Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (311)

Search Parameters:
Keywords = antibacterial/antifungal/antiviral activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 1102 KiB  
Review
Protective Potential of Satureja montana-Derived Polyphenols in Stress-Related Central Nervous System Disorders, Including Dementia
by Stela Dragomanova, Lyubka Tancheva, Silviya Abarova, Valya B. Grigorova, Valentina Gavazova, Dana Stanciu, Svetlin Tzonev, Vladimir Prandjev and Reni Kalfin
Curr. Issues Mol. Biol. 2025, 47(7), 556; https://doi.org/10.3390/cimb47070556 - 17 Jul 2025
Viewed by 314
Abstract
Satureja montana (SM) is acknowledged as a highly pharmacologically important species within the vast Lamiaceae family, indigenous to the Balkan area. Traditionally, this plant has been employed as a culinary spice, especially in Bulgarian gastronomy. Additionally, it is widely recognized that mental [...] Read more.
Satureja montana (SM) is acknowledged as a highly pharmacologically important species within the vast Lamiaceae family, indigenous to the Balkan area. Traditionally, this plant has been employed as a culinary spice, especially in Bulgarian gastronomy. Additionally, it is widely recognized that mental health is affected by the nature and quality of dietary consumption. Results: Ethnopharmacological research underscores the potential of SM in influencing various chronic ailments, including depression and anxiety. This plant is distinguished by a rich variety of secondary metabolites that display a broad spectrum of biological activities, such as antioxidant, antidiabetic, anti-inflammatory, analgesic, antibacterial, antiviral, and antifungal effects. Particularly, two of its active phenolic compounds, rosmarinic acid and carvacrol, reveal notable anxiolytic and antidepressive properties. This review aims to explore the capacity of SM to improve mental health through its plentiful phenolic components. Recent studies indicate their efficacy in addressing Alzheimer’s-type dementia. A notable correlation exists among depression, anxiety, and cognitive decline, which includes dementia. Considering that Alzheimer’s disease (AD) is a multifaceted condition, it requires multi-targeted therapeutic strategies for both prevention and management. Conclusions: Satureja montana is recognized as potential candidate for both the prevention and management of various mental health disorders, including dementia. Full article
Show Figures

Graphical abstract

28 pages, 1369 KiB  
Review
Expanding Horizons: Opportunities for Diclofenac Beyond Traditional Use—A Review
by Mykhailo Dronik and Maryna Stasevych
Sci. Pharm. 2025, 93(3), 31; https://doi.org/10.3390/scipharm93030031 - 16 Jul 2025
Viewed by 384
Abstract
This study systematically reviews the non-traditional pharmacological effects of diclofenac, a well-known nonsteroidal anti-inflammatory drug, to explore its potential for drug repositioning beyond its established analgesic and anti-inflammatory applications. A comprehensive literature search was conducted using the PubMed, Scopus and Web of [...] Read more.
This study systematically reviews the non-traditional pharmacological effects of diclofenac, a well-known nonsteroidal anti-inflammatory drug, to explore its potential for drug repositioning beyond its established analgesic and anti-inflammatory applications. A comprehensive literature search was conducted using the PubMed, Scopus and Web of Science databases, covering studies from 1981 to 2025. It was revealed that over 94% of records in Scopus and Web of Science are duplicated in PubMed, so the latter was used for the search in our study. After duplicate removal and independent screening, 89 from 1123 retrieved studies were selected for the search. The analysis revealed a broad spectrum of diclofenac’s non-traditional pharmacological activities, including neuroprotective, antiamyloid, anticancer, antiviral, immunomodulatory, antibacterial, antifungal, anticonvulsant, radioprotective, and antioxidant properties, primarily identified through preclinical In vitro and In vivo studies. These effects are mediated through diverse molecular pathways beyond cyclooxygenase inhibition, such as modulation of neurotransmitter release, apoptosis, and cellular proliferation. Diclofenac showed potential for repositioning in oncology, neurodegenerative disorders, infectious diseases, and immune-mediated conditions. Its hepatotoxicity and cardiovascular risks necessitate strategies like advanced drug formulations, dose optimization, and personalized medicine to enhance safety. Large-scale randomized clinical trials are essential to validate these findings and ensure safe therapeutic expansion. Full article
Show Figures

