Structural and Biological Properties of Rhamnogalacturonan-I-Enriched Pectin Isolated from Cardamine tangutorum and Cardamine macrophylla
Abstract
1. Introduction
2. Materials and Methods
2.1. Raw Materials and Reagents
2.2. Preparation of RG-I-Enriched Pectin from Shigecai Leaves
2.3. Chemical and Structural Characterization of RG-I-Enriched Pectin from Shigecai Leaves
2.4. Evaluation of Biological Properties of RG-I-Enriched Pectin from Shigecai Leaves
2.5. Statistical Analysis
3. Results and Discussion
3.1. Chemical and Structural Characteristics of CTHDP and CMHDP
3.1.1. Primary Chemical Properties of CTHDP and CMHDP
3.1.2. Molecular Weights and Functional Groups of CTHDP and CMHDP
3.1.3. Monosaccharide Compositions and Glycosidic Linkage Patterns of CTHDP and CMHDP
3.2. Antioxidant and Antiglycation Effects of CTHDP and CMHDP
3.3. Prebiotic Effects of CTHDP and CMHDP
3.4. Immunostimulatory Effects of CTHDP and CMHDP
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tang, X.; de Vos, P. Structure-function effects of different pectin chemistries and its impact on the gastrointestinal immune barrier system. Crit. Rev. Food Sci. Nutr. 2025, 65, 1201–1215. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Waterhouse, G.I.N.; Xu, F.; He, Z.; Du, Y.; Lian, Y.; Wu, P.; Sun-Waterhouse, D. Recent advances in utilization of pectins in biomedical applications: A review focusing on molecular structure-directing health-promoting properties. Crit. Rev. Food Sci. Nutr. 2023, 63, 3386–3419. [Google Scholar] [CrossRef]
- Zhang, X.; Cui, Y.; Zhang, X.; Zhang, Z.; Yu, Q.; Li, T.; Li, S. Preparation and structure-function relationships of homogalacturonan-rich and rhamnogalacturonan-I rich pectin: A review. Int. J. Biol. Macromol. 2025, 304, 140775. [Google Scholar] [CrossRef]
- Mao, G.; Wu, D.; Wei, C.; Tao, W.; Ye, X.; Linhardt, R.J.; Orfila, C.; Chen, S. Reconsidering conventional and innovative methods for pectin extraction from fruit and vegetable waste: Targeting rhamnogalacturonan I. Trends Food Sci. Technol. 2019, 94, 65–78. [Google Scholar] [CrossRef]
- Pang, Y.; Peng, Z.; Ding, K. An in-depth review: Unraveling the extraction, structure, bio-functionalities, target molecules, and applications of pectic polysaccharides. Carbohydr. Polym. 2024, 343, 122457. [Google Scholar] [CrossRef] [PubMed]
- Niu, H.; Dou, Z.; Hou, K.; Wang, W.; Chen, X.; Chen, X.; Chen, H.; Fu, X. A critical review of RG-I pectin: Sources, extraction methods, structure, and applications. Crit. Rev. Food Sci. Nutr. 2024, 64, 8911–8931. [Google Scholar] [CrossRef] [PubMed]
- Yue, F.; Xu, J.; Zhang, S.; Hu, X.; Wang, X.; Lü, X. Structural features and anticancer mechanisms of pectic polysaccharides: A review. Int. J. Biol. Macromol. 2022, 209, 825–839. [Google Scholar] [CrossRef]
- Jin, M.-Y.; Li, M.-Y.; Huang, R.-M.; Wu, X.-Y.; Sun, Y.-M.; Xu, Z.-L. Structural features and anti-inflammatory properties of pectic polysaccharides: A review. Trends Food Sci. Technol. 2021, 107, 284–298. [Google Scholar] [CrossRef]
