Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (49)

Search Parameters:
Keywords = antibacterial pipeline

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1833 KiB  
Article
Targeting Bacterial Adenylate Kinase mRNA with a Chimeric Antisense Oligonucleotide for Rational Antibacterial Drug Development
by Lozena A. Otcheva, Martina Traykovska and Robert Penchovsky
Molecules 2025, 30(16), 3425; https://doi.org/10.3390/molecules30163425 - 20 Aug 2025
Viewed by 171
Abstract
Multi-drug resistance in human bacterial pathogens has become a significant challenge for global healthcare this century, mainly due to the widespread misuse of antibiotics worldwide. As a result, millions of people have been affected by multi-drug-resistant bacterial infections. The antibiotic development pipelines cannot [...] Read more.
Multi-drug resistance in human bacterial pathogens has become a significant challenge for global healthcare this century, mainly due to the widespread misuse of antibiotics worldwide. As a result, millions of people have been affected by multi-drug-resistant bacterial infections. The antibiotic development pipelines cannot cope with the need to produce new antibiotics. Therefore, more productive antibiotic development methods must be invented. This paper presents an entirely rational approach for antibacterial drug discovery based on chimeric antisense oligonucleotide targeting (ASO) of the adenylate kinase mRNA in Staphylococcus aureus. The ASO is delivered into the bacteria via the cell-penetrating oligopeptide pVEC. The pVEC-ASO1 exhibits a bactericidal effect against Staphylococcus aureus, with a 50% minimal inhibitory concentration of 500 nM. The pVEC-ASO1 has a 98% survivability rate at the same concentration on cell lines. These findings strongly suggest that this chimeric ASO is a promising antibacterial drug candidate. Moreover, this is the fifth bacterial mRNA we have successfully targeted with pVEC-ASOs, providing further evidence for the efficiency of our approach. In contrast to the previous four targets, riboswitches residing in the 5′-untranslated region, we target the coding part of mRNA found in bacteria. That suggests that our approach may have much broader therapeutic applications. Full article
(This article belongs to the Special Issue Chemical Design and Synthesis of Antimicrobial Drugs)
Show Figures

Figure 1

41 pages, 868 KiB  
Review
Reconstructing the Antibiotic Pipeline: Natural Alternatives to Antibacterial Agents
by Chiemerie T. Ekwueme, Ifeoma V. Anyiam, David C. Ekwueme, Christian K. Anumudu and Helen Onyeaka
Biomolecules 2025, 15(8), 1182; https://doi.org/10.3390/biom15081182 - 18 Aug 2025
Viewed by 446
Abstract
The discovery of penicillin led to remarkable progress in the treatment of diseases and far-reaching advancements in novel antibiotics’ development and use. However, the uncontrolled use and abuse of antibiotics in subsequent years have led to the emergence of the antimicrobial resistance (AMR) [...] Read more.
The discovery of penicillin led to remarkable progress in the treatment of diseases and far-reaching advancements in novel antibiotics’ development and use. However, the uncontrolled use and abuse of antibiotics in subsequent years have led to the emergence of the antimicrobial resistance (AMR) crisis, which now threatens modern medicine. There is an increasing number of emerging and reemerging infectious diseases, which have worsened the state of AMR and pose a serious threat to global health. The World Health Organization (WHO) reports the inadequacy of the drug development pipeline to meet the needs of the pharmaceutical sector in the face of AMR, and this poses a significant challenge in the treatment of diseases. Natural products (NPs) represent a promising group of antibiotic alternatives that can potentially mitigate AMR, as they bypass the pharmacodynamics of traditional antibiotics, thereby making them immune to the mechanisms of AMR. NPs, including plant derivatives, bacteriophages, metals, antimicrobial peptides, enzymes, and immune modulators, as monotherapies or in synergism with existing antibiotics, are gaining attention in a bid to reconstruct the antibiotic pipeline. Harnessing these as antimicrobial agents to curb AMR can help to provide sufficient defence against these infectious pathogens. The current review provides a comprehensive overview of the state of AMR and the potential of the above-mentioned antibiotic alternatives. Additionally, we discuss progress made and research breakthroughs in the application of these alternative therapies in humans, exploring findings from clinical trials and experimental models. The review further evaluates the advancement in technology, interdisciplinary approaches to the formulation and utilisation of NPs, and collaborations in alternative drug development. The research gaps present in this ever-evolving field are highlighted and evaluated together with regulatory issues, safety concerns, and technical difficulties in implementation. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

