Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (353)

Search Parameters:
Keywords = anti-glycating activity

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 2613 KiB  
Article
Sustainable Olive Pomace Extracts for Skin Barrier Support
by Roberta Cougo Riéffel, Lucas Agostini, Naira Poener Rodrigues, Simone Jacobus Berlitz, Lígia Damasceno Ferreira Marczak and Irene Clemes Külkamp-Guerreiro
Pharmaceutics 2025, 17(8), 962; https://doi.org/10.3390/pharmaceutics17080962 - 25 Jul 2025
Viewed by 365
Abstract
Background: Olive pomace, a byproduct of olive oil production, represents approximately 85% of the processed material and poses environmental risks when improperly discarded. Its composition is rich in polyphenols with potential for cosmetic use, especially in skin barrier care. Objective: To [...] Read more.
Background: Olive pomace, a byproduct of olive oil production, represents approximately 85% of the processed material and poses environmental risks when improperly discarded. Its composition is rich in polyphenols with potential for cosmetic use, especially in skin barrier care. Objective: To develop a natural extract rich in antioxidants from olive pomace using sustainable solvents (water and 1,3-propanediol) for skin barrier support. Methods: The phenolic composition and in vitro biological activities of the extracts were analyzed. Results: The extracts demonstrated a reducing capacity (15 to 33 mg GAE/g) and flavonoid content (4 to 5 mg QE/g). In addition, their antioxidant capacity was proven through the inhibition of the DPPH radical (7% to 91%) and ABTS (7% to 95%) and the reduction in oxidation in the beta-carotene/linoleic acid system (6% to 35%), presenting results superior to those of tocopherol acetate. The hydroxytyrosol and oleuropein compounds, ranging from 28 to 54 and 51 to 85 µg/mL, respectively, were quantified via HPLC. The extract with the highest levels of hydroxytyrosol and oleuropein was analyzed via UHPLC-QqTOF-MS, and 33 compounds were identified. This extract showed antiglycation activity (24% to 40%). The incorporation of this extract into a cosmetic emulsion resulted in sufficient antioxidant capacity to replace tocopherol acetate. Conclusions: The use of effective extraction techniques and nontoxic solvents ensures the sustainability and safety of the extract for application as a natural cosmetic ingredient, aiming to promote the health and integrity of the skin barrier. Full article
Show Figures

Graphical abstract

39 pages, 2934 KiB  
Review
Phytocannabinoids as Novel SGLT2 Modulators for Renal Glucose Reabsorption in Type 2 Diabetes Management
by Raymond Rubianto Tjandrawinata, Dante Saksono Harbuwono, Sidartawan Soegondo, Nurpudji Astuti Taslim and Fahrul Nurkolis
Pharmaceuticals 2025, 18(8), 1101; https://doi.org/10.3390/ph18081101 - 24 Jul 2025
Viewed by 485
Abstract
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target [...] Read more.
Background: Sodium–glucose cotransporter 2 (SGLT2) inhibitors have transformed type 2 diabetes mellitus (T2DM) management by promoting glucosuria, lowering glycated hemoglobin (HbA1c), blood pressure, and weight; however, their use is limited by genitourinary infections and ketoacidosis. Phytocannabinoids—bioactive compounds from Cannabis sativa—exhibit multi-target pharmacology, including interactions with cannabinoid receptors, Peroxisome Proliferator-Activated Receptors (PPARs), Transient Receptor Potential (TRP) channels, and potentially SGLT2. Objective: To evaluate the potential of phytocannabinoids as novel modulators of renal glucose reabsorption via SGLT2 and to compare their efficacy, safety, and pharmacological profiles with synthetic SGLT2 inhibitors. Methods: We performed a narrative review encompassing the following: (1) the molecular and physiological roles of SGLT2; (2) chemical classification, natural sources, and pharmacokinetics/pharmacodynamics of major phytocannabinoids (Δ9-Tetrahydrocannabinol or Δ9-THC, Cannabidiol or CBD, Cannabigerol or CBG, Cannabichromene or CBC, Tetrahydrocannabivarin or THCV, and β-caryophyllene); (3) in silico docking and drug-likeness assessments; (4) in vitro assays of receptor binding, TRP channel modulation, and glucose transport; (5) in vivo rodent models evaluating glycemic control, weight change, and organ protection; (6) pilot clinical studies of THCV and case reports of CBD/BCP; (7) comparative analysis with established synthetic inhibitors. Results: In silico studies identify high-affinity binding of several phytocannabinoids within the SGLT2 substrate pocket. In vitro, CBG and THCV modulate SGLT2-related pathways indirectly via TRP channels and CB receptors; direct IC50 values for SGLT2 remain to be determined. In vivo, THCV and CBD demonstrate glucose-lowering, insulin-sensitizing, weight-reducing, anti-inflammatory, and organ-protective effects. Pilot clinical data (n = 62) show that THCV decreases fasting glucose, enhances β-cell function, and lacks psychoactive side effects. Compared to synthetic inhibitors, phytocannabinoids offer pleiotropic benefits but face challenges of low oral bioavailability, polypharmacology, inter-individual variability, and limited large-scale trials. Discussion: While preclinical and early clinical data highlight phytocannabinoids’ potential in SGLT2 modulation and broader metabolic improvement, their translation is impeded by significant challenges. These include low oral bioavailability, inconsistent pharmacokinetic profiles, and the absence of standardized formulations, necessitating advanced delivery system development. Furthermore, the inherent polypharmacology of these compounds, while beneficial, demands comprehensive safety assessments for potential off-target effects and drug interactions. The scarcity of large-scale, well-controlled clinical trials and the need for clear regulatory frameworks remain critical hurdles. Addressing these aspects is paramount to fully realize the therapeutic utility of phytocannabinoids as a comprehensive approach to T2DM management. Conclusion: Phytocannabinoids represent promising multi-target agents for T2DM through potential SGLT2 modulation and complementary metabolic effects. Future work should focus on pharmacokinetic optimization, precise quantification of SGLT2 inhibition, and robust clinical trials to establish efficacy and safety profiles relative to synthetic inhibitors. Full article
Show Figures

