread of ARG in the earthworm’s gut. In this study, the typical soil earthworm Pheretima guillelmi was employed, and was used for performing anoxic incubation with gut content amended with nitrate and nitrite. To analyze the data, a combination of chemical analysis, 16S rRNA-based Illumina sequencing, and high-throughput qPCR were employed. Nitrate treatments, particularly at 5 mM, caused substantial reductions in nitrate concentrations, with a corresponding increase in nitrite, nitrous oxide (N2O), and nitric oxide (NO) emissions compared to the treatments with the addition of 1 and 2 mM nitrate. Nitrite (0.2, 0.5 and 1 mM) amendments also enhanced the accumulation of nitrogen intermediates. Organic acid production, including acetate and pyruvate, was the highest under the 5 mM nitrate treatment. This treatment also promoted the highest level of glucose utilization, suggesting that glucose metabolism supports enhanced organic acid production. Both nitrate and nitrite treatments exhibited the pronounced enrichment in ARGs, particularly for beta-lactam and multidrug resistance genes. Denitrifying bacteria such as Aeromonas, Bacillus, Raoultella, and Enterobacter were identified as key hosts for these ARGs. These results emphasized that denitrifying bacteria play a pivotal role in the horizontal transfer of ARGs, underscoring the need for careful nitrogen management in agricultural practices to control the spread of antibiotic resistance in natural environments. Full article
(This article belongs to the Section Molecular Microbiology)
Show Figures

Figure 1

28 pages, 2243 KB  
Review
Colistin Resistance in Gram-Negative Bacteria: Mechanisms, Transmission, and Novel Intervention Strategies
by Shah Zeb, Arzoo Nazir, Muhammad Fazal Hameed, Sadia Ikram, Syed Zeeshan Haider Naqvi, Muhammad Shoaib, Patrick Butaye, Zhiqiang Wang, Ruichao Li and Xiaoyu Lu
Microorganisms 2026, 14(1), 173; https://doi.org/10.3390/microorganisms14010173 - 13 Jan 2026
Viewed by 218
Abstract
Multidrug resistance (MDR) in Gram-negative bacteria is a global issue and needs to be addressed urgently. MDR can emerge through genetic mutations and horizontal gene transfer and deteriorate under antibiotic selective pressure. The emergence of resistance to last-resort antibiotics, which are used to [...] Read more.
Multidrug resistance (MDR) in Gram-negative bacteria is a global issue and needs to be addressed urgently. MDR can emerge through genetic mutations and horizontal gene transfer and deteriorate under antibiotic selective pressure. The emergence of resistance to last-resort antibiotics, which are used to treat MDR bacteria, is of particular concern. Colistin has been recognized as a last-line antibiotic for the treatment of MDR Gram-negative bacterial infections caused by Escherichia coli, Acinetobacter baumannii, Klebsiella pneumoniae, and Pseudomonas aeruginosa. Recently, the increasing reports of colistin resistance pose a significant threat to public health, caused by both acquired and intrinsic mechanisms. The review aimed to elucidate the trends in colistin resistance, the use of colistin in human and veterinary medicine, underlying resistance mechanisms and transmission pathways, and potential mitigation of this emerging threat through novel intervention strategies. Colistin resistance is mediated by plasmid-encoded phosphoethanolamine transferases (mcr-1 to mcr-10) and chromosomal lipid A remodeling pathways. In Escherichia coli, resistance involves mcr-1–10, acrB efflux mutations, pmrA/pmrB, arnBCADTEF, and mgrB inactivation. Klebsiella pneumoniae exhibits mcr-1, mcr-8, mcr-9, mgrB disruption and phoP/phoQ–pmrAB activation. Acinetobacter baumannii harbors mcr-1–4, while Salmonella enterica and Enterobacter spp. carry mcr variants with arnBCADTEF induction. Therapeutic options include adjunct strategies such as antimicrobial peptides, nanomaterials, therapeutic adjuvants, CRISPR-Cas9-based gene editing, probiotics, vaccines, and immune modulators to restore susceptibility. This review identified that specific and wide actions are required to handle the growing colistin resistance, including genomic surveillance, tracing novel resistance mechanisms, and the application of alternative management strategies. The One Health approach is considered a key strategy to address this growing issue. Full article
(This article belongs to the Special Issue Resistance of Gram-Negative Bacteria to Last-Resort Antibacterials)
Show Figures