Graphical abstract

23 pages, 846 KiB  
Review
Multifaceted Marine Peptides and Their Therapeutic Potential
by Svetlana V. Guryanova and Tatiana V. Ovchinnikova
Mar. Drugs 2025, 23(7), 288; https://doi.org/10.3390/md23070288 - 15 Jul 2025
Viewed by 649
Abstract
Marine peptides, derived from a great number of aquatic organisms, exhibit a broad spectrum of biological activities that hold a significant therapeutic potential. This article reviews the multifaceted roles of marine peptides, focusing on their antibacterial, antibiofilm, antifungal, antiviral, antiparasitic, cytotoxic, anticancer, immunomodulatory, [...] Read more.
Marine peptides, derived from a great number of aquatic organisms, exhibit a broad spectrum of biological activities that hold a significant therapeutic potential. This article reviews the multifaceted roles of marine peptides, focusing on their antibacterial, antibiofilm, antifungal, antiviral, antiparasitic, cytotoxic, anticancer, immunomodulatory, chemotactic, opsonizing, anti-inflammatory, antiaging, skin-protective, and wound-healing properties. By elucidating mechanisms of their action and highlighting key research findings, this review aims to provide a comprehensive understanding of possible therapeutic applications of marine peptides, underscoring their importance in developing novel drugs as well as in cosmetology, food industry, aquatic and agriculture biotechnology. Further investigations are essential to harness their therapeutic potential and should focus on detailed mechanism studies, large-scale production, and clinical evaluations with a view to confirm their efficacy and safety and translate these findings into practical applications. It is also important to investigate the potential synergistic effects of marine peptide combinations with existing medicines to enhance their efficacy. Challenges include the sustainable sourcing of marine peptides, and therefore an environmental impact of harvesting marine organisms must be considered as well. Full article
Show Figures

Figure 1

19 pages, 1620 KiB  
Article
Cellular Entry, Cytotoxicity, and Antifungal Activity of Newly Synthesized Dendrimers
by Aneliya Kostadinova, Ema Gaydarska, Tanya Topouzova-Hristova, Dayana Benkova, Galya Staneva, Ekaterina Krumova, Rusina Hazarosova, Miroslav Marinov, Asya Tsanova, Albena Jordanova and Ivo Grabchev
Appl. Sci. 2025, 15(14), 7764; https://doi.org/10.3390/app15147764 - 10 Jul 2025
Viewed by 353
Abstract
Dendrimers, 4-dimethylamino-1,8-naphthalimide (DAB) and its halogenated analog 3-bromo-4-dimethylamino-1,8-naphthalimide (DAB-Br), were evaluated on eukaryotic cells, human HFF-1 fibroblast cells, and five fungal species. Although both dendrimers have demonstrated antibacterial and antiviral potential, thus far, their effects on eukaryotic cells, particularly human and fungal cells, [...] Read more.
Dendrimers, 4-dimethylamino-1,8-naphthalimide (DAB) and its halogenated analog 3-bromo-4-dimethylamino-1,8-naphthalimide (DAB-Br), were evaluated on eukaryotic cells, human HFF-1 fibroblast cells, and five fungal species. Although both dendrimers have demonstrated antibacterial and antiviral potential, thus far, their effects on eukaryotic cells, particularly human and fungal cells, have not been investigated. For this purpose, their cytotoxicity, mechanisms of cellular entry, and antifungal activity were studied. Dynamic light scattering measurements revealed that both dendrimers exhibited positive surface charges (+28 to +35 mV), good colloidal stability, and nanoscale dimensions (117–234 nm), facilitating interactions with target cells. The MTT assay showed that DAB was more cytotoxic toward HFF-1 cells (IC50 = 27 µg/mL) compared to DAB-Br (IC50 = 68 µg/mL). In contrast, the resazurin-based antifungal assay demonstrated that DAB-Br had superior antifungal activity, achieving a lower minimum inhibitory concentration (0.148 µg/µL), compared to DAB (0.295 µg/µL). A trypan blue exclusion test revealed that both dendrimers entered cells through membrane permeabilization, either temporarily or permanently, depending on the concentration and exposure time. At concentrations above 30 µg/mL, irreversible permeabilization was observed within two hours of treatment, accompanied by a decrease in membrane lipid order, indicating altered membrane integrity and permeability. Conversely, at lower concentrations (7.5–15 µg/mL), dendrimers induced only temporary membrane permeabilization, with membranes remaining intact, suggesting a reversible interaction with the lipid bilayer. Conducting thorough and systematic research to fully explore their biological activities could provide valuable insight for future applications. Full article
(This article belongs to the Section Nanotechnology and Applied Nanosciences)
Show Figures