- Wu, D.; Ye, X.; Linhardt, R.J.; Liu, X.; Zhu, K.; Yu, C.; Ding, T.; Liu, D.; He, Q.; Chen, S. Dietary pectic substances enhance gut health by its polycomponent: A review. Compr. Rev. Food Sci. Food Saf. 2021, 20, 2015–2039. [Google Scholar] [CrossRef]
- Wu, D.; Zheng, J.; Mao, G.; Hu, W.; Ye, X.; Linhardt, R.J.; Chen, S. Rethinking the impact of RG-I mainly from fruits and vegetables on dietary health. Crit. Rev. Food Sci. Nutr. 2020, 60, 2938–2960. [Google Scholar] [CrossRef]
- Li, B.; Cai, X.; Hailai, Y.; Tian, Y.; Liu, Y. Quality evaluation of Cardamine macrophylla Willd as an edible and medicinal herb of Tibetan and Qiang ethnic groups. Med. Plant 2024, 15, 30–34. [Google Scholar]
- Cai, X.; Li, B.; Li, X.; Su, H.; Li, W.; Liu, Y. Optimizing of ultrasonic-enzymatic extraction of total flavonoids from Cardamine tangutorum O. E. Schulz by response surface methodology and content determination. Med. Plant 2020, 11, 36–41. [Google Scholar]
- Feng, W.-S.; Zhang, Q.; Zheng, X.; Chen, H.; Zhang, Y.; Zhang, C.-L. A new acylated flavonol glycoside from the aerial parts of Cardamine tangutorum. J. Asian Nat. Prod. Res. 2012, 14, 805–810. [Google Scholar] [CrossRef]
- Wang, J.; Li, J.; Luo, X.; Qu Mo, M.-M.; Feng, J.; Li, W.-B.; Yan, H.; Hu, Y.-C.; Zou, L.; Wu, D.-T. Structural properties and biological effects of pectic polysaccharides extracted from Tartary buckwheat sprouts by high pressure-assisted deep eutectic solvent extraction. LWT-Food Sci. Technol. 2024, 203, 116397. [Google Scholar] [CrossRef]
- Lei, J.; Li, W.; Fu, M.-X.; Wang, A.-Q.; Wu, D.-T.; Guo, H.; Hu, Y.-C.; Gan, R.-Y.; Zou, L.; Liu, Y. Pressurized hot water extraction, structural properties, biological effects, and in vitro microbial fermentation characteristics of sweet tea polysaccharide. Int. J. Biol. Macromol. 2022, 222, 3215–3228. [Google Scholar] [CrossRef]
- DuBois, M.; Gilles, K.A.; Hamilton, J.K.; Rebers, P.A.; Smith, F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956, 28, 350–356. [Google Scholar] [CrossRef]
- Blumenkrantz, N.; Asboe-Hansen, G. New method for quantitative determination of uronic acids. Anal. Biochem. 1973, 54, 484–489. [Google Scholar] [CrossRef] [PubMed]
- Bradford, M.M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 1976, 72, 248–254. [Google Scholar] [CrossRef] [PubMed]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. Methods Enzymol. 1999, 299, 152–178. [Google Scholar]
- Feng, J.; Luo, X.; Li, B.; Yang, X.-Y.; Zhang, L.; Huang, J.-W.; Hu, Y.-C.; Zou, L.; Wu, D.-T. Chemical structures, antioxidant capacities, and immunostimulatory activities of pectic polysaccharides from jujube fruits collected from different producing areas. Food Biosci. 2025, 68, 106485. [Google Scholar] [CrossRef]
- Li, J.; Feng, J.; Luo, X.; Qu Mo, M.-M.; Li, W.-B.; Huang, J.-W.; Wang, S.; Hu, Y.-C.; Zou, L.; Wu, D.-T. Potential structure–function relationships of pectic polysaccharides from quinoa microgreens: Impact of various esterification degrees. Food Res. Int. 2024, 187, 114395. [Google Scholar] [CrossRef]