Figure 1

18 pages, 3261 KB  
Article
In Vitro Leaf-Based Method for Agrobacterium-Mediated Genetic Transformation of Sugar Beet
by Dmitry N. Miroshnichenko, Anna Klementyeva, Lilia Mourenets, Alexander S. Pushin, Aleksey P. Firsov and Sergey V. Dolgov
Crops 2026, 6(1), 12; https://doi.org/10.3390/crops6010012 - 13 Jan 2026
Viewed by 70
Abstract
Sugar beet, one of the most important natural sources of sugars in the world, is well known as a recalcitrant crop for genetic transformation. In the present study, several key components of Agrobacterium-mediated transformation of sugar beet have been studied. The correct [...] Read more.
Sugar beet, one of the most important natural sources of sugars in the world, is well known as a recalcitrant crop for genetic transformation. In the present study, several key components of Agrobacterium-mediated transformation of sugar beet have been studied. The correct choice of explant and plant regeneration potential of domestic breeding lines was evaluated; however, most attention was paid to the search for the most efficient selectable marker gene and selection agents. To produce transgenic plants, we applied a method based on the agrobacterial inoculation of wounded morphogenic structures previously initiated on in vitro cultivated leaves. Four selective marker genes conferring antibiotic or herbicide resistance were evaluated. In the case of selection using kanamycin or G418 (nptII gene controlled by the nos promoter), no transgenic plants were obtained, while the addition of the aminoglycoside antibiotic hygromycin (hpt gene, driven by the nos promoter) to the medium ensured the successful production of transgenic plants from three breeding lines with a frequency ranging from 1.5 to 5.1%. The selection of transgenic tissues using herbicides such as phosphinothricin and glyphosate after transformation with the bar and cp4-epsps genes (both controlled by the CaMV 35S promoter) also ensured the obtaining of transgenic plants, but the transformation efficiency was significantly low, reaching only 1.0 and 0.4%, respectively. Primary transgenic sugar beet plants grown in the greenhouse demonstrated enhanced resistance to herbicides in dosages commonly used in the field. In addition, after self-pollination of the primary T0 transgenic lines, homozygous T2 offspring were successfully selected, which demonstrated stable resistance to glyphosate due to the constitutive expression of the introduced cp4-epsps gene. Full article
(This article belongs to the Topic Genetic Engineering in Agriculture, 2nd Edition)
Show Figures

Figure 1

18 pages, 1325 KB  
Article
Clinical Significance of cfiA Positivity Detected by Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry in Bacteroides fragilis Infections
by Wing-Man Chik, Lam-Kwong Lee, Jason Chi-Ka Cheng, Suk-Han Yuen, Rocky Shum, Gilman Kit-Hang Siu and Sandy Ka-Yee Chau
Microorganisms 2026, 14(1), 168; https://doi.org/10.3390/microorganisms14010168 - 12 Jan 2026
Viewed by 148
Abstract
The MALDI-TOF MS Bruker Biotyper MBT subtyping IVD module enables the early detection of cfiA-positive Bacteroides fragilis (cfiA+ BF) during bacterial identification. However, the relationship between genetic positivity, phenotypic resistance, and clinical outcomes has not been fully elucidated. This retrospective [...] Read more.
The MALDI-TOF MS Bruker Biotyper MBT subtyping IVD module enables the early detection of cfiA-positive Bacteroides fragilis (cfiA+ BF) during bacterial identification. However, the relationship between genetic positivity, phenotypic resistance, and clinical outcomes has not been fully elucidated. This retrospective study analyzed B. fragilis isolates from three Hong Kong hospitals between 2021 and 2025 to examine their prevalence and the clinical utility of MALDI-TOF MS in rapid cfiA detection. Antibiotic susceptibility testing, cfiA gene detection using MALDI-TOF MS, and Oxford Nanopore sequencing were performed. Medical records were reviewed, and univariate analyses and multivariate logistic regression were used to identify factors associated with cfiA positivity and 30-day all-cause mortality. Overall, B. fragilis exhibited a high rate of antibiotic resistance. Concomitant resistance to carbapenems and metronidazole was identified in three isolates. Among the 166 isolates, 40 (24.1%) were cfiA-positive. cfiA detection by MALDI-TOF MS showed 100% concordance with the gene sequencing results and correlated strongly with phenotypic carbapenem resistance (Φ = 0.82, p < 0.001 for meropenem; Φ = 0.70, p < 0.001 for ertapenem; Φ = 0.63, p < 0.001 for imipenem). Phylogenetic analysis revealed two distinct clusters corresponding to cfiA status, each exhibiting genetic diversity based on multi-locus sequence typing (MLST). The cfiA+ BF isolates demonstrated high-level phenotypic carbapenem resistance in the presence of upstream insertion sequences. The predominant sequence type (ST) among cfiA+ BF isolates was ST157, and 70% of ST157 isolates harbored IS1187 in the upstream region of cfiA. Gene sequencing also identified other emerging beta-lactamase genes blaOXA-347 and blaMUN. The 30-day all-cause mortality following B. fragilis infection was 13.3%, with independent predictors including a high Charlson Comorbidity Index (OR = 1.30; p = 0.02) and the absence of early source control (OR = 4.84; p = 0.03). This study highlights the widespread occurrence of cfiA+ BF in Hong Kong and the clinical significance of rapid cfiA detection. Continuous surveillance is essential to monitor the ongoing threat of antibiotic resistance in B. fragilis. Full article
(This article belongs to the Special Issue Advances in Clinical Infections and Antimicrobial Resistance)
Show Figures