12 pages, 1013 KiB  
Article
Investigating the Effect of Zinc Salts on Escherichia coli and Enterococcus faecalis Biofilm Formation
by Sara Deumić, Ahmed El Sayed, Mahmoud Hsino, Andrzej Kulesa, Neira Crnčević, Naida Vladavić, Aja Borić and Monia Avdić
Appl. Sci. 2025, 15(15), 8383; https://doi.org/10.3390/app15158383 - 29 Jul 2025
Viewed by 934
Abstract
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion [...] Read more.
Water supply and sewage drainage pipes have a critical role to play in the provision of clean water and sanitation, and pipe material selection influences infrastructure life, water quality, and microbial communities. Zinc-containing compounds are highly valued due to their mechanical properties, anticorrosion behavior, and antimicrobial properties. However, the effect of zinc salts, such as zinc sulfate heptahydrate and zinc chloride, on biofilm-forming bacteria, including Escherichia coli and Enterococcus faecalis, is not well established. This study investigates the antibacterial properties of these zinc salts under simulated pipeline conditions using minimum inhibitory concentration assays, biofilm production assays, and antibiotic sensitivity tests. Findings indicate that zinc chloride is more antimicrobial due to its higher solubility and bioavailability of Zn2+ ions. At higher concentrations, zinc salts inhibit the development of a biofilm, whereas sub-inhibitory concentrations enhance the growth of biofilm, suggesting a stress response in bacteria. zinc chloride also enhances antibiotic efficacy against E. coli but induces resistance in E. faecalis. These findings highlight the dual role of zinc salts in preventing biofilm formation and modulating antimicrobial resistance, necessitating further research to optimize material selection for water distribution networks and mitigate biofilm-associated risks in pipeline systems. Full article
Show Figures

Figure 1

20 pages, 2567 KiB  
Article
Optimization and Characterization of Bioactive Metabolites from Cave-Derived Rhodococcus jialingiae C1
by Muhammad Rafiq, Umaira Bugti, Muhammad Hayat, Wasim Sajjad, Imran Ali Sani, Nazeer Ahmed, Noor Hassan, Yanyan Wang and Yingqian Kang
Biomolecules 2025, 15(8), 1071; https://doi.org/10.3390/biom15081071 - 24 Jul 2025
Viewed by 318
Abstract
Extremophilic microorganisms offer an untapped potential for producing unique bioactive metabolites with therapeutic applications. In the current study, bacterial isolates were obtained from samples collected from Chamalang cave located in Kohlu District, Balochistan, Pakistan. The cave-derived isolate C1 (Rhodococcus jialingiae) exhibits [...] Read more.
Extremophilic microorganisms offer an untapped potential for producing unique bioactive metabolites with therapeutic applications. In the current study, bacterial isolates were obtained from samples collected from Chamalang cave located in Kohlu District, Balochistan, Pakistan. The cave-derived isolate C1 (Rhodococcus jialingiae) exhibits prominent antibacterial activity against multidrug-resistant pathogens (MDR), including Escherichia coli, Staphylococcus aureus, and Micrococcus luteus. It also demonstrates substantial antioxidant activity, with 71% and 58.39% DPPH radical scavenging. Optimization of physicochemical conditions, such as media, pH, temperature, and nitrogen and carbon sources and concentrations substantially enhanced both biomass and metabolite yields. Optimal conditions comprise specialized media, a pH of 7, a temperature of 30 °C, peptone (1.0 g/L) as the nitrogen source, and glucose (0.5 g/L) as the carbon source. HPLC and QTOF-MS analyses uncovered numerous metabolites, including a phenolic compound, 2-[(E)-3-hydroxy-3-(4-methoxyphenyl) prop-2-enoyl]-4-methoxyphenolate, Streptolactam C, Puromycin, and a putative aromatic polyketide highlighting the C1 isolate chemical. Remarkably, one compound (C14H36N7) demonstrated a special molecular profile, signifying structural novelty and warranting further characterization by techniques such as 1H and 13C NMR. These findings highlight the biotechnological capacity of the C1 isolate as a source of novel antimicrobials and antioxidants, linking environmental adaptation to metabolic potential and supporting natural product discovery pipelines against antibiotic resistance. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

