Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = anti-windup compensator

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 3299 KiB  
Project Report
On Control Synthesis of Hydraulic Servomechanisms in Flight Controls Applications
by Ioan Ursu, Daniela Enciu and Adrian Toader
Actuators 2025, 14(7), 346; https://doi.org/10.3390/act14070346 - 14 Jul 2025
Viewed by 224
Abstract
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The [...] Read more.
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The first one outlines a classical theory, from the 1950s–1970s, of the analysis of nonlinear automatic systems and namely the issue of absolute stability. The uninformed public may be misled by the adjective “absolute”. This is not a “maximalist” solution of stability but rather highlights in the system of equations a nonlinear function that describes, for the case of hydraulic servomechanisms, the flow-control dependence in the distributor spool. This function is odd, and it is therefore located in quadrants 1 and 3. The decision regarding stability is made within the so-called Lurie problem and is materialized by a matrix inequality, called the Lefschetz condition, which must be satisfied by the parameters of the electrohydraulic servomechanism and also by the components of the control feedback vector. Another approach starts from a classical theorem of V. M. Popov, extended in a stochastic framework by T. Morozan and I. Ursu, which ends with the description of the local and global spool valve flow-control characteristics that ensure stability in the large with respect to bounded perturbations for the mechano-hydraulic servomechanism. We add that a conjecture regarding the more pronounced flexibility of mathematical models in relation to mathematical instruments (theories) was used. Furthermore, the second topic concerns, the importance of the impedance characteristic of the mechano-hydraulic servomechanism in preventing flutter of the flight controls is emphasized. Impedance, also called dynamic stiffness, is defined as the ratio, in a dynamic regime, between the output exerted force (at the actuator rod of the servomechanism) and the displacement induced by this force under the assumption of a blocked input. It is demonstrated in the paper that there are two forms of the impedance function: one that favors the appearance of flutter and another that allows for flutter damping. It is interesting to note that these theoretical considerations were established in the institute’s reports some time before their introduction in the Aviation Regulation AvP.970. However, it was precisely the absence of the impedance criterion in the regulation at the appropriate time that ultimately led, by chance or not, to a disaster: the crash of a prototype due to tailplane flutter. A third topic shows how an important problem in the theory of automatic systems of the 1970s–1980s, namely the robust synthesis of the servomechanism, is formulated, applied and solved in the case of an electrohydraulic servomechanism. In general, the solution of a robust servomechanism problem consists of two distinct components: a servo-compensator, in fact an internal model of the exogenous dynamics, and a stabilizing compensator. These components are adapted in the case of an electrohydraulic servomechanism. In addition to the classical case mentioned above, a synthesis problem of an anti-windup (anti-saturation) compensator is formulated and solved. The fourth topic, and the last one presented in detail, is the synthesis of a fuzzy supervised neurocontrol (FSNC) for the position tracking of an electrohydraulic servomechanism, with experimental validation, in the laboratory, of this control law. The neurocontrol module is designed using a single-layered perceptron architecture. Neurocontrol is in principle optimal, but it is not free from saturation. To this end, in order to counteract saturation, a Mamdani-type fuzzy logic was developed, which takes control when neurocontrol has saturated. It returns to neurocontrol when it returns to normal, respectively, when saturation is eliminated. What distinguishes this FSNC law is its simplicity and efficiency and especially the fact that against quite a few opponents in the field, it still works very well on quite complicated physical systems. Finally, a brief section reviews some recent works by the authors, in which current approaches to hydraulic servomechanisms are presented: the backstepping control synthesis technique, input delay treated with Lyapunov–Krasovskii functionals, and critical stability treated with Lyapunov–Malkin theory. Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
Show Figures