Figure 1

20 pages, 1953 KiB  
Article
Cepharanthine Inhibits Fusarium solani via Oxidative Stress and CFEM Domain-Containing Protein Targeting
by Yuqing Wang, Zenghui Yang, Jingwen Xue, Yitong Wang, Haibo Li, Zhihong Wu and Yizhou Gao
Microorganisms 2025, 13(6), 1423; https://doi.org/10.3390/microorganisms13061423 - 18 Jun 2025
Viewed by 563
Abstract
Cepharanthine (CEP) is a natural bisbenzylisoquinoline alkaloid known for its antibacterial, antiviral, and anti-inflammatory activities. Its antifungal effect, however, has not been well studied. In this work, we used machine learning-based virtual screening with Random Forest, Neural Network, and Support Vector Machine models [...] Read more.
Cepharanthine (CEP) is a natural bisbenzylisoquinoline alkaloid known for its antibacterial, antiviral, and anti-inflammatory activities. Its antifungal effect, however, has not been well studied. In this work, we used machine learning-based virtual screening with Random Forest, Neural Network, and Support Vector Machine models to identify potential inhibitors of Fusarium solani. CEP was selected as a candidate and tested experimentally. The results showed that it inhibited the growth of Fusarium solani, Fusarium proliferatum, Fusarium oxysporum, Alternaria alternata, and Botrytis cinerea. It also reduced the sporulation and spore germination of Fusarium solani and disrupted its redox balance. Transcriptome analysis showed changes in gene expression related to basic metabolic pathways. Molecular docking suggested that CEP binds to the FsCFEM1 protein, and molecular dynamics simulations confirmed stable binding, with key roles for residues THR748 and LEU950. These results suggest that CEP is a potential bio-based antifungal agent and provide novel insights into its mechanism against Fusarium solani. Full article
(This article belongs to the Section Molecular Microbiology and Immunology)
Show Figures

Figure 1

41 pages, 13934 KiB  
Article
Unveiling Palmitoyl Thymidine Derivatives as Antimicrobial/Antiviral Inhibitors: Synthesis, Molecular Docking, Dynamic Simulations, ADMET, and Assessment of Protein–Ligand Interactions
by Sarkar M. A. Kawsar, Samiah Hamad Al-mijalli, Gassoumi Bouzid, Emad M. Abdallah, Noimul H. Siddiquee, Mohammed A. Hosen, Mabrouk Horchani, Houcine Ghalla, Hichem B. Jannet, Yuki Fujii and Yasuhiro Ozeki
Pharmaceuticals 2025, 18(6), 806; https://doi.org/10.3390/ph18060806 - 27 May 2025
Viewed by 1891
Abstract
Background/Objectives: Nucleoside precursors and derivatives play pivotal roles in the development of antimicrobial and antiviral therapeutics. The 2022 global outbreak of monkeypox (Mpox) across more than 100 nonendemic countries underscores the urgent need for novel antiviral agents. This study aimed to synthesize and [...] Read more.
Background/Objectives: Nucleoside precursors and derivatives play pivotal roles in the development of antimicrobial and antiviral therapeutics. The 2022 global outbreak of monkeypox (Mpox) across more than 100 nonendemic countries underscores the urgent need for novel antiviral agents. This study aimed to synthesize and evaluate a series of 5′-O-(palmitoyl) derivatives (compounds 26), incorporating various aliphatic and aromatic acyl groups, for their potential antimicrobial activities. Methods: The structures of the synthesized derivatives were confirmed through physicochemical, elemental, and spectroscopic techniques. In vitro antibacterial efficacy was assessed, including minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) determinations for the most active compounds (4 and 5). The antifungal activity was evaluated based on mycelial growth inhibition. Density functional theory (DFT) calculations were employed to investigate the electronic and structural properties, including the global reactivity, frontier molecular orbital (FMO), natural bond orbital (NBO), and molecular electrostatic potential (MEP). Molecular docking studies were conducted against the monkeypox virus and the Marburg virus. The top-performing compounds (3, 5, and 6) were further evaluated via 200 ns molecular dynamics (MD) simulations. ADMET predictions were performed to assess drug-likeness and pharmacokinetic properties. Results: Compounds 4 and 5 demonstrated remarkable antibacterial activity compared with the precursor molecule, while most derivatives inhibited fungal mycelial growth by up to 79%. Structure-activity relationship (SAR) analysis highlighted the enhanced antibacterial/antifungal efficacy with CH3(CH2)10CO– and CH3(CH2)12CO–acyl chains. In silico docking revealed that compounds 3, 5, and 6 had higher binding affinities than the other derivatives. MD simulations confirmed the stability of the protein-ligand complexes. ADMET analyses revealed favorable drug-like profiles for all the lead compounds. Conclusions: The synthesized compounds 3, 5, and 6 exhibit promising antimicrobial and antiviral activities. Supported by both in vitro assays and comprehensive in silico analyses, these derivatives have emerged as potential candidates for the development of novel therapeutics against bacterial, fungal, and viral infections, including monkeypox and Marburg viruses. Full article
Show Figures