19 pages, 1615 KiB  
Article
A Stroll Through Saffron Fields, Cannabis Leaves, and Cherry Reveals the Path to Waste-Derived Antimicrobial Bioproducts
by Stefania Lamponi, Roberta Barletta, Michela Geminiani, Alfonso Trezza, Luisa Frusciante, Behnaz Shabab, Collins Nyaberi Nyong’a and Annalisa Santucci
Pharmaceuticals 2025, 18(7), 1003; https://doi.org/10.3390/ph18071003 - 3 Jul 2025
Viewed by 447
Abstract
Background: The accumulation of agri-food waste is a major environmental and economic challenge and converting these by-products into bioactive compounds fits within the circular bioeconomy. This study aimed to evaluate the antimicrobial potential of extracts derived from Cannabis sativa L. leaves (CSE), Crocus [...] Read more.
Background: The accumulation of agri-food waste is a major environmental and economic challenge and converting these by-products into bioactive compounds fits within the circular bioeconomy. This study aimed to evaluate the antimicrobial potential of extracts derived from Cannabis sativa L. leaves (CSE), Crocus sativus tepals (CST), and Prunus avium L. cherry waste (VCE) against four key bacterial species (Staphylococcus aureus, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa). Methods: Minimum inhibitory concentration (MIC) assays were performed to assess antibacterial activity, while a bioinformatic pipeline was implemented to explore possible molecular targets. Full-proteome multiple sequence alignments across the bacterial strains were used to identify conserved, strain-specific proteins, and molecular docking simulations were applied to predict binding interactions between the most abundant compounds in the extracts and their targets. Results: CSE and CST demonstrated bacteriostatic activity against S. aureus and B. subtilis (MIC = 15.6 mg/mL), while VCE showed selective activity against B. subtilis (MIC = 31.5 mg/mL). CodY was identified as a putative molecular target for CSE and CST, and ChaA for VCE. Docking results supported the possibility of spontaneous binding between abundant extract constituents and the predicted targets, with high binding affinities triggering a strong interaction network with target sensing residues. Conclusions: This study demonstrates the antimicrobial activity of these agri-food wastes and introduces a comprehensive in vitro and in silico workflow to support the bioactivity of these agri-food wastes and repurpose them for innovative, eco-sustainable applications in the biotechnology field and beyond. Full article
(This article belongs to the Special Issue Sustainable Approaches and Strategies for Bioactive Natural Compounds)
Show Figures