Figure 1

15 pages, 4729 KiB  
Article
Intelligent Robust Motion Control of Aerial Robot
by Cao-Tri Dinh, Thien-Dinh Nguyen, Young-Bok Kim, Thinh Huynh and Jung-Suk Park
Actuators 2025, 14(4), 197; https://doi.org/10.3390/act14040197 - 18 Apr 2025
Cited by 1 | Viewed by 1030
Abstract
This study presents the design of an intelligent robust controller for the 3-degree-of-freedom motion of an aerial robot using waterpower. The proposed controller consists of two parts: (1) an anti-windup super-twisting algorithm that provides stability to the system under actuator saturation; and (2) [...] Read more.
This study presents the design of an intelligent robust controller for the 3-degree-of-freedom motion of an aerial robot using waterpower. The proposed controller consists of two parts: (1) an anti-windup super-twisting algorithm that provides stability to the system under actuator saturation; and (2) a fully adaptive radial basis function neural network that estimates and compensates for unexpected influences, i.e., system uncertainties, water hose vibration, and external disturbances. The stability of the entire closed-loop system is analyzed using the Lyapunov stability theory. The controller parameters are optimized such that the effect of these unexpected influences on the control system is minimized. This optimization problem is interpreted in the form of an eigenvalue problem, which is solved using the method of centers. Experiments are conducted where a proportional-integral-derivative controller and a conventional sliding mode controller are deployed for comparison. The results demonstrate that the proposed control system outperforms the others, with small tracking errors and strong robustness against unexpected influences. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

26 pages, 655 KiB  
Review
A Comprehensive Survey on Advanced Control Techniques for T-S Fuzzy Systems Subject to Control Input and System Output Requirements
by Wen-Jer Chang, Yann-Horng Lin and Cheung-Chieh Ku
Processes 2025, 13(3), 792; https://doi.org/10.3390/pr13030792 - 9 Mar 2025
Viewed by 1657
Abstract
This paper provides a comprehensive survey on advanced control techniques for Takagi-Sugeno (T-S) fuzzy systems that are subject to input and output performance constraints. The focus is on addressing practical applications, such as actuator saturation and output limits, which are often encountered in [...] Read more.
This paper provides a comprehensive survey on advanced control techniques for Takagi-Sugeno (T-S) fuzzy systems that are subject to input and output performance constraints. The focus is on addressing practical applications, such as actuator saturation and output limits, which are often encountered in industries like aerospace, automotive, and robotics. The paper discusses key control methods such as model predictive control, anti-windup compensators, and Linear Matrix Inequality (LMI)-based control, emphasizing their effectiveness in handling input and output constraints. These techniques ensure system stability, robustness, and performance even under strict physical limitations. The survey also highlights the importance of T-S fuzzy systems, which provide a flexible framework for modeling and controlling nonlinear systems by breaking them down into simpler linear models. Additionally, recent developments in robust and adaptive control strategies are explored, particularly in handling time delays, disturbances, and uncertainties. These methods are crucial for real-time applications where the system must remain stable and safe despite unmeasured states or external disturbances. By reviewing these advanced techniques, the paper aims to identify research gaps and future directions, particularly in scalable solutions and integrating data-driven approaches with T-S fuzzy control frameworks. Full article
(This article belongs to the Special Issue Fuzzy Control System: Design and Applications)
18 pages, 6699 KiB  
Article
Prescribed-Time Dynamic Positioning Control for USV with Lumped Disturbances, Thruster Saturation and Prescribed Performance Constraints
by Bowen Sui, Jianqiang Zhang and Zhong Liu
Remote Sens. 2024, 16(22), 4142; https://doi.org/10.3390/rs16224142 - 6 Nov 2024
Cited by 2 | Viewed by 1441
Abstract
This work studies the dynamic positioning (DP) control issue of unmanned surface vessels subjected to thruster saturation, error constraints, and lumped disturbances composed of time-varying marine environmental disturbances and model parameter uncertainties. Combining the disturbance-accurate estimation technique and the prescribed performance control strategy, [...] Read more.
This work studies the dynamic positioning (DP) control issue of unmanned surface vessels subjected to thruster saturation, error constraints, and lumped disturbances composed of time-varying marine environmental disturbances and model parameter uncertainties. Combining the disturbance-accurate estimation technique and the prescribed performance control strategy, a novel prescribed-time DP control scheme is established to address this challenging problem. In particular, the prescribed-time lumped disturbance observer is designed to accurately estimate external marine disturbances, which guarantees that the estimation error converges to zero within a prescribed time. Subsequently, a prescribed performance control strategy is proposed to guarantee that the positioning errors of DP surface vessels with thruster saturation constraints meet the error constraints requirements within a prescribed time. Furthermore, an anti-windup compensator is presented to mitigate the thruster saturation and improve the robustness of the DP control system. The stability analysis demonstrates that all positioning errors of the closed-loop system can converge to predefined performance constraints within a prescribed time. Finally, the numerical simulation confirms the efficacy and superiority of the proposed PTDP scheme. Full article
Show Figures