- Chen, R.; Xu, J.; Wu, W.; Wen, Y.; Lu, S.; El-Seedi, H.R.; Zhao, C. Structure–immunomodulatory activity relationships of dietary polysaccharides. Curr. Res. Food Sci. 2022, 5, 1330–1341. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, P.A.R.; Coimbra, M.A. The antioxidant activity of polysaccharides: A structure-function relationship overview. Carbohydr. Polym. 2023, 314, 120965. [Google Scholar] [CrossRef] [PubMed]
- Zhang, D.-Y.; Wan, Y.; Xu, J.-Y.; Wu, G.-H.; Li, L.; Yao, X.-H. Ultrasound extraction of polysaccharides from mulberry leaves and their effect on enhancing antioxidant activity. Carbohydr. Polym. 2016, 137, 473–479. [Google Scholar] [CrossRef]
- Ma, Q.; Santhanam, R.K.; Xue, Z.; Guo, Q.; Gao, X.; Chen, H. Effect of different drying methods on the physicochemical properties and antioxidant activities of mulberry leaves polysaccharides. Int. J. Biol. Macromol. 2018, 119, 1137–1143. [Google Scholar] [CrossRef]
- Ke, Y.; Lin, L.; Zhao, M. Lotus leaf polysaccharides prepared by alkaline water, deep eutectic solvent and high pressure homogenization-assisted dual enzyme extraction: A comparative study of structural features, prebiotic activities and functionalities. Food Hydrocoll. 2023, 143, 108870. [Google Scholar] [CrossRef]
- Song, Y.-R.; Han, A.-R.; Park, S.-G.; Cho, C.-W.; Rhee, Y.-K.; Hong, H.-D. Effect of enzyme-assisted extraction on the physicochemical properties and bioactive potential of lotus leaf polysaccharides. Int. J. Biol. Macromol. 2020, 153, 169–179. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.-J.; Feng, J.; Deng, Y.; Li, J.; Liu, H.-Y.; Liang, Q.; Hu, Y.-C.; Zhang, J.-Y.; Zou, L.; Wu, D.-T. The degree of esterification influences the bioactivity of pectic polysaccharides isolated from Lithocarpus Litseifolius. Food Chem. X 2025, 27, 102462. [Google Scholar] [CrossRef]
- Gu, J.; Lin, L.; Zhao, M. Demonstration of feasibility and effectiveness of deep eutectic solvent-water system extraction of RG-I type pectin from wolfberry based on target polysaccharide, solvent and their interactions. Food Hydrocoll. 2023, 144, 109027. [Google Scholar] [CrossRef]
- Zhou, J.; Liu, D.; Xia, W.; Guo, Y.; Luo, Y.; Xue, J. Physicochemical and functional properties of RG-I enriched pectin extracted from thinned-young apples. Int. J. Biol. Macromol. 2023, 236, 123953. [Google Scholar] [CrossRef]
- Hu, W.; Cheng, H.; Wu, D.; Chen, J.; Ye, X.; Chen, S. Enhanced extraction assisted by pressure and ultrasound for targeting RG-I enriched pectin from citrus peel wastes: A mechanistic study. Food Hydrocoll. 2022, 133, 107778. [Google Scholar] [CrossRef]
- Zhang, M.; Cai, J. Preparation of branched RG-I-rich pectin from red dragon fruit peel and the characterization of its probiotic properties. Carbohydr. Polym. 2023, 299, 120144. [Google Scholar] [CrossRef]
- Ji, X.; Hou, C.; Yan, Y.; Shi, M.; Liu, Y. Comparison of structural characterization and antioxidant activity of polysaccharides from jujube (Ziziphus jujuba Mill.) fruit. Int. J. Biol. Macromol. 2020, 149, 1008–1018. [Google Scholar] [CrossRef]