Figure 1

19 pages, 1846 KiB  
Article
Protein Language Models and Machine Learning Facilitate the Identification of Antimicrobial Peptides
by David Medina-Ortiz, Seba Contreras, Diego Fernández, Nicole Soto-García, Iván Moya, Gabriel Cabas-Mora and Álvaro Olivera-Nappa
Int. J. Mol. Sci. 2024, 25(16), 8851; https://doi.org/10.3390/ijms25168851 - 14 Aug 2024
Cited by 7 | Viewed by 3130
Abstract
Peptides are bioactive molecules whose functional versatility in living organisms has led to successful applications in diverse fields. In recent years, the amount of data describing peptide sequences and function collected in open repositories has substantially increased, allowing the application of more complex [...] Read more.
Peptides are bioactive molecules whose functional versatility in living organisms has led to successful applications in diverse fields. In recent years, the amount of data describing peptide sequences and function collected in open repositories has substantially increased, allowing the application of more complex computational models to study the relations between the peptide composition and function. This work introduces AMP-Detector, a sequence-based classification model for the detection of peptides’ functional biological activity, focusing on accelerating the discovery and de novo design of potential antimicrobial peptides (AMPs). AMP-Detector introduces a novel sequence-based pipeline to train binary classification models, integrating protein language models and machine learning algorithms. This pipeline produced 21 models targeting antimicrobial, antiviral, and antibacterial activity, achieving average precision exceeding 83%. Benchmark analyses revealed that our models outperformed existing methods for AMPs and delivered comparable results for other biological activity types. Utilizing the Peptide Atlas, we applied AMP-Detector to discover over 190,000 potential AMPs and demonstrated that it is an integrative approach with generative learning to aid in de novo design, resulting in over 500 novel AMPs. The combination of our methodology, robust models, and a generative design strategy offers a significant advancement in peptide-based drug discovery and represents a pivotal tool for therapeutic applications. Full article
Show Figures

Figure 1

12 pages, 2961 KiB  
Article
Chestnut Burrs as Natural Source of Antimicrobial Bioactive Compounds: A Valorization of Agri-Food Waste
by Alfonso Trezza, Roberta Barletta, Michela Geminiani, Luisa Frusciante, Tommaso Olmastroni, Filomena Sannio, Jean-Denis Docquier and Annalisa Santucci
Appl. Sci. 2024, 14(15), 6552; https://doi.org/10.3390/app14156552 - 26 Jul 2024
Cited by 6 | Viewed by 1373
Abstract
Currently, one-third of global food production, accounting for 1.3 billions tons, goes wasted due to major humanitarian and environmental challenges. In such a scenario, the circular bioeconomy model stands as an innovative solution by promoting sustainable production, utilizing agri-food waste, and converting non-renewable [...] Read more.
Currently, one-third of global food production, accounting for 1.3 billions tons, goes wasted due to major humanitarian and environmental challenges. In such a scenario, the circular bioeconomy model stands as an innovative solution by promoting sustainable production, utilizing agri-food waste, and converting non-renewable products into valuable resources. Here, the circular bioeconomy concept was applied on a previously obtained chestnut burr extract (agri-food waste) composed of gallic acid, quinic acid, protocatechuic acid, brevifolin carboxylic acid, and ellagic acid to evaluate its antimicrobial activity against four bacterial opportunistic pathogens (Enterococcus faecalis, Staphylococcus aureus, Pseudomonas aeruginosa, and Escherichia coli). Our results evidenced a modest but measurable antibacterial activity against Enterococcus faecalis, with a minimum inhibitory concentration (MIC) of 64 μg/mL. In silico studies allowed for identifying the potential molecular target, supporting the underlying antibacterial activity of the active principle and providing useful molecular findings regarding their interaction. In this study, we show a robust and comprehensive in vitro and in silico pipeline aimed at the identification of novel antibacterial scaffolds taking advantage of agri-food waste. Full article
Show Figures