Figure 1

18 pages, 12518 KiB  
Article
An Anti-Windup Method Based on an LADRC for Miniaturized Inertial Stabilized Platforms on Unmanned Vehicles in Marine Applications
by Tianlei Fu, Lianwu Guan, Yanbin Gao and Chao Qin
J. Mar. Sci. Eng. 2024, 12(4), 616; https://doi.org/10.3390/jmse12040616 - 2 Apr 2024
Cited by 4 | Viewed by 1205
Abstract
This paper investigates an anticipatory activation anti-windup approach based on Linear Active Disturbance Rejection Control (LADRC) to address the influences of accelerated saturation on the actuators in a Miniaturized Inertial Stabilized Platform (MISP) with extreme external disturbance. The proposed method aims to eliminate [...] Read more.
This paper investigates an anticipatory activation anti-windup approach based on Linear Active Disturbance Rejection Control (LADRC) to address the influences of accelerated saturation on the actuators in a Miniaturized Inertial Stabilized Platform (MISP) with extreme external disturbance. The proposed method aims to eliminate the high-frequency vibrations on the Line of Sight (LOS) of electro-optical devices during actuator saturation. To achieve this, the Linear Extended State Observer (LESO) is modified by adding saturation feedback to the total disturbance observed state variable, which is operated as an anticipatory activation anti-windup compensator. The stability of the proposed controller is discussed, and the gains are optimized by the Linear Matrix Inequality (LMI) constraints though quadratic programming and an H-infinite performance indicator. Additionally, as the multiple activated scheme for anti-windup, the effectiveness of immediate activation in dealing with accelerated saturation is compared and analyzed. These comparisons and verification are implemented through simulations, where the external disturbance is introduced using recorded attitude data from USV sailing. Finally, experiments are conducted on an MISP for a visual tracking system, demonstrating that the anticipatory activation mothed effectively suppresses high-frequency vibrations on the LOS during instances of accelerated saturation. Full article
Show Figures

Figure 1

17 pages, 1057 KiB  
Article
Output Feedback Control for Spacecraft Attitude System with Practical Predefined-Time Stability Based on Anti-Windup Compensator
by Nguyen Xuan-Mung, Mehdi Golestani, Huu Tiep Nguyen, Ngoc Anh Nguyen and Afef Fekih
Mathematics 2023, 11(9), 2149; https://doi.org/10.3390/math11092149 - 4 May 2023
Cited by 5 | Viewed by 2291
Abstract
This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All [...] Read more.
This paper investigates the problem of output feedback attitude control for rigid spacecraft subject to inertia matrix uncertainty, space disturbance, and input saturation. Firstly, a model transformation is adopted to convert an attitude system with immeasurable angular velocity into a new system. All states of the new converted system are measurable and available for feedback; however, the system contains mismatched uncertainty resulting from the coordinate transformation. Then, an adaptive nonsingular back-stepping control with practical predefined-time convergence is designed. To resolve the problem of input saturation, an anti-windup compensator is developed. It is analytically proved that the spacecraft attitude and angular velocity are practical predefined-time stable, such that the convergence time is a given tunable constant. The simulation results reveal that the proposed control framework provides rapid attitude maneuver and actuator saturation elimination. Full article
(This article belongs to the Special Issue Analysis and Control of Nonlinear Dynamical System)
Show Figures