Graphical abstract

28 pages, 1517 KiB  
Review
Lactoperoxidase: Properties, Functions, and Potential Applications
by Hasan Kutluay Özhan, Hatice Duman, Mikhael Bechelany and Sercan Karav
Int. J. Mol. Sci. 2025, 26(11), 5055; https://doi.org/10.3390/ijms26115055 - 24 May 2025
Cited by 1 | Viewed by 1337
Abstract
Lactoperoxidase (LPO) (E.C. 1.11.1.7) is a member of the superfamily of mammalian heme peroxidases that is isolated from milk, and it is the first enzyme announced to be found in milk. In addition to milk, LPO is also found in saliva, tears, and [...] Read more.
Lactoperoxidase (LPO) (E.C. 1.11.1.7) is a member of the superfamily of mammalian heme peroxidases that is isolated from milk, and it is the first enzyme announced to be found in milk. In addition to milk, LPO is also found in saliva, tears, and airways (airway goblet cells and submucosal glands). It contributes significantly to the self-defense of the mammal body. It catalyzes the oxidation of certain molecules such as thiocyanate (SCN), I, and Br in the presence of hydrogen peroxide (H2O2). This reaction leads to the formation of antimicrobial products that have a great antimicrobial spectrum, including antibacterial, antiviral, and antifungal activity, especially hypothiocyanite (OSCN) and hypoiodite (OI), which are coming into prominence via their high antimicrobial activity. The lactoperoxidase system (LPOS) is the system consisting of LPO, H2O2, and SCN. LPO has a great potential to be used in various areas such as preservation and shelf-life elongation of milk; milk products; meat; meat products; plants, including fruits and vegetables; and oral care, diagnosis, immunomodulation, and treatment of nephrotoxicity. The LPO gene, along with LPO itself, is important for animals. In the absence of the LPO gene, there is an increase in the frequency of diverse diseases, including inflammation, tumor formation, and obesity. In this review, we mentioned general information about the enzyme LPO and its potential. Chemical properties and other features of other components of the LPOS, H2O2, and SCN were also touched on the review. To offer readers a comprehensive understanding of the enzyme’s biological significance and research progress over time, both recent and older studies have been used together. Lastly, we discussed potential applications of LPO in different areas and left future remarks in the light of recent studies. Full article
(This article belongs to the Special Issue Latest Review Papers in Macromolecules 2025)
Show Figures