Figure 1

58 pages, 5548 KiB  
Review
Marine Pharmacology in 2019–2021: Marine Compounds with Antibacterial, Antidiabetic, Antifungal, Anti-Inflammatory, Antiprotozoal, Antituberculosis and Antiviral Activities; Affecting the Immune and Nervous Systems, and Other Miscellaneous Mechanisms of Action
by Alejandro M. S. Mayer, Veronica A. Mayer, Michelle Swanson-Mungerson, Marsha L. Pierce, Abimael D. Rodríguez, Fumiaki Nakamura and Orazio Taglialatela-Scafati
Mar. Drugs 2024, 22(7), 309; https://doi.org/10.3390/md22070309 - 30 Jun 2024
Cited by 10 | Viewed by 4996
Abstract
The current 2019–2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019–2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. [...] Read more.
The current 2019–2021 marine pharmacology literature review provides a continuation of previous reviews covering the period 1998 to 2018. Preclinical marine pharmacology research during 2019–2021 was published by researchers in 42 countries and contributed novel mechanism-of-action pharmacology for 171 structurally characterized marine compounds. The peer-reviewed marine natural product pharmacology literature reported antibacterial, antifungal, antiprotozoal, antituberculosis, and antiviral mechanism-of-action studies for 49 compounds, 87 compounds with antidiabetic and anti-inflammatory activities that also affected the immune and nervous system, while another group of 51 compounds demonstrated novel miscellaneous mechanisms of action, which upon further investigation, may contribute to several pharmacological classes. Thus, in 2019–2021, a very active preclinical marine natural product pharmacology pipeline provided novel mechanisms of action as well as new lead chemistry for the clinical marine pharmaceutical pipeline targeting the therapy of several disease categories. Full article
(This article belongs to the Section Marine Pharmacology)
Show Figures

Figure 1

22 pages, 2365 KiB  
Review
Antibiotic Potentiation as a Promising Strategy to Combat Macrolide Resistance in Bacterial Pathogens
by Deepjyoti Paul, Meenal Chawla, Taruna Ahrodia, Lekshmi Narendrakumar and Bhabatosh Das
Antibiotics 2023, 12(12), 1715; https://doi.org/10.3390/antibiotics12121715 - 11 Dec 2023
Cited by 12 | Viewed by 6062
Abstract
Antibiotics, which hit the market with astounding impact, were once called miracle drugs, as these were considered the ultimate cure for infectious diseases in the mid-20th century. However, today, nearly all bacteria that afflict humankind have become resistant to these wonder drugs once [...] Read more.
Antibiotics, which hit the market with astounding impact, were once called miracle drugs, as these were considered the ultimate cure for infectious diseases in the mid-20th century. However, today, nearly all bacteria that afflict humankind have become resistant to these wonder drugs once developed to stop them, imperiling the foundation of modern medicine. During the COVID-19 pandemic, there was a surge in macrolide use to treat secondary infections and this persistent use of macrolide antibiotics has provoked the emergence of macrolide resistance. In view of the current dearth of new antibiotics in the pipeline, it is essential to find an alternative way to combat drug resistance. Antibiotic potentiators or adjuvants are non-antibacterial active molecules that, when combined with antibiotics, increase their activity. Thus, potentiating the existing antibiotics is one of the promising approaches to tackle and minimize the impact of antimicrobial resistance (AMR). Several natural and synthetic compounds have demonstrated effectiveness in potentiating macrolide antibiotics against multidrug-resistant (MDR) pathogens. The present review summarizes the different resistance mechanisms adapted by bacteria to resist macrolides and further emphasizes the major macrolide potentiators identified which could serve to revive the antibiotic and can be used for the reversal of macrolide resistance. Full article
Show Figures