Graphical abstract

24 pages, 4295 KiB  
Article
Acrocomia aculeata Oil-Loaded Nanoemulsion: A Promising Candidate for Cancer and Diabetes Management
by Ariadna Lafourcade Prada, Jesus Rafael Rodríguez Amado, Renata Trentin Perdomo, Giovanna Bicudo Gomes, Danielle Ayr Tavares de Almeida, Leandro Fontoura Cavalheiro, Arquimedes Gasparotto Junior, Serafim Florentino Neto and Marco Antonio Utrera Martines
Pharmaceuticals 2025, 18(8), 1094; https://doi.org/10.3390/ph18081094 - 24 Jul 2025
Viewed by 339
Abstract
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well [...] Read more.
Background: Diabetes and cancer are two of the most life-threatening disorders affecting individuals of all ages worldwide. This study aimed to develop a novel Acrocomia aculeata (bocaiuva) fruit pulp oil-loaded nanoemulsion and evaluate its inhibitory effects on α-glucosidase and pancreatic lipase, as well as its antiglycant activity and cytotoxicity against cancer cells. Additionally, this study assessed the impact of both the oil and the nanoemulsion on blood cells. Methods: The pulp oil was extracted by cold pressing. The oil’s physicochemical properties were determined according to the AOAC and the Brazilian Pharmacopeia. The lipid profile was performed by GC-MS. The nanoemulsion was prepared by the phase inversion method using ultrasonic stirring for particle size reduction and for homogenization. Response Surface Methodology was used for optimizing nanoemulsion preparation. Enzyme inhibition tests were conducted using assay kits. Cytotoxicity in cancer cells was evaluated using the Sulforhodamine B assay. Results: Comprehensive physicochemical and chemical characterization of bocaiuva oil was performed, identifying oleic acid (71.25%) as the main component. The oil contains 23.04% saturated fatty acids, 73.79% monounsaturated acids, and 3.0% polyunsaturated fatty acids. The nanoemulsion (particle size 173.6 nm; zeta potential −14.10 mV) inhibited α-glucosidase (IC50: 43.21 µg/mL) and pancreatic lipase (IC50: 41.99 µg/mL), and revealed a potent antiglycation effect (oxidative IC50: 18.36 µg/mL; non-oxidative pathway IC50: 16.33 µg/mL). The nanoemulsion demonstrated good cytotoxicity and selectivity against prostate cancer cells (IC50: 19.13 µg/mL) and breast cancer cells (IC50: 27.22 µg/mL), without inducing hemolysis, platelet aggregation, or anticoagulant effects. Conclusions: In this study, a comprehensive physical and chemical characterization of bocaiuva fruit pulp oil was conducted for the first time as a preliminary step toward its future standardization as an active ingredient in cosmetic and pharmaceutical formulations. The resulting nanoemulsion represents a novel alternative for managing diabetes and cancer. Although the nanoemulsion exhibited lower cytotoxicity compared to doxorubicin, it remains promising due to its composition of essential fatty acids, phenols, and carotenoids, which offer multiple health benefits. Further studies are needed to validate its efficacy and safety in clinical applications. Full article
(This article belongs to the Special Issue Nanotechnology in Biomedical Applications)
Show Figures