Figure 1

26 pages, 1211 KiB  
Article
Series PIDA Controller Design for IPDT Processes
by Mikulas Huba, Pavol Bistak and Damir Vrancic
Appl. Sci. 2023, 13(4), 2040; https://doi.org/10.3390/app13042040 - 4 Feb 2023
Cited by 19 | Viewed by 2736
Abstract
This paper discusses optimal design of the series proportional–integral–derivative–accelerative (PIDA) controller for integral-plus-dead-time (IPDT) plants. The article starts with the design of disturbance reconstruction and compensation based on proportional-derivative-accelerative (PDA) stabilizing controllers. It shows that by introducing positive feedback by a low-pass filter [...] Read more.
This paper discusses optimal design of the series proportional–integral–derivative–accelerative (PIDA) controller for integral-plus-dead-time (IPDT) plants. The article starts with the design of disturbance reconstruction and compensation based on proportional-derivative-accelerative (PDA) stabilizing controllers. It shows that by introducing positive feedback by a low-pass filter from the (limited) output of the stabilizing PDA controller, one gets disturbance observer (DOB) for the reconstruction and compensation of input disturbances. Thereby, the DOB functionality is based on evaluating steady-state controller output. This DOB interpretation is in full agreement with the results of the analysis of the optimal setting of the stabilizing PDA controller and of its expanded PIDA version with positive feedback from the controller output. By using the multiple real dominant pole (MRDP) method, it confirms that the low-pass filter time constant in positive feedback must be much longer than the dominant time constant of the stabilized loop. This paper also shows that the constrained PIDA controller with the MRDP setting leads to transient responses with input and output overshoots. Experimentally, such a constrained series PIDA controller can be shown as equivalent to a constrained MRDP tuned parallel PIDA controller in anti-windup connection using conditional integration. Next, the article explores the possibility of removing overshoots of the output and input of the process achieved for MRDP tuning by interchanging the parameters of the controller transfer function, which was proven as very effective in the case of the series PID controller. It shows that such a modification of the controller can only be implemented approximately, when the factorization of the controller numerator, which gives complex conjugate zeros, will be replaced by a double real zero. Neglecting the imaginary part and specifying the feedback time constant with a smaller approximative time constant results in the removal of overshoots, but the resulting dynamics will not be faster than for the previously mentioned solutions. A significant improvement in the closed-loop performance can finally be achieved by the optimal setting of the constrained series PIDA controller calculated using the performance portrait method. This article also points out the terminologically incorrect designation of the proposed structure as series PIDA controller, because it does not contain any explicit integral action. Instead, it proposes a more thorough revision of the interpretation of controllers based on automatic reset from the controller output, which do not contain any integrator, but at the same time represent the core of the most used industrial automation. In the end, constrained structures using automatic reset of the stabilizing controller output can ensure a higher performance of transient responses than the usually preferred solutions based on parallel controllers with integral action that, in order to respect the control signal limitation, must be supplemented with anti-windup circuitry. The excellent properties of the constrained series PIDA controller are demonstrated by an example of controlling a thermal process and proven by the circle criterion of absolute stability. Full article
(This article belongs to the Special Issue Industrial Robotics: Design and Applications)
Show Figures

Figure 1

14 pages, 5051 KiB  
Article
Current Control Method of Vehicle Permanent Magnet Synchronous Motor Based on Active Disturbance Rejection Control
by Jinyu Wang, Qiang Miao, Xiaomin Zhou, Lipeng Sun, Dawei Gao and Haifeng Lu
World Electr. Veh. J. 2023, 14(1), 2; https://doi.org/10.3390/wevj14010002 - 23 Dec 2022
Cited by 6 | Viewed by 3121
Abstract
Due to the frequently changing working conditions and complex operating environment of electric vehicle permanent magnet synchronous motor(PMSM), the motor parameters change dramatically. However, the performance of the PI current regulator, which is the most widely used, is sensitive to motor parameters and [...] Read more.
Due to the frequently changing working conditions and complex operating environment of electric vehicle permanent magnet synchronous motor(PMSM), the motor parameters change dramatically. However, the performance of the PI current regulator, which is the most widely used, is sensitive to motor parameters and has weak robustness, which will lead to the deterioration of motor control system performance. To address this problem, active disturbance rejection control (ADRC) technology is applied to the PMSM current loop control. Firstly, the traditional ADRC current regulator is designed, and the performance and parameter tuning laws of the extended state observer are analyzed by the method of frequency domain analysis. Then, the traditional ADRC algorithm is improved in three aspects: observation error compensation, utilization of model information and anti-windup. After that, simulations and bench test validation are performed. The simulation results show that the improved ADRC current regulator is more robust in the face of parameter changes. The torque step test results show that the improved ADRC current regulator has fast dynamic response without overshoot and has high robustness when the motor parameters change. The dynamic test results show that the improved ADRC current regulator has high robustness when the load, speed and motor parameters change, and the anti-windup measures designed can effectively overcome the integral saturation phenomenon. Full article
(This article belongs to the Special Issue Recent Advances in Electric Motor Drives for Electrified Mobility)
Show Figures