Figure 1

14 pages, 2614 KiB  
Article
Screening and Functional Analyses of Novel Cecropins from Insect Transcriptome
by Lizhen Guo, Min Tang, Shiqi Luo and Xin Zhou
Insects 2023, 14(10), 794; https://doi.org/10.3390/insects14100794 - 29 Sep 2023
Cited by 2 | Viewed by 2514
Abstract
Antibiotic resistance is a significant and growing threat to global public health. However, antimicrobial peptides (AMPs) have shown promise as they exhibit a broad spectrum of antibacterial activities with low potential for resistance development. Insects, which inhabit a wide range of environments and [...] Read more.
Antibiotic resistance is a significant and growing threat to global public health. However, antimicrobial peptides (AMPs) have shown promise as they exhibit a broad spectrum of antibacterial activities with low potential for resistance development. Insects, which inhabit a wide range of environments and are incredibly diverse, remain largely unexplored as a source of novel AMPs. To address this, we conducted a screening of the representative transcriptomes from the 1000 Insect Transcriptome Evolution (1KITE) dataset, focusing on the homologous reference genes of Cecropins, the first identified AMPs in insects known for its high efficiency. Our analysis identified 108 Cecropin genes from 105 insect transcriptomes, covering all major hexapod lineages. We validated the gene sequences and synthesized mature peptides for three identified Cecropin genes. Through minimal inhibition concentration and agar diffusion assays, we confirmed that these peptides exhibited antimicrobial activities against Gram-negative bacteria. Similar to the known Cecropin, the three Cecropins adopted an alpha-helical conformation in membrane-like environments, efficiently disrupting bacterial membranes through permeabilization. Importantly, none of the three Cecropins demonstrated cytotoxicity in erythrocyte hemolysis tests, suggesting their safety in real-world applications. Overall, this newly developed methodology provides a high-throughput bioinformatic pipeline for the discovery of AMP, taking advantage of the expanding genomic resources available for diverse organisms. Full article
(This article belongs to the Special Issue Opportunities and Challenges in Insect Functional Genomics)
Show Figures

Figure 1

82 pages, 7151 KiB  
Review
Peptides from Marine-Derived Fungi: Chemistry and Biological Activities
by Salar Hafez Ghoran, Fatemeh Taktaz, Emília Sousa, Carla Fernandes and Anake Kijjoa
Mar. Drugs 2023, 21(10), 510; https://doi.org/10.3390/md21100510 - 26 Sep 2023
Cited by 22 | Viewed by 4533
Abstract
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides [...] Read more.
Marine natural products are well-recognized as potential resources to fill the pipeline of drug leads to enter the pharmaceutical industry. In this circumstance, marine-derived fungi are one of the unique sources of bioactive secondary metabolites due to their capacity to produce diverse polyketides and peptides with unique structures and diverse biological activities. The present review covers the peptides from marine-derived fungi reported from the literature published from January 1991 to June 2023, and various scientific databases, including Elsevier, ACS publications, Taylor and Francis, Wiley Online Library, MDPI, Springer, Thieme, Bentham, ProQuest, and the Marine Pharmacology website, are used for a literature search. This review focuses on chemical characteristics, sources, and biological and pharmacological activities of 366 marine fungal peptides belonging to various classes, such as linear, cyclic, and depsipeptides. Among 30 marine-derived fungal genera, isolated from marine macro-organisms such as marine algae, sponges, coral, and mangrove plants, as well as deep sea sediments, species of Aspergillus were found to produce the highest number of peptides (174 peptides), followed by Penicillium (23 peptides), Acremonium (22 peptides), Eurotium (18 peptides), Trichoderma (18 peptides), Simplicillium (17 peptides), and Beauveria (12 peptides). The cytotoxic activity against a broad spectrum of human cancer cell lines was the predominant biological activity of the reported marine peptides (32%), whereas antibacterial, antifungal, antiviral, anti-inflammatory, and various enzyme inhibition activities ranged from 7% to 20%. In the first part of this review, the chemistry of marine peptides is discussed and followed by their biological activity. Full article
(This article belongs to the Section Structural Studies on Marine Natural Products)
Show Figures

