Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (70)

Search Parameters:
Keywords = anti-alopecia

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
37 pages, 22351 KiB  
Article
The Extract of Periplaneta americana (L.) Promotes Hair Regrowth in Mice with Alopecia by Regulating the FOXO/PI3K/AKT Signaling Pathway and Skin Microbiota
by Tangfei Guan, Xin Yang, Canhui Hong, Zehao Zhang, Peiyun Xiao, Yongshou Yang, Chenggui Zhang and Zhengchun He
Curr. Issues Mol. Biol. 2025, 47(8), 619; https://doi.org/10.3390/cimb47080619 - 4 Aug 2025
Viewed by 76
Abstract
Alopecia, a prevalent dermatological disorder affecting over half of the global population, is strongly associated with psychological distress. Extracts from Periplaneta americana (L. PA), a medicinal insect resource, exhibit pharmacological activities (e.g., antioxidant, anti-inflammatory, microcirculation improvement) that align with core therapeutic targets for [...] Read more.
Alopecia, a prevalent dermatological disorder affecting over half of the global population, is strongly associated with psychological distress. Extracts from Periplaneta americana (L. PA), a medicinal insect resource, exhibit pharmacological activities (e.g., antioxidant, anti-inflammatory, microcirculation improvement) that align with core therapeutic targets for alopecia. This study aimed to systematically investigate the efficacy and mechanisms of PA extracts in promoting hair regeneration. A strategy combining network pharmacology prediction and in vivo experiments was adopted. The efficacy of a Periplaneta americana extract was validated by evaluating hair regrowth status and skin pathological staining in C57BL/6J mice. Transcriptomics, metabolomics, RT-qPCR, and 16s rRNA techniques were integrated to dissect the underlying mechanisms of its hair-growth-promoting effects. PA-011 significantly promoted hair regeneration in depilated mice via multiple mechanisms: enhanced skin superoxide dismutase activity and upregulated vascular endothelial growth factor expression; modulated FOXO/PI3K/AKT signaling pathway and restored skin microbiota homeostasis; and accelerated transition of hair follicles from the telogen to anagen phase. PA-011 exerts hair-promoting effects through synergistic modulation of FOXO/PI3K/AKT signaling and the skin microbiome. As a novel therapeutic candidate, it warrants further systematic investigation for clinical translation. Full article
Show Figures

Figure 1

22 pages, 844 KiB  
Article
Anti-Hair Loss Potential of Perilla Seed Extracts: In Vitro Molecular Insights from Supercritical Fluid Extraction
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pipat Tangjaidee, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Sarana Rose Sommano, Korawit Chaisu, Apinya Satsook and Juan Manuel Castagnini
Foods 2025, 14(15), 2583; https://doi.org/10.3390/foods14152583 - 23 Jul 2025
Viewed by 441
Abstract
Perilla seed has long been recognized in traditional diets for its health-promoting properties, but its potential role in hair loss prevention remains underexplored. This study compared three extraction methods—maceration (MAC), screw pressing (SC), and supercritical fluid extraction (SFE)—to determine their efficiency in recovering [...] Read more.
Perilla seed has long been recognized in traditional diets for its health-promoting properties, but its potential role in hair loss prevention remains underexplored. This study compared three extraction methods—maceration (MAC), screw pressing (SC), and supercritical fluid extraction (SFE)—to determine their efficiency in recovering bioactive compounds and their effects on androgenetic alopecia (AGA)-related pathways. The SFE extract contained the highest levels of polyunsaturated fatty acids and tocopherols, while MAC uniquely recovered a broader range of polyphenols. Among all extracts, SFE-derived perilla seed extract showed the most consistent biological effects, promoting proliferation of human hair follicle dermal papilla cells (HFDPCs) by 139.4 ± 1.1% at 72 h (p < 0.05). It also reduced TBARS and nitrite levels in HFDPCs to 66.75 ± 0.62% of control and 0.87 ± 0.01 μM, respectively, indicating strong antioxidant and anti-inflammatory effects. Importantly, the SFE extract significantly downregulated SRD5A1-3 and TGF-β1 expression—key genes involved in androgen-mediated hair follicle regression—outperforming finasteride, dutasteride, and minoxidil in vitro by approximately 1.10-fold, 1.25-fold, and 1.50-fold, respectively (p < 0.05). These findings suggest that perilla seed extract obtained via supercritical fluid extraction may offer potential as a natural candidate to prevent hair loss through multiple biological mechanisms. These in vitro results support its further investigation for potential application in functional food or nutraceutical development targeting scalp and hair health. Full article
(This article belongs to the Section Nutraceuticals, Functional Foods, and Novel Foods)
Show Figures