Figure 1

46 pages, 4970 KiB  
Review
Phycobilins Versatile Pigments with Wide-Ranging Applications: Exploring Their Uses, Biological Activities, Extraction Methods and Future Perspectives
by Celestino García-Gómez, Diana E. Aguirre-Cavazos, Abelardo Chávez-Montes, Juan M. Ballesteros-Torres, Alonso A. Orozco-Flores, Raúl Reyna-Martínez, Ángel D. Torres-Hernández, Georgia M. González-Meza, Sandra L. Castillo-Hernández, Marcela A. Gloria-Garza, Miroslava Kačániová, Maciej Ireneusz-Kluz and Joel H. Elizondo-Luevano
Mar. Drugs 2025, 23(5), 201; https://doi.org/10.3390/md23050201 - 4 May 2025
Cited by 1 | Viewed by 1697
Abstract
Phycobiliproteins (PBPs), captivating water-soluble proteins found in cyanobacteria, red algae, and cryptophytes, continue to fascinate researchers and industries due to their unique properties and multifaceted applications. These proteins consist of chromophores called phycobilins (PBs), covalently linked to specific protein subunits. Major phycobiliproteins include [...] Read more.
Phycobiliproteins (PBPs), captivating water-soluble proteins found in cyanobacteria, red algae, and cryptophytes, continue to fascinate researchers and industries due to their unique properties and multifaceted applications. These proteins consist of chromophores called phycobilins (PBs), covalently linked to specific protein subunits. Major phycobiliproteins include phycocyanin (PC), allophycocyanin (APC), and phycoerythrin (PE), each distinguished by distinct absorption and emission spectra. Beyond their colorful properties, PBs exhibit a broad spectrum of biological activities, including antibacterial, antifungal, antiviral, and antidiabetic effects, making them valuable for pharmaceutical, biotechnological, and medical purposes. The extraction and purification methods for PBs have been optimized to enhance their bioavailability and stability, opening new avenues for industrial production. For this review, a comprehensive literature search was conducted using scientific databases such as PubMed, Scopus, and Web of Science, prioritizing peer-reviewed articles published between 2000 and 2025, with an emphasis on recent advances from the last five years, using keywords such as “phycobiliproteins”, “phycobilins”, “bioactivities”, “therapeutic applications”, and “industrial use”. Studies were selected based on their relevance to the biological, technological, and pharmacological applications of PBPs and PBs. This review explores the diverse applications of PBs in therapeutic, diagnostic, and environmental fields, highlighting their potential as natural alternatives in the treatment of various diseases. The future perspectives for PBs focus on their incorporation into innovative drug delivery systems, biocompatible materials, and functional foods, presenting exciting opportunities for advancing human health and well-being. Full article
(This article belongs to the Special Issue Recent Advances in Marine-Derived Pigments)
Show Figures

Figure 1

34 pages, 8958 KiB  
Review
Synthesis, Investigation, Biological Evaluation, and Application of Coordination Compounds with Schiff Base—A Review
by Petya Emilova Marinova and Kristina Dimova Tamahkyarova
Compounds 2025, 5(2), 14; https://doi.org/10.3390/compounds5020014 - 26 Apr 2025
Viewed by 2233
Abstract
Coordination compounds, characterized by the coordination of metal ions with ligands, represent a pivotal area of research in chemistry due to their diverse structures and versatile applications. This review delves into the synthesis, characterization, biological evaluation, and practical applications of these compounds. A [...] Read more.
Coordination compounds, characterized by the coordination of metal ions with ligands, represent a pivotal area of research in chemistry due to their diverse structures and versatile applications. This review delves into the synthesis, characterization, biological evaluation, and practical applications of these compounds. A variety of synthetic methodologies (traditional solution-based techniques) are discussed to highlight advancements in the field. Investigations into the structural, electronic, and spectral properties of coordination compounds are emphasized to provide insights into their functional attributes. The biological evaluation section focuses on their roles in antimicrobial, anticancer, and enzyme-inhibitory activities, underscoring their potential in therapeutic development. Attention is paid to nanoparticles, which are increasingly used for the treatment of oncological diseases. The metal complexes have been shown to have antibacterial, antifungal, antiviral, antioxidant, and antiproliferative properties. Additionally, the review explores their applications across domains such as catalysis, illustrating their multifaceted utility. By synthesizing recent findings and trends, this article aims to bridge the gap between fundamental chemistry and applied sciences, paving the way for innovative uses of coordination compounds in both biological and industrial contexts. Full article
(This article belongs to the Special Issue Feature Papers in Compounds (2024))
Show Figures