Graphical abstract

15 pages, 3658 KiB  
Article
Epoxy Coating Modification with Metal Nanoparticles to Improve the Anticorrosion, Migration, and Antibacterial Properties
by Marina Samardžija, Ivan Stojanović, Marija Vuković Domanovac and Vesna Alar
Coatings 2023, 13(7), 1201; https://doi.org/10.3390/coatings13071201 - 4 Jul 2023
Cited by 5 | Viewed by 4998
Abstract
Nanoparticles are capable of making more durable and stronger materials with better chemical resistance. They are used for a wide range of applications. Likewise, the potential of metal nanoparticles as antimicrobial agents has been widely studied. In this work, we investigate various nanoparticles [...] Read more.
Nanoparticles are capable of making more durable and stronger materials with better chemical resistance. They are used for a wide range of applications. Likewise, the potential of metal nanoparticles as antimicrobial agents has been widely studied. In this work, we investigate various nanoparticles (Al, Ni, Ag) incorporated into epoxy coating. The anticorrosion and antibacterial properties of the unmodified and modified coatings were evaluated. According to the SEM and EDS analyses, the coating did not contain agglomerates, which confirms the quality of the dispersion of inorganic nanoparticles in the coating. After 24 h and 10days immersions in a 3.5 wt.% NaCl solution, the corrosion behaviour for all nanocomposite was studied by means of EIS investigations. The study included the evaluation of the inhibition zone of the nanoparticles and the antimicrobial properties of the nanocomposite. It was found that the nanoparticles of Al and Ag provide excellent antibacterial properties. The epoxy nanocomposite with Al NP showed the migration of ions in the range from 0.75 to 1 mg/L in a wastewater solution for 30 days, indicating a potential for antimicrobe activity. The 1% Al NP epoxy nanocomposite showed good anticorrosion and antibacterial properties and demonstrated great potential for applications in pipelines. Full article
(This article belongs to the Special Issue Investigation on Corrosion Behaviour of Metallic Materials)
Show Figures

Figure 1

8 pages, 266 KiB  
Communication
Evaluation of Homogentisic Acid, a Prospective Antibacterial Agent Highlighted by the Suitability of Nitisinone in Alkaptonuria 2 (SONIA 2) Clinical Trial
by Nicola Ooi, Ian R. Cooper, Brendan Norman, James A. Gallagher, Nick Sireau, George Bou-Gharios, Lakshminarayan R. Ranganath and Victoria J. Savage
Cells 2023, 12(13), 1683; https://doi.org/10.3390/cells12131683 - 21 Jun 2023
Cited by 3 | Viewed by 2454
Abstract
Despite urgent warnings about the spread of multidrug-resistant bacteria, the antibiotic development pipeline has remained sparsely populated. Naturally occurring antibacterial compounds may provide novel chemical starting points for antibiotic development programs and should be actively sought out. Evaluation of homogentisic acid (HGA), an [...] Read more.
Despite urgent warnings about the spread of multidrug-resistant bacteria, the antibiotic development pipeline has remained sparsely populated. Naturally occurring antibacterial compounds may provide novel chemical starting points for antibiotic development programs and should be actively sought out. Evaluation of homogentisic acid (HGA), an intermediate in the tyrosine degradation pathway, showed that the compound had innate activity against Gram-positive and Gram-negative bacteria, which was lost following conversion into the degradation product benzoquinone acetic acid (BQA). Anti-staphylococcal activity of HGA can be attributed to effects on bacterial membranes. Despite an absence of haemolytic activity, the compound was cytotoxic to human HepG2 cells. We conclude that the antibacterial activity and in vitro safety profile of HGA render it more suitable for use as a topical agent or for inclusion in a small-molecule medicinal chemistry program. Full article
(This article belongs to the Special Issue Cellular and Molecular Basis of Alkaptonuria)
20 pages, 4426 KiB  
Article
The Chemical Space of Marine Antibacterials: Diphenyl Ethers, Benzophenones, Xanthones, and Anthraquinones
by José X. Soares, Inês Afonso, Adaleta Omerbasic, Daniela R. P. Loureiro, Madalena M. M. Pinto and Carlos M. M. Afonso
Molecules 2023, 28(10), 4073; https://doi.org/10.3390/molecules28104073 - 13 May 2023
Cited by 5 | Viewed by 2779
Abstract
The emergence of multiresistant bacteria and the shortage of antibacterials in the drug pipeline creates the need to search for novel agents. Evolution drives the optimization of the structure of marine natural products to act as antibacterial agents. Polyketides are a vast and [...] Read more.
The emergence of multiresistant bacteria and the shortage of antibacterials in the drug pipeline creates the need to search for novel agents. Evolution drives the optimization of the structure of marine natural products to act as antibacterial agents. Polyketides are a vast and structurally diverse family of compounds that have been isolated from different marine microorganisms. Within the different polyketides, benzophenones, diphenyl ethers, anthraquinones, and xanthones have shown promising antibacterial activity. In this work, a dataset of 246 marine polyketides has been identified. In order to characterize the chemical space occupied by these marine polyketides, molecular descriptors and fingerprints were calculated. Molecular descriptors were analyzed according to the scaffold, and principal component analysis was performed to identify the relationships among the different descriptors. Generally, the identified marine polyketides are unsaturated, water-insoluble compounds. Among the different polyketides, diphenyl ethers tend to be more lipophilic and non-polar than the remaining classes. Molecular fingerprints were used to group the polyketides according to their molecular similarity into clusters. A total of 76 clusters were obtained, with a loose threshold for the Butina clustering algorithm, highlighting the large structural diversity of the marine polyketides. The large structural diversity was also evidenced by the visualization trees map assembled using the tree map (TMAP) unsupervised machine-learning method. The available antibacterial activity data were examined in terms of bacterial strains, and the activity data were used to rank the compounds according to their antibacterial potential. This potential ranking was used to identify the most promising compounds (four compounds) which can inspire the development of new structural analogs with better potency and absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties. Full article
(This article belongs to the Section Medicinal Chemistry)
Show Figures