Graphical abstract

26 pages, 2490 KiB  
Article
Diet-Derived Advanced Glycation End-Products (AGEs) Induce Muscle Wasting In Vitro, and a Standardized Vaccinium macrocarpon Extract Restrains AGE Formation and AGE-Dependent C2C12 Myotube Atrophy
by Martina Paiella, Tommaso Raiteri, Simone Reano, Dominga Manfredelli, Tommaso Manenti, Giulia Gentili, Hajar Meskine, Sara Chiappalupi, Giovanni Bellomo, Flavia Prodam, Cinzia Antognelli, Roccaldo Sardella, Anna Migni, Guglielmo Sorci, Laura Salvadori, Nicoletta Filigheddu and Francesca Riuzzi
Antioxidants 2025, 14(8), 900; https://doi.org/10.3390/antiox14080900 - 23 Jul 2025
Viewed by 385
Abstract
Dietary advanced glycation end-products (dAGEs) contained in high-sugar/fat and ultra-processed foods of the “Western diet” (WD) pattern predispose to several diseases by altering protein function or increasing oxidative stress and inflammation via RAGE (receptor for advanced glycation end-products). Although elevated endogenous AGEs are [...] Read more.
Dietary advanced glycation end-products (dAGEs) contained in high-sugar/fat and ultra-processed foods of the “Western diet” (WD) pattern predispose to several diseases by altering protein function or increasing oxidative stress and inflammation via RAGE (receptor for advanced glycation end-products). Although elevated endogenous AGEs are associated with loss of muscle mass and functionality (i.e., muscle wasting; MW), the impact of dAGEs on MW has not been elucidated. Here, we show that the most common dAGEs or their precursor, methylglyoxal (MGO), induce C2C12 myotube atrophy as endogenous AGE-derived BSA. ROS production, mitochondrial dysfunction, mitophagy, ubiquitin–proteasome activation, and inhibition of myogenic potential are common atrophying mechanisms used by MGO and AGE-BSA. Although of different origins, ROS are mainly responsible for AGE-induced myotube atrophy. However, while AGE-BSA activates the RAGE-myogenin axis, reduces anabolic mTOR, and causes mitochondrial damage, MGO induces glycolytic stress and STAT3 activation without affecting RAGE expression. Among thirty selected natural compounds, Vaccinium macrocarpon (VM), Camellia sinensis, and chlorophyll showed a surprising ability in counteracting in vitro AGE formation. However, only the standardized VM, containing anti-glycative metabolites as revealed by UHPLC-HRMS analysis, abrogates AGE-induced myotube atrophy. Collectively, our data suggest that WD-linked dAGE consumption predisposes to MW, which might be restricted by VM food supplements. Full article
Show Figures

Graphical abstract

22 pages, 4534 KiB  
Article
Upcycled Cocoa Pod Husk: A Sustainable Source of Phenol and Polyphenol Ingredients for Skin Hydration, Whitening, and Anti-Aging
by Aknarin Anatachodwanit, Setinee Chanpirom, Thapakorn Tree-Udom, Sunsiri Kitthaweesinpoon, Sudarat Jiamphun, Ongon Aryuwat, Cholpisut Tantapakul, Maria Pilar Vinardell and Tawanun Sripisut
Life 2025, 15(7), 1126; https://doi.org/10.3390/life15071126 - 17 Jul 2025
Viewed by 726
Abstract
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% [...] Read more.
Theobroma cacao L. (cocoa) pod husk, a byproduct of the chocolate industry, has potential for commercial applications due to its bioactive compounds. This study aimed to determine the phytochemical composition, biological activity, and clinical efficacy of a standardized extract. This study compared 80% ethanol (CE) and 80% ethanol acidified (CEA) as extraction solvents. The result indicated that CEA yielded higher total phenolic content (170.98 ± 7.41 mg GAE/g extract) and total flavonoid content (3.91 ± 0.27 mg QE/g extract) than CE. Liquid chromatography–tandem mass spectrometry (LC/MS/MS) identified various phenolic and flavonoid compounds. CEA demonstrated stronger anti-oxidant (IC50 = 5.83 ± 0.11 μg/mL in the DPPH assay and 234.17 ± 4.01 mg AAE/g extract in the FRAP assay) compared to CE. Additionally, CEA exhibited anti-tyrosinase (IC50 = 9.51 ± 0.01 mg/mL), anti-glycation (IC50 = 62.32 ± 0.18 µg/mL), and anti-collagenase (IC50 = 0.43 ± 0.01 mg/mL), nitric oxide (NO) production inhibitory (IC50 = 62.68 μg/mL) activities, without causing toxicity to cells. A formulated lotion containing CEA (0.01–1.0% w/w) demonstrated stability over six heating–cooling cycles. A clinical study with 30 volunteers showed no skin irritation. The 1.0% w/w formulation (F4) improved skin hydration (+52.48%), reduced transepidermal water loss (−7.73%), and decreased melanin index (−9.10%) after 4 weeks of application. These findings suggest cocoa pod husk extract as a promising active ingredient for skin hydrating and lightening formulation. Nevertheless, further long-term studies are necessary to evaluate its efficacy in anti-aging treatments. Full article
(This article belongs to the Special Issue Bioactive Compounds for Medicine and Health)
Show Figures