Graphical abstract

15 pages, 1872 KiB  
Article
Efficacy of Lippia alba Essential Oil in Alleviating Osmotic and Oxidative Stress in Salt-Affected Bean Plants
by Ilaria Borromeo, Cristiano Giordani and Cinzia Forni
Horticulturae 2025, 11(5), 457; https://doi.org/10.3390/horticulturae11050457 - 24 Apr 2025
Viewed by 622
Abstract
Lippia alba (Mill.) N.E.Br. ex Britton and P. Wilson is a native plant of Colombia, widespread throughout Central and South America, used for thousands of years by pre-Columbian populations, who already knew the many beneficial properties of this species (e.g., antifungal, antibacterial, antiviral [...] Read more.
Lippia alba (Mill.) N.E.Br. ex Britton and P. Wilson is a native plant of Colombia, widespread throughout Central and South America, used for thousands of years by pre-Columbian populations, who already knew the many beneficial properties of this species (e.g., antifungal, antibacterial, antiviral and anti-inflammatory activities). The essential oil of L. alba is rich in phytochemicals with antioxidant activity that could be very useful both for pharmacology and biotechnology application, such as the protection of horticultural crops sensitive to salinity. To enhance salt tolerance, seed-priming treatment with the essential oil of L. alba was performed. We evaluated the effect of this biostimulant on the response to salt stress in a sensitive bean species, Phaseolus acutifolius L. (cv Blue Tepary), native to Mexico, and used by pre-Columbians as well as nowadays. Bean seeds were primed in a solution of 0.5 mL/L of essential oil of L. alba, germinated and after 2 weeks of acclimation, the seedlings were subjected to salt stress, by watering with 40 mM and 80 mM NaCl solutions. Four weeks later, many biochemical parameters were evaluated in order to test the effects of the treatments on plant fitness. Primed seeds showed an increase in salt tolerance during germination, as well as primed plants revealing a higher water uptake, increased chlorophylls, proline content and salt tolerance index. The treatments also improved the Ca2+ concentration in the shoots of stressed primed plants, more quickly activating enzymatic responses to salinity—in particular superoxide dismutase, polyphenol oxidase, catalase, peroxidase and ascorbate peroxidase—compared to unprimed stressed plants. In conclusion, L. alba was found to be a strong elicitor of responses against osmotic and oxidative stress, as induced by salinity, suggesting the possibility of its future utilization in agriculture. Full article
Show Figures

Figure 1

17 pages, 2838 KiB  
Article
Synthesis and Antimicrobial Activity of Canthin-6-One Alkaloids
by Xubing Qi, Yogini Jaiswal, Xinrong Xie, Yu Fan, Rongping Wu, Shaoyang Su, Yifu Guan, Leonard Williams and Xun Song
Molecules 2025, 30(7), 1546; https://doi.org/10.3390/molecules30071546 - 31 Mar 2025
Viewed by 811
Abstract
Canthin-6-one alkaloids have consistently attracted the interest of medicinal chemists due to their wide range of promising bioactivities, including antitumor, antifungal, antibacterial, and antiviral properties. However, their low natural abundance in plants has constrained the further exploration of their potential bioactivities. This study [...] Read more.
Canthin-6-one alkaloids have consistently attracted the interest of medicinal chemists due to their wide range of promising bioactivities, including antitumor, antifungal, antibacterial, and antiviral properties. However, their low natural abundance in plants has constrained the further exploration of their potential bioactivities. This study reports a comprehensive synthesis of canthin-6-one alkaloids, utilizing key Suzuki coupling and Cu-catalyzed amidation reactions to construct their core scaffold. Derivatives were synthesized with Koenig–Knorr glycosylation for the further modification of synthetic canthin-6-ones. The antimicrobial activities of the synthesized compounds were evaluated against C. albicansC. neoformans, S. aureus and E. coli using the micro-dilution method. In total, 17 compounds were synthesized, including nine canthin-6-ones. Notably, alkaloids 4, 5, 7 and 12-13 were prepared for the first time, along with 8 new derivatives. Their structures were confirmed by NMR and MS analyses. At 50 µg/mL, the alkaloids 1-4 and 9 exhibited antimicrobial properties against C. albicansC. neoformans and S. aureus. The antimicrobial activity of alkaloids 2, 4-5 and 12-13 against these four microbial human pathogens is reported here for the first time. Overall, this research not only advances our understanding of canthin-6-one alkaloid synthesis, but also provides a foundation for developing novel compounds with pharmaceutical properties. Full article
Show Figures