Graphical abstract

14 pages, 4336 KiB  
Article
Automated Prediction of Bacterial Exclusion Areas on SEM Images of Graphene–Polymer Composites
by Shadi Rahimi, Teo Lovmar, Alexandra Aulova, Santosh Pandit, Martin Lovmar, Sven Forsberg, Magnus Svensson, Roland Kádár and Ivan Mijakovic
Nanomaterials 2023, 13(10), 1605; https://doi.org/10.3390/nano13101605 - 10 May 2023
Cited by 4 | Viewed by 1856
Abstract
To counter the rising threat of bacterial infections in the post-antibiotic age, intensive efforts are invested in engineering new materials with antibacterial properties. The key bottleneck in this initiative is the speed of evaluation of the antibacterial potential of new materials. To overcome [...] Read more.
To counter the rising threat of bacterial infections in the post-antibiotic age, intensive efforts are invested in engineering new materials with antibacterial properties. The key bottleneck in this initiative is the speed of evaluation of the antibacterial potential of new materials. To overcome this, we developed an automated pipeline for the prediction of antibacterial potential based on scanning electron microscopy images of engineered surfaces. We developed polymer composites containing graphite-oriented nanoplatelets (GNPs). The key property that the algorithm needs to consider is the density of sharp exposed edges of GNPs that kill bacteria on contact. The surface area of these sharp exposed edges of GNPs, accessible to bacteria, needs to be inferior to the diameter of a typical bacterial cell. To test this assumption, we prepared several composites with variable distribution of exposed edges of GNP. For each of them, the percentage of bacterial exclusion area was predicted by our algorithm and validated experimentally by measuring the loss of viability of the opportunistic pathogen Staphylococcus epidermidis. We observed a remarkable linear correlation between predicted bacterial exclusion area and measured loss of viability (R2 = 0.95). The algorithm parameters we used are not generally applicable to any antibacterial surface. For each surface, key mechanistic parameters must be defined for successful prediction. Full article
(This article belongs to the Special Issue Advanced 2D Materials for Emerging Application)
Show Figures

Figure 1

Back to TopTop