Figure 1

22 pages, 1090 KiB  
Article
Functional Properties of Campomanesia xanthocarpa Infusions: Phenolic Profile, Digestive Stability, Enzyme Inhibition, and Glycemic Effects
by Cristiane Maria Chitolina Tremea, Vanessa Ruana Ferreira da Silva, Larissa Cunico, Vinícius Gottardo Boff, Carolina Turnes Pasini Deolindo, Aleksandro Shafer da Silva and Aniela Pinto Kempka
Foods 2025, 14(14), 2469; https://doi.org/10.3390/foods14142469 - 14 Jul 2025
Viewed by 298
Abstract
This study investigated the functional potential of Campomanesia xanthocarpa leaf and fruit infusions through phytochemical profiling, simulated gastrointestinal digestion, enzyme inhibition assays, and in vivo evaluation of glycemic markers. Leaf infusions exhibited a more diverse phenolic profile, higher total phenolic content, and greater [...] Read more.
This study investigated the functional potential of Campomanesia xanthocarpa leaf and fruit infusions through phytochemical profiling, simulated gastrointestinal digestion, enzyme inhibition assays, and in vivo evaluation of glycemic markers. Leaf infusions exhibited a more diverse phenolic profile, higher total phenolic content, and greater antioxidant capacity compared to fruit infusions. Simulated digestion confirmed the bioaccessibility of key phenolic compounds, particularly glycosylated flavonoids such as quercetin-3-glucoside and kaempferol derivatives, with leaf extracts showing superior gastrointestinal stability. In vitro assays revealed a strong inhibitory activity of leaf infusions against α-amylase and β-glucosidase. In a 32-day trial with healthy dogs, the consumption of biscuits enriched with leaf infusion did not alter fasting glucose or amylase levels but resulted in a significant treatment × time interaction for serum fructosamine, indicating a delayed modulation of glycemic control, potentially associated with antioxidant or anti-glycation activity. These findings highlight the potential of C. xanthocarpa leaves as a functional ingredient in foods aimed at supporting glycemic regulation and metabolic health. Full article
Show Figures

Graphical abstract

16 pages, 2393 KiB  
Article
Structural and Biological Properties of Rhamnogalacturonan-I-Enriched Pectin Isolated from Cardamine tangutorum and Cardamine macrophylla
by Mei-Mei Qu Mo, Bo Li, Ding-Tao Wu, Jing Feng, Jing Wei, Yan Wan, Juan Li, Yuan Liu and Wen-Bing Li
Foods 2025, 14(13), 2340; https://doi.org/10.3390/foods14132340 - 1 Jul 2025
Viewed by 556
Abstract
C. macrophylla and C. tangutorum, collectively known as Shigecai in Chinese, are consumed as special and nutritious vegetables by the Tibetan, Qiang, and Yi communities in China. However, due to the insufficient knowledge of their phytochemical compositions and health benefits, the industrial [...] Read more.
C. macrophylla and C. tangutorum, collectively known as Shigecai in Chinese, are consumed as special and nutritious vegetables by the Tibetan, Qiang, and Yi communities in China. However, due to the insufficient knowledge of their phytochemical compositions and health benefits, the industrial utilization of these species in the food sector remains limited. Although Shigecai leaves contain substantial pectic polysaccharides, their chemical structures and biological activities remain unknown, which ultimately restricts their industrial utilization. Thus, to address this gap, this study systematically analyzed the chemical characteristics and biological functions of rhamnogalacturonan-I (RG-I)- enriched pectin from C. tangutorum (CTHDP) and C. macrophylla (CMHDP) leaves. The results demonstrate that Shigecai leaves are promising sources of RG-I-enriched pectin, with yields of 57.63–65.21 mg/g dry weight. In addition, both CTHDP and CMHDP exhibited highly similar chemical and structural properties, dominated by RG-I and homogalacturonan (HG) pectin regions, with RG-I ratios of 60.14–63.33 mol%. Furthermore, both samples demonstrated notable antioxidant ability, antiglycation activity, prebiotic potency, and immunoregulatory effects, which were strongly linked to their bound polyphenol content, uronic acid content, and molecular weight. These findings support the industrial utilization of Shigecai and establish Shigecai-derived RG-I-enriched pectin as a promising functional food ingredient. Full article
Show Figures