- Ji, X.; Yan, Y.; Hou, C.; Shi, M.; Liu, Y. Structural characterization of a galacturonic acid-rich polysaccharide from Ziziphus Jujuba cv. Muzao. Int. J. Biol. Macromol. 2020, 147, 844–852. [Google Scholar] [CrossRef]
- Du, Y.; Zhang, S.; Sun-Waterhouse, D.; Zhou, T.; Xu, F.; Waterhouse, G.I.N.; Wu, P. Physicochemical, structural and emulsifying properties of RG-I enriched pectin extracted from unfermented or fermented cherry pomace. Food Chem. 2023, 405, 134985. [Google Scholar] [CrossRef]
- Golovchenko, V.V.; Khlopin, V.A.; Patova, O.A.; Feltsinger, L.S.; Bilan, M.I.; Dmitrenok, A.S.; Shashkov, A.S. Pectin from leaves of birch (Betula pendula Roth.): Results of NMR experiments and hypothesis of the RG-I structure. Carbohydr. Polym. 2022, 284, 119186. [Google Scholar] [CrossRef]
- Wu, D.; Zheng, J.; Hu, W.; Zheng, X.; He, Q.; Linhardt, R.J.; Ye, X.; Chen, S. Structure-activity relationship of Citrus segment membrane RG-I pectin against Galectin-3: The galactan is not the only important factor. Carbohydr. Polym. 2020, 245, 116526. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.; Waterhouse, G.I.N.; Du, Y.; Fu, Q.; Sun, Y.; Wu, P.; Ai, S.; Sun-Waterhouse, D. Structural, rheological and emulsifying properties of RG-I enriched pectins from sweet and sour cherry pomaces. Food Hydrocoll. 2023, 139, 108442. [Google Scholar] [CrossRef]
- Chen, X.; Qi, Y.; Zhu, C.; Wang, Q. Effect of ultrasound on the properties and antioxidant activity of hawthorn pectin. Int. J. Biol. Macromol. 2019, 131, 273–281. [Google Scholar] [CrossRef]
- Liu, N.; Yang, W.; Li, X.; Zhao, P.; Liu, Y.; Guo, L.; Huang, L.; Gao, W. Comparison of characterization and antioxidant activity of different citrus peel pectins. Food Chem. 2022, 386, 132683. [Google Scholar] [CrossRef]
- Wang, W.; Li, X.; Bao, X.; Gao, L.; Tao, Y. Extraction of polysaccharides from black mulberry fruit and their effect on enhancing antioxidant activity. Int. J. Biol. Macromol. 2018, 120, 1420–1429. [Google Scholar] [CrossRef] [PubMed]
- Jia, W.; Guo, A.; Zhang, R.; Shi, L. Mechanism of natural antioxidants regulating advanced glycosylation end products of Maillard reaction. Food Chem. 2023, 404, 134541. [Google Scholar] [CrossRef] [PubMed]
- Xiao, Y.; Zhai, Q.; Zhang, H.; Chen, W.; Hill, C. Gut colonization mechanisms of Lactobacillus and Bifidobacterium: An argument for personalized designs. Annu. Rev. Food Sci. Technol. 2021, 12, 213–233. [Google Scholar] [CrossRef]
- Sanders, M.E.; Merenstein, D.J.; Reid, G.; Gibson, G.R.; Rastall, R.A. Probiotics and prebiotics in intestinal health and disease: From biology to the clinic. Nat. Rev. Gastroenterol. Hepatol. 2019, 16, 605–616. [Google Scholar] [CrossRef]
- Yuan, P.; Aipire, A.; Yang, Y.; Wei, X.; Fu, C.; Zhou, F.; Mahabati, M.; Li, J.; Li, J. Comparison of the structural characteristics and immunostimulatory activities of polysaccharides from wild and cultivated Pleurotus feruleus. J. Funct. Foods 2020, 72, 104050. [Google Scholar] [CrossRef]