Graphical abstract

23 pages, 6767 KiB  
Article
Advanced Motor Control for Improving the Trajectory Tracking Accuracy of a Low-Cost Mobile Robot
by Luis Mérida-Calvo, Andrés San-Millán Rodríguez, Francisco Ramos and Vicente Feliu-Batlle
Machines 2023, 11(1), 14; https://doi.org/10.3390/machines11010014 - 23 Dec 2022
Cited by 8 | Viewed by 4040
Abstract
Accurate trajectory tracking is a paramount objective when a mobile robot must perform complicated tasks. In high-speed movements, time delays appear when reaching the desired position and orientation, as well as overshoots in the changes of orientation, which prevent the execution of some [...] Read more.
Accurate trajectory tracking is a paramount objective when a mobile robot must perform complicated tasks. In high-speed movements, time delays appear when reaching the desired position and orientation, as well as overshoots in the changes of orientation, which prevent the execution of some tasks. One of the aspects that most influences the tracking performance is the control system of the actuators of the robot wheels. It usually implements PID controllers that, in the case of low-cost robots, do not yield a good tracking performance owing to friction nonlinearity, hardware time delay and saturation. We propose to overcome these problems by designing an advanced process control system composed of a PID controller plus a prefilter combined with a Smith predictor, an anti-windup scheme and a Coulomb friction compensator. The contribution of this article is the motor control scheme and the method to tune the parameters of the controllers. It has been implemented in a well-known low-cost small mobile robot and experiments have been carried out that demonstrate the improvement achieved in the performance by using this control system. Full article
(This article belongs to the Special Issue Advances in Automatic Control)
Show Figures

Figure 1

24 pages, 8742 KiB  
Article
Integral Windup Resetting Enhancement for Sliding Mode Control of Chemical Processes with Longtime Delay
by Alvaro Javier Prado, Marco Herrera, Xavier Dominguez, Jose Torres and Oscar Camacho
Electronics 2022, 11(24), 4220; https://doi.org/10.3390/electronics11244220 - 18 Dec 2022
Cited by 14 | Viewed by 3113
Abstract
The effects of the windup phenomenon impact the performance of integral controllers commonly found in industrial processes. In particular, windup issues are critical for controlling variable and longtime delayed systems, as they may not be timely corrected by the tracking error accumulation and [...] Read more.
The effects of the windup phenomenon impact the performance of integral controllers commonly found in industrial processes. In particular, windup issues are critical for controlling variable and longtime delayed systems, as they may not be timely corrected by the tracking error accumulation and saturation of the actuators. This work introduces two anti-windup control algorithms for a sliding mode control (SMC) framework to promptly reset the integral control action in the discontinuous mode without inhibiting the robustness of the overall control system against disturbances. The proposed algorithms are intended to anticipate and steer the tracking error toward the origin region of the sliding surface based on an anti-saturation logistic function and a robust compensation action fed by system output variations. Experimental results show the effectiveness of the proposed algorithms when they are applied to two chemical processes, i.e., (i) a Variable Height Mixing Tank (VHMT) and (ii) Continuous Stirred Tank Reactor (CSTR) with a variable longtime delay. The control performance of the proposed anti-windup approaches has been assessed under different reference and disturbance changes, exhibiting that the tracking control performance in the presence of disturbances is enhanced up to 24.35% in terms of the Integral Square Error (ISE) and up to 88.7% regarding the Integral Time Square Error (ITSE). Finally, the results of the proposed methodology demonstrated that the excess of cumulative energy by the actuator saturation could reduce the process resources and also extend the actuator’s lifetime span. Full article
(This article belongs to the Special Issue Sliding Mode Control in Dynamic Systems)
Show Figures