Figure 1

28 pages, 1754 KiB  
Article
Effects of Periploca chevalieri Browicz on Postprandial Glycemia and Carbohydrate-Hydrolyzing Enzymes
by Katelene Lima, Maryam Malmir, Shabnam Sabiha, Rui Pinto, Isabel Moreira da Silva, Maria Eduardo Figueira, João Rocha, Maria Paula Duarte and Olga Silva
Pharmaceuticals 2025, 18(6), 913; https://doi.org/10.3390/ph18060913 - 18 Jun 2025
Viewed by 461
Abstract
Background/Objectives: Periploca chevalieri Browicz (Apocynaceae), an endemic species of the Cabo Verde archipelago, is commonly used in traditional medicine for the treatment of diabetes. The aim of this study was to characterize the chemical profiles of the aqueous and hydroethanolic [...] Read more.
Background/Objectives: Periploca chevalieri Browicz (Apocynaceae), an endemic species of the Cabo Verde archipelago, is commonly used in traditional medicine for the treatment of diabetes. The aim of this study was to characterize the chemical profiles of the aqueous and hydroethanolic (70%) extracts of the P. chevalieri dried aerial parts (PcAE and PcEE) and evaluate their potential to modulate postprandial glycemia and inhibit key carbohydrate-hydrolyzing enzymes. Methods: The chemical characterization was performed by LC/UV-DAD-ESI/MS/MS. An in vivo evaluation of postprandial glycemia modulation was conducted on healthy CD1 mice submitted to an oral sucrose tolerance test. In vitro enzymatic inhibition was performed for the α-amylase, α-glucosidase, and DPP4 enzymes. Additionally, antioxidant and antiglycation activities were also assessed. Results: Phenolic acid derivatives, flavanols, proanthocyanidins, and flavonols were the major classes of secondary metabolites identified. PcEE at 170 mg/kg of body weight significantly (p < 0.05) reduced the postprandial glycemia peak in CD1 mice submitted to sucrose overload. Regarding the enzymatic inhibition, both extracts showed concentration-dependent inhibitory potential against the α-amylase, α-glucosidase, and DPP4 enzymes. Both extracts inhibited α-glucosidase more effectively than acarbose. Conclusions: The obtained results supports the traditional use of P. chevalieri and suggest the potential for further pharmacological investigation. Full article
Show Figures

Graphical abstract

27 pages, 2952 KiB  
Article
Promising Dietary Supplements with Potential Senotherapeutic Effects: Aqueous Extracts from Enzymatically Hydrolysed Hemp Seed Cake Flour and Hemp Seed Protein Concentrate
by Anthea Miller, Inga Kwiecień, Marek Bednarski, Małgorzata Zygmunt, Jacek Sapa, Mateusz Sablik, Giorgia Pia Lombardo, Concetta Condurso, Maria Merlino and Magdalena Kotańska
Antioxidants 2025, 14(6), 734; https://doi.org/10.3390/antiox14060734 - 15 Jun 2025
Viewed by 649
Abstract
In the present study, the primary by-products of the hemp-seed oil process—hemp seed cake flour and hemp seed protein concentrate—underwent enzymatic hydrolysis using proteases and carbohydrases, either individually or in combination. The effectiveness of these enzymatic treatments in releasing bioactive compounds was evaluated [...] Read more.
In the present study, the primary by-products of the hemp-seed oil process—hemp seed cake flour and hemp seed protein concentrate—underwent enzymatic hydrolysis using proteases and carbohydrases, either individually or in combination. The effectiveness of these enzymatic treatments in releasing bioactive compounds was evaluated by assessing the antioxidant and anti-inflammatory properties of the aqueous extracts of both hydrolysed and untreated hemp by-products. The aim was to explore their potential senotherapeutic properties and promote their application as dietary supplements. Secondary metabolites such as flavonoids, phenolic acids, and catechins were analysed using high-performance liquid chromatography. Total phenolic, flavonoid, and protein contents were determined using spectrophotometric methods. Scavenging activity (2,2-Diphenyl-1-picrylhydrazyl scavenging assay (DPPH assay)), antioxidant power (Ferric reducing antioxidant power assay (FRAP assay)), and lipid peroxidation-reducing activity (thiobarbituric acid-reactive substance analysis) were assessed through in vitro assays. Possible anti-inflammatory effects were evaluated by assessing haemolysis inhibition. The impact of extracts on albumin glycation induced by exposure to fructose was also determined. To assess the toxicity of extracts, a zebrafish larvae model was employed. All extracts contained significant amounts of phenolic compounds, flavonoids, and proteins, and they exhibited notable activities in reducing lipid peroxidation and stabilising erythrocyte cell membranes. However, they did not significantly influence protein glycation (the glycation inhibition was only in the range of 15–40%). Our research demonstrates the substantial health-promoting potential, including senescence delay, of aqueous extracts from by-products of the hemp-seed oil process, which are available in large quantities and can serve as valuable supplements to support the health of animals, including humans, rather than being discarded as waste from oil production. Full article
(This article belongs to the Special Issue Natural Antioxidants and Their Oxidized Derivatives in Processed Food)
Show Figures