Figure 1

17 pages, 1062 KB  
Review
The Role of Environmental and Climatic Factors in Accelerating Antibiotic Resistance in the Mediterranean Region
by Nikolaos P. Tzavellas, Natalia Atzemoglou, Petros Bozidis and Konstantina Gartzonika
Acta Microbiol. Hell. 2026, 71(1), 1; https://doi.org/10.3390/amh71010001 - 12 Jan 2026
Viewed by 115
Abstract
The emergence and dissemination of antimicrobial resistance (AMR) are driven by complex, interconnected mechanisms involving microbial communities, environmental factors, and human activities, with climate change playing a pivotal and accelerating role. Rising temperatures, altered precipitation patterns, and other environmental disruptions caused by climate [...] Read more.
The emergence and dissemination of antimicrobial resistance (AMR) are driven by complex, interconnected mechanisms involving microbial communities, environmental factors, and human activities, with climate change playing a pivotal and accelerating role. Rising temperatures, altered precipitation patterns, and other environmental disruptions caused by climate change create favorable conditions for bacterial growth and enhance the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). Thermal stress and environmental pressures induce genetic mutations that promote resistance, while ecosystem disturbances facilitate the stabilization and spread of resistant pathogens. Moreover, climate change exacerbates public and animal health risks by expanding the range of infectious disease vectors and driving population displacement due to extreme weather events, further amplifying the transmission and evolution of resistant microbes. Livestock agriculture represents a critical nexus where excessive antibiotic use, environmental stressors, and climate-related challenges converge, fueling AMR escalation with profound public health and economic consequences. Environmental reservoirs, including soil and water sources, accumulate ARGs from agricultural runoff, wastewater, and pollution, enabling resistance spread. This review aims to demonstrate how the Mediterranean’s strategic position makes it an ideal living laboratory for the development of integrated “One Health” frameworks that address the mechanistic links between climate change and AMR. By highlighting these interconnections, the review underscores the need for a unified approach that incorporates sustainable agricultural practices, climate mitigation and adaptation within healthcare systems, and enhanced surveillance of zoonotic and resistant pathogens—ultimately offering a roadmap for tackling this multifaceted global health crisis. Full article
Show Figures

Figure 1

23 pages, 5049 KB  
Article
Potential of Fermented Food-Derived Lactiplantibacillus Cell-Free Supernatants to Control Staphylococcus aureus Growth and Biofilm Development
by Lena Ilieva, Vesselin Baev, Mariana Marhova, Galina Yahubyan, Elena Apostolova, Mariyana Gozmanova, Velizar Gochev, Tsvetelina Paunova-Krasteva, Tsvetozara Damyanova, Sonya Kostadinova, Miroslava Gocheva and Ivan Iliev
Int. J. Mol. Sci. 2026, 27(2), 760; https://doi.org/10.3390/ijms27020760 - 12 Jan 2026
Viewed by 115
Abstract
Staphylococcus aureus biofilms represent a critical healthcare challenge, driving chronic infections and antimicrobial resistance. This study investigates the anti-staphylococcal efficacy of two Lactiplantibacillus strains isolated from traditional Bulgarian pickled vegetables (turshiya): L. plantarum IZITR_24 and L. paraplantarum IZITR_13. Combining whole genome sequencing (WGS) [...] Read more.
Staphylococcus aureus biofilms represent a critical healthcare challenge, driving chronic infections and antimicrobial resistance. This study investigates the anti-staphylococcal efficacy of two Lactiplantibacillus strains isolated from traditional Bulgarian pickled vegetables (turshiya): L. plantarum IZITR_24 and L. paraplantarum IZITR_13. Combining whole genome sequencing (WGS) with functional assays, we established a robust genotype-to-phenotype framework to characterize their antimicrobial arsenal. Based on WGS, we identified conserved plantaricin (plnJK, plnEF) clusters in both isolates, with IZITR_13 additionally carrying genes for pediocin and enterolysin A—alongside the confirmed absence of virulence factors. Reconstituted lyophilized cell-free supernatants (LCFSs) were evaluated in dose–response microtiter assays to determine the minimum biofilm inhibitory concentration (MBIC) and minimum inhibitory concentration (MIC). Both strains demonstrated clear, dose-dependent inhibitory activity against the S. aureus growth and biofilm formation. Microscopy (SEM/CLSM) confirmed significant biofilm disruption and cell membrane permeabilization. The observed consistency between genome-inferred capacity and phenotypes highlights the strong predictive value of a genome-first screening approach for selecting bacteriocin-producing lactic acid bacteria (LAB). These findings position IZITR_24 and IZITR_13 as promising postbiotic producers with potent antibiofilm activity against S. aureus. By utilizing their stable postbiotic products rather than relying on live colonization, this study proposes a targeted, antibiotic-sparing strategy to combat persistent staphylococcal biofilms. Full article
(This article belongs to the Special Issue Antimicrobial Materials: Molecular Developments and Applications)
Show Figures