Figure 1

25 pages, 7049 KiB  
Article
Adaptive Backstepping Nonsingular Terminal Sliding-Mode Attitude Control of Flexible Airships with Actuator Faults
by Shiqian Liu, James F. Whidborne, Sipeng Song and Weizhi Lyu
Aerospace 2022, 9(4), 209; https://doi.org/10.3390/aerospace9040209 - 11 Apr 2022
Cited by 1 | Viewed by 2951
Abstract
This paper studies the attitude tracking control of a flexible airship subjected to wind disturbances, actuator saturation and control surface faults. Efficient flexible airship models, including elastic deformation, rigid body motions, and their coupling, are established via Lagrange theory. A fast-nonsingular terminal sliding-mode [...] Read more.
This paper studies the attitude tracking control of a flexible airship subjected to wind disturbances, actuator saturation and control surface faults. Efficient flexible airship models, including elastic deformation, rigid body motions, and their coupling, are established via Lagrange theory. A fast-nonsingular terminal sliding-mode (NTSM) combined with a backstepping control is proposed for the problem. The benefits of this approach are NTSM merits of high robustness, fast transient response, and finite time convergence, as well as the backstepping control in terms of globally asymptotic stability. However, the major limitation of the backstepping NTSM is that its design procedure is dependent on the prior knowledge of the bound values of the disturbance and faults. To overcome this limitation, a wind observer is designed to compensate for the effect of the wind disturbances, an anti-windup compensator is designed to compensate for actuator saturation, and an adaptive fault estimator is designed to estimate the faults of the control surfaces. Globally exponential stability of the closed-loop control system is guaranteed by using the Lyapunov stability theory. Finally, simulation results demonstrate effectiveness and advantages of the proposed control for the Skyship-500 flexible airship, even in the presence of unknown wind disturbances, control surface faults, and different stiffness variants. Full article
(This article belongs to the Special Issue Aircraft Modeling for Design, Simulation and Control)
Show Figures

Figure 1

20 pages, 13239 KiB  
Article
Design and Validation of Disturbance Rejection Dynamic Inverse Control for a Tailless Aircraft in Wind Tunnel
by Bowen Nie, Zhitao Liu, Tianhao Guo, Litao Fan, Hongxu Ma and Olivier Sename
Appl. Sci. 2021, 11(4), 1407; https://doi.org/10.3390/app11041407 - 4 Feb 2021
Cited by 11 | Viewed by 3158
Abstract
This paper focuses on the design of a disturbance rejection controller for a tailless aircraft based on the technique of nonlinear dynamic inversion (NDI). The tailless aircraft model mounted on a three degree-of-freedom (3-DOF) dynamic rig in the wind tunnel is modeled as [...] Read more.
This paper focuses on the design of a disturbance rejection controller for a tailless aircraft based on the technique of nonlinear dynamic inversion (NDI). The tailless aircraft model mounted on a three degree-of-freedom (3-DOF) dynamic rig in the wind tunnel is modeled as a nonlinear affine system subject to mismatched disturbances. First of all, a baseline NDI attitude controller is designed for sufficient stability and good reference tracking performance of the nominal system. Then, a nonlinear disturbance observer (NDO) is supplemented to the baseline NDI controller to estimate the lumped disturbances for compensation, including unmodeled dynamics, parameter uncertainties, and external disturbances. Mathematical analysis demonstrates the convergence of the employed NDO and the resulting closed-loop system. Furthermore, an anti-windup modification is applied to the NDO for control performance preserving in the presence of actuator saturation. Subsequently, the designed control schemes are preliminarily validated and compared via simulations. The baseline NDI controller demonstrates satisfactory attitude tracking performance in the case of nominal simulation; the NDO augmented NDI controller presents significantly improved ability of disturbance rejection when compared with the baseline NDI controller in the case of robust simulation; the anti-windup modified scheme, rather than the baseline NDI controller nor the NDO augmented NDI controller, can preserve the closed-loop performance in the case of actuator saturation. Finally, the baseline NDI scheme and the NDO augmented NDI scheme are implemented and further validated in the wind tunnel flight tests, which demonstrate that the experimental results are in good agreement with that of the simulations. Full article
(This article belongs to the Special Issue Aircraft Modeling and Simulation)
Show Figures