Figure 1

14 pages, 869 KiB  
Article
Multifaceted Biological Activity of Rutin, Quercetin, and Quercetin’s Glucosides
by Danuta Zielińska, Małgorzata Starowicz, Małgorzata Wronkowska and Henryk Zieliński
Molecules 2025, 30(12), 2555; https://doi.org/10.3390/molecules30122555 - 11 Jun 2025
Cited by 1 | Viewed by 660
Abstract
In this study, the ranking of the multifaceted activity of rutin (Ru), quercetin (Q), and quercetin’s glucosides (Q3G, Q4′G and Q3,4′G) was addressed. The antioxidant potency was determined by electrochemical methods, whereas the ability of these compounds to inhibit angiotensin-converting enzyme (ACE) activity, [...] Read more.
In this study, the ranking of the multifaceted activity of rutin (Ru), quercetin (Q), and quercetin’s glucosides (Q3G, Q4′G and Q3,4′G) was addressed. The antioxidant potency was determined by electrochemical methods, whereas the ability of these compounds to inhibit angiotensin-converting enzyme (ACE) activity, acetylcholinesterase (AChE) activity, and advanced glycation endproduct (AGE) formation was examined in bovine serum albumin (BSA)/glucose and BSA/methylglyoxal (MGO) model systems to show their importance against hypertension, Alzheimer-type dementia, and diabetic complication, respectively. Then, the relationship between the biological activities of these compounds and their antioxidant potential provided by the cyclic voltammetry (CV) method was evaluated. The ranking of the ACE inhibitory activity was Q > Q3,4′G > Ru > Q3G > Q4′G. The correlation coefficient between ACE enzyme inhibitory activities and antioxidant potentials had a value of r = −0.68, thus clearly indicating the impact of antioxidant potential and chemical structure on ACE inhibitory activity. The ranking of the AChE enzyme inhibitory activity was Q ≈ Q3G ≈ Q4′G ≈ Ru > Q3,4′G, and the correlation between their antioxidant potentials and AChE inhibitory activities (r = −0.77) also indicated the impact of chemical structure. The quercetin glucosides displayed strong inhibitory capacity on AGE formation, as the ranking of anti-AGE activity in the BSA/MGO model system was Q3,4′G ≈ Q4′G ≈ Q3G > Ru ≈ Q > AG. The anti-AGE activity of rutin, quercetin, and quercetin’s glucosides was negatively correlated with their IC50 values for ACE inhibition (r = −0.67) and AChE inhibition (r = −0.81), whereas no correlation was found between their ACE and AChE inhibition activities. These effects of rutin, quercetin, and quercetin’s glucosides expand our knowledge of the multifunctional activity of biologically active compounds of plant origin. Full article
(This article belongs to the Special Issue Natural Compounds for Disease and Health II)
Show Figures

Figure 1

15 pages, 421 KiB  
Article
Antioxidant and Antiglycation Properties of Carob Flour Extracts: Evaluating Their Potential as a Functional Ingredient in Health-Oriented Foods and Supplements
by Marta Mesías, Francisca Holgado and Francisco J. Morales
Appl. Sci. 2025, 15(12), 6556; https://doi.org/10.3390/app15126556 - 11 Jun 2025
Viewed by 382
Abstract
Glycation in biological systems contributes to the development of chronic diseases, particularly under conditions of hyperglycemia and oxidative stress. This study evaluated the antiglycation and methylglyoxal (MGO)-trapping capacities of aqueous and methanolic extracts of carob flour. The methanolic extract exhibited significantly higher bioactive [...] Read more.
Glycation in biological systems contributes to the development of chronic diseases, particularly under conditions of hyperglycemia and oxidative stress. This study evaluated the antiglycation and methylglyoxal (MGO)-trapping capacities of aqueous and methanolic extracts of carob flour. The methanolic extract exhibited significantly higher bioactive compounds, containing 1.4-fold more total phenolics and 1.6-fold more flavonoids than the aqueous extract, as well as 1.2- and 1.8-fold-higher antioxidant activity. Antiglycation activity was assessed using bovine serum albumin (BSA)–glucose and BSA–MGO in vitro models, where the methanolic extract consistently outperformed the aqueous extract. At 25 mg/mL, the formation of advanced glycation end-products was inhibited by 81.0% in the BSA–glucose model and nearly 70% in the BSA–MGO model. These findings were supported by lower IC50 values for the methanolic extract (6.6 vs. 10.8 mg/mL and 9.4 vs. 16.6 mg/mL). MGO-trapping capacity was also higher for the methanolic extract, reaching 97% with 25 mg/mL after 168 h. The superior antiglycation and MGO-trapping activities of the methanolic extract are attributed to its higher content of gallic acid and other phenolic compounds with known bioactivities. These results highlight the potential of carob-based formulations as functional ingredients with preventive applications against glycation-associated pathologies. Full article
Show Figures