Figure 1

33 pages, 4033 KiB  
Review
Advances in Antimicrobial Peptides: Mechanisms, Design Innovations, and Biomedical Potential
by He Zhang, Jiaxun Lv, Zhili Ma, Junfeng Ma and Jing Chen
Molecules 2025, 30(7), 1529; https://doi.org/10.3390/molecules30071529 - 29 Mar 2025
Cited by 6 | Viewed by 3486
Abstract
This comprehensive review explores the advancements in the study of antimicrobial peptides (AMPs), highlighting their potential as promising alternatives to conventional antibiotics in the context of growing antibiotic resistance. AMPs are small molecular proteins found ubiquitously in nature, exhibiting broad-spectrum antimicrobial activity, including [...] Read more.
This comprehensive review explores the advancements in the study of antimicrobial peptides (AMPs), highlighting their potential as promising alternatives to conventional antibiotics in the context of growing antibiotic resistance. AMPs are small molecular proteins found ubiquitously in nature, exhibiting broad-spectrum antimicrobial activity, including antibacterial, antiviral, and antifungal effects, and are vital components of the innate immune system. Due to their non-specific membrane-disrupting mechanism, AMPs are emerging as effective candidates for novel anti-infective agents. The integration of AMPs with biomaterials, such as nanoparticles, liposomes, polymers, and hydrogels, enhances their stability and efficacy while offering multifunctional therapeutic benefits. These combinations promote diverse antibacterial mechanisms, including membrane disruption, intracellular metabolic interference, cell wall modulation, and immune system activation. Despite challenges, such as toxicity, stability, and resistance, innovative strategies including computer-aided design and structural modification show promise in optimizing AMPs’ activity, targeting precision, and biocompatibility. The potential for AMPs in clinical applications remains highly promising, with significant opportunities for overcoming antimicrobial resistance through novel AMP-based therapeutic strategies. Full article
Show Figures

Figure 1

65 pages, 25172 KiB  
Review
Diterpenoids of Marine Organisms: Isolation, Structures, and Bioactivities
by Qi Shi, Shujie Yu, Manjia Zhou, Peilu Wang, Wenlong Li, Xin Jin, Yiting Pan, Yunjie Sheng, Huaqiang Li, Luping Qin and Xiongyu Meng
Mar. Drugs 2025, 23(3), 131; https://doi.org/10.3390/md23030131 - 18 Mar 2025
Cited by 3 | Viewed by 1500
Abstract
Diterpenoids from marine-derived organisms represent a prolific source of secondary metabolites, characterized by their exceptionally promising chemical structures and pronounced pharmacological properties. In recent years, marine diterpenoids have garnered considerable attention and are regarded as a prominent area of scientific research. As a [...] Read more.
Diterpenoids from marine-derived organisms represent a prolific source of secondary metabolites, characterized by their exceptionally promising chemical structures and pronounced pharmacological properties. In recent years, marine diterpenoids have garnered considerable attention and are regarded as a prominent area of scientific research. As a vital class of metabolites, diterpenoids show diverse biological activities, encompassing antibacterial, antifungal, antiviral, anti-inflammatory, inhibitory, and cytotoxic activities, among others. With the rapid advancement of equipment and identified technology, there has been a tremendous surge in the discovery rate of novel diterpenoid skeletons and bioactivities derived from marine fungi over the past decade. The present review compiles the reported diterpenoids from marine fungal sources mainly generated from January 2000 to December 2024. In this paper, 515 diterpenoids from marine organisms are summarized. Among them, a total of 281 structures from various fungal species are included, comprising 55 from sediment, 39 from marine animals (predominantly invertebrates, including 17 from coral and 22 from sponges), and 53 from marine plants (including 34 from algae and 19 from mangrove). Diverse biological activities are exhibited in 244 compounds, and among these, 112 compounds showed great anti-tumor activity (45.90%) and 110 metabolites showed remarkable cytotoxicity (45.08%). Furthermore, these compounds displayed a range of diverse bioactivities, including potent anti-oxidant activity (2.87%), promising anti-inflammatory activity (1.64%), great anti-bacterial activity (1.64%), notable anti-thrombotic activity (1.23%), etc. Moreover, the diterpenoids’ structural characterization and biological activities are additionally elaborated upon. The present critical summary provides a comprehensive overview of the reported knowledge regarding diterpenoids derived from marine fungi, invertebrates, and aquatic plants. The systematic review presented herein offers medical researchers an extensive range of promising lead compounds for the development of marine drugs, thereby furnishing novel and valuable pharmaceutical agents. Full article
(This article belongs to the Special Issue Bioactive Secondary Metabolites of Marine Fungi, 3rd Edition)
Show Figures