Figure 1

10 pages, 1468 KB  
Article
Optimizing Molecular Tools for Bioaerosol Monitoring: A Case Study of Staphylococcus aureus in a Crowded Workplace
by Merita Xhetani, Brikena Parllaku, Fjoralda Bakiri, Arta Lugaj, Etleva Hamzaraj, Mirela Lika, Antea Metaliaj, Vera Beca and Bationa Bennewitz
Aerobiology 2026, 4(1), 4; https://doi.org/10.3390/aerobiology4010004 - 12 Jan 2026
Viewed by 150
Abstract
Staphylococcus aureus is a common opportunistic pathogen found in various environments, with the potential for rapid spread, especially in densely populated indoor settings. Integrating traditional microbiological monitoring with molecular techniques is critical for the timely detection and control of such pathogens. The aim [...] Read more.
Staphylococcus aureus is a common opportunistic pathogen found in various environments, with the potential for rapid spread, especially in densely populated indoor settings. Integrating traditional microbiological monitoring with molecular techniques is critical for the timely detection and control of such pathogens. The aim of this study was (1) to monitor the presence and spread of S. aureus in a crowded occupational environment and (2) to optimize a PCR protocol with sequence specific primers (PCR-SSP) for precise identification and early detection of this microorganism and its antibiotic resistance genes. Sampling was conducted in two different places: a call center and a healthcare facility room. All samples were collected from indoor areas at two different time points (T0 and T1) in May 2025 (mean temperature: 22.5 °C; humidity: 59.5%). Microbiological techniques and molecular analysis using PCR-SSP were employed to confirm the presence of S. aureus and detect antibiotic resistance genes such as mecA. A total CFU (colony-forming unit) count of 587 was recorded at the dental clinic corridor, and a total CFU count of 2008 was recorded at the call center corridor. PCR-SSP successfully confirmed the identity of S. aureus with an amplicon size 267 bp and enabled the detection of antibiotic resistance markers, validating its use as a complementary method to traditional microbiological techniques. This study highlights the importance of combining environmental monitoring with molecular biology tools to enhance the early detection and accurate identification of microbial pathogens such as S. aureus and provide an insight for our future direction of producing biosensors for digital air monitoring in crowded workplaces. Full article
Show Figures

Figure 1

21 pages, 1017 KB  
Review
CRISPR–Cas-Mediated Reprogramming Strategies to Overcome Antimicrobial Resistance
by Byeol Yoon, Jang Ah Kim and Yoo Kyung Kang
Pharmaceutics 2026, 18(1), 95; https://doi.org/10.3390/pharmaceutics18010095 - 11 Jan 2026
Viewed by 245
Abstract
Antimicrobial resistance (AMR) is escalating worldwide, posing a serious threat to global public health by driving infections that are no longer treatable with conventional antibiotics. CRISPR–Cas technology offers a programmable and highly specific therapeutic alternative by directly targeting the genetic determinants responsible for [...] Read more.
Antimicrobial resistance (AMR) is escalating worldwide, posing a serious threat to global public health by driving infections that are no longer treatable with conventional antibiotics. CRISPR–Cas technology offers a programmable and highly specific therapeutic alternative by directly targeting the genetic determinants responsible for resistance. Various CRISPR systems can restore antibiotic susceptibility and induce selective bactericidal effects by eliminating resistance genes, disrupting biofilm formation, and inhibiting virulence pathways. Moreover, CRISPR can suppress horizontal gene transfer (HGT) by removing mobile genetic elements such as plasmids, thereby limiting the ecological spread of AMR across humans, animals, and the environment. Advances in delivery platforms—including conjugative plasmids, phagemids, and nanoparticle-based carriers—are expanding the translational potential of CRISPR-based antimicrobial strategies. Concurrent progress in Cas protein engineering, spatiotemporal activity regulation, and AI-driven optimization is expected to overcome current technical barriers. Collectively, these developments position CRISPR-based antimicrobials as next-generation precision therapeutics capable of treating refractory bacterial infections while simultaneously suppressing the dissemination of antibiotic resistance. Full article
Show Figures

Figure 1

Back to TopTop