Figure 1

22 pages, 3465 KiB  
Article
Evaluation of Biological Activities and Cytotoxicity of Peristrophe bivalvis (L.) Merr Extracts and Investigation of Its Novel Natural Active Ingredient-Loaded Nanoemulsion and Stability Assessment
by Panikchar Wichayapreechar, Ranit Charoenjittichai, Anchalee Prasansuklab, Pimchanok Charoongchit and Eakkaluk Wongwad
Cosmetics 2025, 12(3), 92; https://doi.org/10.3390/cosmetics12030092 - 2 May 2025
Viewed by 1028
Abstract
Peristrophe bivalvis (L.) Merr. (Acanthaceae family) has traditionally been used as a natural food colorant and in the treatment of various diseases. However, its biological activities—particularly its anti-glycation and anti-lipid peroxidation properties—as well as the development of novel nanoemulsions incorporating crude P. bivalvis [...] Read more.
Peristrophe bivalvis (L.) Merr. (Acanthaceae family) has traditionally been used as a natural food colorant and in the treatment of various diseases. However, its biological activities—particularly its anti-glycation and anti-lipid peroxidation properties—as well as the development of novel nanoemulsions incorporating crude P. bivalvis leaf extracts for cosmetic applications, have not yet been reported. The aim of this study was to explore the potential of P. bivalvis leaf crude extracts as an active ingredient in nanocosmetics. Various solvents, including deionized water, 95% ethanol, and 1% HCl in 50% ethanol were used to macerate the plant material. These crude extracts were subsequently screened for their phytochemical constituents, total phenolic and flavonoid contents, as well as antioxidant, anti-glycation, anti-lipid peroxidative activities, and fibroblasts cytotoxicity. In addition, a nanoemulsion containing P. bivalvis crude extracts was formulated using high-speed homogenization. The formulation was characterized in terms of pH, viscosity, particle size, polydispersity index, and entrapment efficiency. Furthermore, its stability was evaluated under accelerated conditions and at different storage temperatures (room temperature, 4 °C, and 45 °C). The results indicated that P. bivalvis extracts obtained using deionized water and 95% ethanol contained various phytochemical constituents, along with higher contents of total phenolic and flavonoid contents, antioxidant, anti-glycation, and anti-lipid peroxidative activities, as well as the lowest fibroblast cytotoxicity, compared to extracts obtained with 1% HCl in 50% ethanol. The nanoemulsions loaded with P. bivalvis ethanolic extracts exhibited a reddish-orange color, whereas those containing P. bivalvis water extracts exhibited a reddish-purple coloration, depending on its pH value. These nanoemulsions demonstrated greater stability at low temperatures, with particle sizes within the nanoscale range and a narrow polydispersity index. These findings suggest that P. bivalvis extracts obtained from deionized water and 95% ethanol are potential active ingredients that were successfully incorporated into nanoemulsion-based cosmetics formulation. Full article
Show Figures

Figure 1

18 pages, 1035 KiB  
Review
Comparative Analysis of Lespedeza Species: Traditional Uses and Biological Activity of the Fabaceae Family
by Roxana-Delia Chitiala, Ionut Iulian Lungu, George-Alexandru Marin, Andreea-Maria Mitran, Ioana-Cezara Caba, Andreea Lungu, Silvia Robu, Cornelia Mircea, Alina Stefanache, Monica Hancianu and Oana Cioanca
Molecules 2025, 30(9), 2013; https://doi.org/10.3390/molecules30092013 - 30 Apr 2025
Viewed by 848
Abstract
With around 40 species spread throughout temperate and subtropical environments, mostly in East Asia and North America, the genus Lespedeza (Fabaceae) includes a variety of species that have been used in traditional folk medicine for centuries. Particularly in antioxidant, anti-inflammatory, anticancer, [...] Read more.
With around 40 species spread throughout temperate and subtropical environments, mostly in East Asia and North America, the genus Lespedeza (Fabaceae) includes a variety of species that have been used in traditional folk medicine for centuries. Particularly in antioxidant, anti-inflammatory, anticancer, and antidiabetic applications, Lespedeza species show notable pharmacological promise, due in large part to their high polyphenolic content. With a 2,2-diphenyl-1-picrylhydrazyl (DPPH) IC50 of 20–25 µg/mL and a ferric ion reducing antioxidant power (FRAP) value of 819.5 µmol Fe2+/g, L. cuneata demonstrated the highest antioxidant activity among the three Lespedeza species. The rich polyphenolic profile includes quercetin, catechin, rutin, and special substances like lespeflorin B/C and lespecunioside A/B, which explain its efficacy. Its broad-spectrum action across DPPH, 2,2′-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and nitric oxide (NO) tests points to its importance for neuroprotective and anti-aging uses. Anti-inflammatory studies support its capacity to downregulate tumor necrosis factor (TNF-α) and interleukin 6 (IL-6) via nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB) suppression. L. bicolor has shown excellent promise, owing to its high total flavonoid content (109.2 mg QE/g) and presence of bioactives including kaempferol-3-O-rutinoside and xanthoangelol, albeit displaying somewhat lower antioxidant capacity (FRAP: 912.3 µmol Fe2+/g). In macrophage models it showed clear anti-inflammatory action. Its capacity to prevent advanced glycation end products’ (AGEs) generation ties it to possible antidiabetic and antiaging effects. Although it showed the worst antioxidant profile (IC50: 40–60 µg/mL; FRAP: 743.2 µmol Fe2+/g), L. capitata nonetheless had useful components like quercetin, chlorogenic acid, and lespedecapitoside (syn. isoorientin). Though little researched, they have modest antioxidant, nephroprotective, and anti-inflammatory action. Full article
(This article belongs to the Special Issue Biological Activities of Traditional Medicinal Plants, 2nd Edition)
Show Figures