Figure 1

22 pages, 8327 KiB  
Article
Finite Time Convergence Incremental Nonlinear Dynamic Inversion-Based Attitude Control for Flying—Wing Aircraft with Actuator Faults
by Shaojie Zhang, Wuhan Han and Yuemei Zhang
Actuators 2020, 9(3), 70; https://doi.org/10.3390/act9030070 - 17 Aug 2020
Cited by 11 | Viewed by 3828
Abstract
In this paper, a two-loop fault-tolerant attitude control scheme is proposed for flying-wing aircraft with actuator faults. A regular nonlinear dynamic inversion (NDI) control is used in the outer attitude loop, and a finite time convergence incremental nonlinear dynamic inversion (FINDI) control combined [...] Read more.
In this paper, a two-loop fault-tolerant attitude control scheme is proposed for flying-wing aircraft with actuator faults. A regular nonlinear dynamic inversion (NDI) control is used in the outer attitude loop, and a finite time convergence incremental nonlinear dynamic inversion (FINDI) control combined with control allocation strategy is used in the inner angular rate loop. Prescribed performance bound (PPB) is designed to constrain the tracking errors within a residual set, so the prescribed system performance can be guaranteed. An optimal anti-windup (AW) compensator is introduced to solve the actuator saturation problem. Simulation results demonstrate the effectiveness of the proposed approach. Full article
(This article belongs to the Special Issue Advanced Actuators for Aerospace Systems)
Show Figures

Figure 1

35 pages, 16938 KiB  
Article
Design of Airport Obstacle-Free Zone Monitoring UAV System Based on Computer Vision
by Liang Wang, Jianliang Ai, Li Zhang and Zhenlin Xing
Sensors 2020, 20(9), 2475; https://doi.org/10.3390/s20092475 - 27 Apr 2020
Cited by 14 | Viewed by 5318
Abstract
In recent years, a rising number of incidents between Unmanned Aerial Vehicles (UAVs) and planes have been reported at airports and airfields. A design scheme for an airport obstacle-free zone monitoring UAV system based on computer vision is proposed. The system integrates the [...] Read more.
In recent years, a rising number of incidents between Unmanned Aerial Vehicles (UAVs) and planes have been reported at airports and airfields. A design scheme for an airport obstacle-free zone monitoring UAV system based on computer vision is proposed. The system integrates the functions of identification, tracking, and expelling and is mainly used for low-cost control of balloon airborne objects and small aircrafts. First, a quadcopter dynamic model and 2-Degrees of Freedom (2-DOF) Pan/Tilt/Zoom (PTZ) model are analyzed, and an attitude back-stepping controller based on disturbance compensation is designed. Second, a low and slow small-target self-identification and tracking technology is constructed against a complex environment. Based on the You Only Look Once (YOLO) and Kernel Correlation Filter (KCF) algorithms, an autonomous target recognition and high-speed tracking plan with great robustness and high reliability is designed. Third, a PTZ controller and automatic aiming strategy based on Anti-Windup Proportional Integral Derivative (PID) algorithm is designed, and a simplified, automatic-aiming expelling device, the environmentally friendly gel ball blaster, which features high speed and high accuracy, is built. The feasibility and stability of the project can be verified through prototype experiments. Full article
(This article belongs to the Special Issue UAV-Based Smart Sensor Systems and Applications)
Show Figures

Figure 1

14 pages, 299 KiB  
Article
Stabilization of Delta Operator Systems with Actuator Saturation via an Anti-Windup Compensator
by Hafsaa Rachid, Ouarda Lamrabet and El Houssaine Tissir
Symmetry 2019, 11(9), 1084; https://doi.org/10.3390/sym11091084 - 29 Aug 2019
Cited by 15 | Viewed by 2330
Abstract
The design of an anti-windup controller for delta operator systems with time-varying delay and actuator saturation is addressed. By utilizing the input-output approach and three-term approximation, we first transform the original system into two equivalent interconnected subsystems. Then, by employing the scaled small-gain [...] Read more.
The design of an anti-windup controller for delta operator systems with time-varying delay and actuator saturation is addressed. By utilizing the input-output approach and three-term approximation, we first transform the original system into two equivalent interconnected subsystems. Then, by employing the scaled small-gain theorem, the Lyapunov–Krasovskii functional, and Wirtinger’s integral inequality, sufficient conditions for the synthesis of an anti-windup compensator are presented in the form of linear matrix inequalities (LMIs). The estimated domain of attraction is maximized by an optimization algorithm. Numerical examples are studied to show the merits of the proposed technique. Full article
Show Figures

Figure 1

Back to TopTop