Figure 1

61 pages, 2110 KiB  
Review
Pinosylvin: A Multifunctional Stilbenoid with Antimicrobial, Antioxidant, and Anti-Inflammatory Potential
by Argyrios Periferakis, Aristodemos-Theodoros Periferakis, Lamprini Troumpata, Konstantinos Periferakis, Spyrangelos Georgatos-Garcia, Georgia Touriki, Christiana Diana Maria Dragosloveanu, Ana Caruntu, Ilinca Savulescu-Fiedler, Serban Dragosloveanu, Andreea-Elena Scheau, Ioana Anca Badarau, Constantin Caruntu and Cristian Scheau
Curr. Issues Mol. Biol. 2025, 47(3), 204; https://doi.org/10.3390/cimb47030204 - 18 Mar 2025
Cited by 4 | Viewed by 2309
Abstract
Stilbenoids are a category of plant compounds exhibiting notable health-related benefits. After resveratrol, perhaps the most well-known stilbenoid is pinosylvin, a major phytochemical constituent of most plants characterised by the pine spines among others. Pinosylvin and its derivatives have been found to exert [...] Read more.
Stilbenoids are a category of plant compounds exhibiting notable health-related benefits. After resveratrol, perhaps the most well-known stilbenoid is pinosylvin, a major phytochemical constituent of most plants characterised by the pine spines among others. Pinosylvin and its derivatives have been found to exert potent antibacterial and antifungal effects, while their antiparasitic and antiviral properties are still a subject of ongoing research. The antioxidant properties of pinosylvin are mostly based on its scavenging of free radicals, inhibition of iNOS and protein kinase C, and promotion of HO-1 expression. Its anti-inflammatory properties are based on a variety of mechanisms, such as COX-2 inhibition, NF-κB and TRPA1 activation inhibition, and reduction in IL-6 levels. Its anticancer properties are partly associated with its antioxidant and anti-inflammatory potential, although a number of other mechanisms are described, such as apoptosis induction and matrix metalloproteinase inhibition. A couple of experiments have also suggested a neuroprotective potential. A multitude of ethnomedical and ethnobotanical effects of pinosylvin-containing plants are reported, like antimicrobial, antioxidant, anti-inflammatory, hepatoprotective, and prokinetic actions; many of these are corroborated by recent research. The advent of novel methods of artificial pinosylvin synthesis may facilitate its mass production and adoption as a medical compound. Finally, pinosylvin may be a tool in promoting environmentally friendly pesticide and insecticide policies and be used in land remediation schemes. Full article
(This article belongs to the Special Issue Molecular Research in Bioactivity of Natural Products, 2nd Edition)
Show Figures

Figure 1

28 pages, 4193 KiB  
Review
4(3H)-Quinazolinone: A Natural Scaffold for Drug and Agrochemical Discovery
by Ke Chen, Shumin Wang, Shuyue Fu, Junehyun Kim, Phumbum Park, Rui Liu and Kang Lei
Int. J. Mol. Sci. 2025, 26(6), 2473; https://doi.org/10.3390/ijms26062473 - 10 Mar 2025
Cited by 1 | Viewed by 1489
Abstract
4(3H)-quinazolinone is a functional scaffold that exists widely both in natural products and synthetic organic compounds. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antimalarial, antibacterial, antifungal, and herbicidal, etc. In this review, we [...] Read more.
4(3H)-quinazolinone is a functional scaffold that exists widely both in natural products and synthetic organic compounds. Its drug-like derivatives have been extensively synthesized with interesting biological features including anticancer, anti-inflammatory, antiviral, antimalarial, antibacterial, antifungal, and herbicidal, etc. In this review, we highlight the medicinal and agrochemical versatility of the 4(3H)-quinazolinone scaffold according to the studies published in the past six years (2019–2024), and comprehensively give a summary of the target recognition, structure–activity relationship, and mechanism of its analogs. The present review is expected to provide valuable guidance for discovering novel lead compounds containing 4(3H)-quinazolinone moiety in both drug and agrochemical research. Full article
Show Figures

Figure 1

Back to TopTop