- Wang, T.; Tao, Y.; Lai, C.; Huang, C.; Ling, Z.; Yong, Q. Influence of glycosyl composition on the immunological activity of pectin and pectin-derived oligosaccharide. Int. J. Biol. Macromol. 2022, 222, 671–679. [Google Scholar] [CrossRef]
- Song, Y.-R.; Han, A.-R.; Lim, T.-G.; Lee, E.-J.; Hong, H.-D. Isolation, purification, and characterization of novel polysaccharides from lotus (Nelumbo nucifera) leaves and their immunostimulatory effects. Int. J. Biol. Macromol. 2019, 128, 546–555. [Google Scholar] [CrossRef]
- Wang, Y.-Q.; Mao, J.-B.; Zhou, M.-Q.; Jin, Y.-W.; Lou, C.-H.; Dong, Y.; Shou, D.; Hu, Y.; Yang, B.; Jin, C.-Y.; et al. Polysaccharide from Phellinus Igniarius activates TLR4-mediated signaling pathways in macrophages and shows immune adjuvant activity in mice. Int. J. Biol. Macromol. 2019, 123, 157–166. [Google Scholar] [CrossRef]
CTHDP | CMHDP | |
---|---|---|
Extraction yield (mg/g) | 65.21 ± 0.41 a | 57.63 ± 0.13 b |
Total polysaccharide content (mg/100 mg) | 92.51 ± 0.63 a | 90.16 ± 1.57 a |
Total uronic acid content (mg/100 mg) | 31.68 ± 2.27 a | 24.91 ± 2.77 b |
Total protein content (mg/100 mg) | 1.28 ± 0.09 b | 1.80 ± 0.14 a |
Bound polyphenol content (mg GAE/g) | 8.21 ± 0.21 b | 9.82 ± 0.21 a |
Degree of esterification (%) | 35.91 ± 1.32 a | 33.01 ± 2.11 a |
Mw × 104 (Da, error) | 3.33 ± 0.01 b | 4.12 ± 0.02 a |
Mw/Mn | 2.52 | 2.21 |
Monosaccharides and molar percentages (mol%) | ||
Galacturonic acid (GalA) | 35.29 | 31.66 |
Galactose (Gal) | 23.23 | 28.12 |
Arabinose (Ara) | 22.40 | 18.48 |
Rhamnose (Rha) | 8.85 | 6.77 |
Glucose (Glc) | 4.47 | 5.26 |
Xylose (Xyl) | 3.29 | 5.95 |
Mannose (Man) | 1.96 | 3.20 |
Glucuronic acid (GlcA) | 0.51 | 0.56 |
HG (mol%) | 26.44 | 24.89 |
RG-I (mol%) | 63.33 | 60.14 |
(Gal + Ara)/Rha | 5.16 | 6.88 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qu Mo, M.-M.; Li, B.; Wu, D.-T.; Feng, J.; Wei, J.; Wan, Y.; Li, J.; Liu, Y.; Li, W.-B. Structural and Biological Properties of Rhamnogalacturonan-I-Enriched Pectin Isolated from Cardamine tangutorum and Cardamine macrophylla. Foods 2025, 14, 2340. https://doi.org/10.3390/foods14132340
Qu Mo M-M, Li B, Wu D-T, Feng J, Wei J, Wan Y, Li J, Liu Y, Li W-B. Structural and Biological Properties of Rhamnogalacturonan-I-Enriched Pectin Isolated from Cardamine tangutorum and Cardamine macrophylla. Foods. 2025; 14(13):2340. https://doi.org/10.3390/foods14132340
Chicago/Turabian StyleQu Mo, Mei-Mei, Bo Li, Ding-Tao Wu, Jing Feng, Jing Wei, Yan Wan, Juan Li, Yuan Liu, and Wen-Bing Li. 2025. "Structural and Biological Properties of Rhamnogalacturonan-I-Enriched Pectin Isolated from Cardamine tangutorum and Cardamine macrophylla" Foods 14, no. 13: 2340. https://doi.org/10.3390/foods14132340
APA StyleQu Mo, M.-M., Li, B., Wu, D.-T., Feng, J., Wei, J., Wan, Y., Li, J., Liu, Y., & Li, W.-B. (2025). Structural and Biological Properties of Rhamnogalacturonan-I-Enriched Pectin Isolated from Cardamine tangutorum and Cardamine macrophylla. Foods, 14(13), 2340. https://doi.org/10.3390/foods14132340