Figure 1

16 pages, 4019 KiB  
Article
Neuroprotective Effects of a Combination of Dietary Trans-Resveratrol and Hesperidin Against Methylglyoxal-Induced Neurotoxicity in a Depressive Amnesia Mouse Model
by Seon-Hyeok Kim, Seong-Min Hong, Eun-Ji Ko, Min-Jeong Park, Ji-Youn Kim and Sun-Yeou Kim
Nutrients 2025, 17(9), 1548; https://doi.org/10.3390/nu17091548 - 30 Apr 2025
Cited by 1 | Viewed by 695
Abstract
Background: Methylglyoxal (MGO), a reactive dicarbonyl compound, has been implicated in the formation of advanced glycation end-products (AGEs) and neuronal dysfunction. This study investigated the neuroprotective effects of the combination of trans-resveratrol and hesperidin (tRES-HESP) against MGO-induced neurotoxicity, focusing on memory dysfunction and [...] Read more.
Background: Methylglyoxal (MGO), a reactive dicarbonyl compound, has been implicated in the formation of advanced glycation end-products (AGEs) and neuronal dysfunction. This study investigated the neuroprotective effects of the combination of trans-resveratrol and hesperidin (tRES-HESP) against MGO-induced neurotoxicity, focusing on memory dysfunction and depression-like behavior. Methods: Neuroblastoma 2a (N2a) cells were treated with MGO to induce neurotoxicity. The effects of tRES-HESP on cell viability, reactive oxygen species (ROS) production, apoptotic markers (BAX/Bcl 2 ratio, caspase 3 activity, and poly [ADP ribose] polymerase cleavage), and components of the glyoxalase system (glyoxalase-1, glyoxalase- 2, and receptors for AGEs) were assessed. The activation of the Kelch-like ECH-associated protein 1/Nuclear factor erythroid-2-related factor 2/Heme oxygenase-1 (Keap1/Nrf2/HO-1) pathway was also evaluated. In vivo, mice with MGO-induced depressive amnesia were treated with tRES-HESP (200 mg/kg) for eight weeks, and behavioral, biochemical, and histological assessments were performed. Results: tRES-HESP significantly reduced MGO-induced cytotoxicity, ROS production, and apoptosis in N2a cells. In addition, it restored the glyoxalase system and activated the Keap1/Nrf2/HO-1 pathway. In an in vivo model, tRES-HESP improved memory and depression-like behaviors, reduced cortisol and interleukin (IL)-6 levels, increased IL-10 levels, and lowered the expression of amyloid precursor protein and amyloid beta. Furthermore, tRES-HESP protected CA2/3 hippocampal subregions from MGO-induced damage. tRES-HESP exhibited neuroprotective effects through antioxidant, anti-apoptotic, and anti-inflammatory mechanisms. Conclusions: Our results suggest that tRES-HESP is a potential dietary supplement for preventing cognitive decline and depression, particularly in neurodegenerative conditions such as Alzheimer’s disease. Further studies are required to assess its clinical relevance and efficacy in the human population. Full article
(This article belongs to the Special Issue Therapeutic Potential of Phytochemicals in Neurodegenerative Diseases)
Show Figures

Figure 1

19 pages, 935 KiB  
Article
Enhancing the Growth, Bioactive Compounds, and Antioxidant Activity of Kangkong (Ipomoea aquatica Forssk.) Microgreens Using Dielectric Barrier Discharge Plasma
by Prapasiri Ongrak, Nopporn Poolyarat, Suebsak Suksaengpanomrung, Bhornchai Harakotr, Yaowapha Jirakiattikul and Panumart Rithichai
Resources 2025, 14(5), 72; https://doi.org/10.3390/resources14050072 - 28 Apr 2025
Viewed by 1329
Abstract
Enhancing the nutraceutical value of health-promoting foods is a strategy to mitigate non-communicable diseases (NCDs), which pose a global health threat. This study aimed to improve the growth, bioactive compound content, and antioxidant activity of kangkong (Ipomoea aquatica Forssk.) microgreens through the [...] Read more.
Enhancing the nutraceutical value of health-promoting foods is a strategy to mitigate non-communicable diseases (NCDs), which pose a global health threat. This study aimed to improve the growth, bioactive compound content, and antioxidant activity of kangkong (Ipomoea aquatica Forssk.) microgreens through the application of dielectric barrier discharge (DBD) plasma at different treatment durations. Seeds from two cultivars, Pugun 19 (PG) and Banhann (BH), were treated with DBD plasma for 5 to 20 min, compared to untreated seeds as the control. DBD plasma treatments had no significant effect on the dry weight of BH, whereas a 10 min treatment resulted in the highest dry weight in PG. Principal component analysis exhibited that treating PG seeds with 5 min of DBD plasma increased coumaric acid, total flavonoids, and DPPH and FRAP activities. Meanwhile, exposing BH seeds to 10 min DBD plasma treatment enhanced carotenoids content, as well as ABTS and antiglycation activities. Based on these results, the optimal time for DBD plasma treatment to improve the quality of kangkong microgreens was 5 min for PG and 10 min for BH. These findings indicate that DBD plasma treatment offers potential applications in sustainable agriculture and food biofortification. Full article
Show Figures

Graphical abstract

Back to TopTop