Figure 1

25 pages, 2029 KiB  
Article
Germination Enhances Phytochemical Profiles of Perilla Seeds and Promotes Hair Growth via 5α-Reductase Inhibition and Growth Factor Pathways
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pichchapa Linsaenkart, Pipat Tangjaidee, Korawan Sringarm, Chaiwat Arjin, Pornchai Rachtanapun, Sarana Rose Sommano, Korawit Chaisu, Apinya Satsook and Juan Manuel Castagnini
Biology 2025, 14(7), 889; https://doi.org/10.3390/biology14070889 - 20 Jul 2025
Viewed by 509
Abstract
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated [...] Read more.
Seed germination is recognized for enhancing the accumulation of bioactive compounds. Perilla frutescens (L.) Britt., commonly known as perilla seed, is rich in fatty acids that may be beneficial for anti-hair loss. This study investigated the hair regeneration potential of perilla seed extracts—non-germinated (NG-PS) and germinated in distilled water (0 ppm selenium; G0-PS), and germinated with 80 ppm selenium (G80-PS)—obtained from supercritical fluid extraction (SFE) and screw compression (SC). SFE extracts exhibited significantly higher levels of polyphenols, tocopherols, and fatty acids compared to SC extracts. Among the germinated groups, G0-PS showed the highest bioactive compound content and antioxidant capacity. Remarkably, treatment with SFE-G0-PS led to a significant increase in the proliferation and migration of hair follicle cells, reaching 147.21 ± 2.11% (p < 0.05), and resulted in complete wound closure. In addition, its antioxidant and anti-inflammatory properties were reflected by a marked scavenging effect on TBARS (59.62 ± 0.66% of control) and suppressed nitrite amounts (0.44 ± 0.01 µM). Moreover, SFE-G0-PS markedly suppressed SRD5A1-3 gene expression—key regulators in androgenetic alopecia—in both DU-145 and HFDPCs, with approximately 2-fold and 1.5-fold greater inhibition compared to finasteride and minoxidil, respectively. Simultaneously, it upregulated the expression of hair growth-related genes, including CTNNB1, SHH, SMO, GLI1, and VEGF, by approximately 1.5-fold, demonstrating stronger activation than minoxidil. These findings suggest the potential of SFE-G0-PS as a natural therapeutic agent for promoting hair growth and preventing hair loss. Full article
Show Figures

Figure 1

43 pages, 25464 KiB  
Article
Exploring the Efficacy and Potential Mechanisms of Topical Periplaneta americana (L.) Extract in Treating Androgenetic Alopecia in a Mouse Model: A Systems Pharmacology and Skin Microbiome Analysis
by Tangfei Guan, Xin Yang, Canhui Hong, Peiyun Xiao, Yongshou Yang, Chenggui Zhang and Zhengchun He
Biology 2025, 14(7), 831; https://doi.org/10.3390/biology14070831 - 8 Jul 2025
Viewed by 593
Abstract
Androgenetic alopecia (AGA), the most prevalent form of hair loss worldwide, faces significant therapeutic challenges due to high costs and limited efficacy of current interventions, necessitating safer and more effective solutions. Periplaneta americana (L.)-derived PA-011, endowed with anti-inflammatory and antioxidant properties, has demonstrated [...] Read more.
Androgenetic alopecia (AGA), the most prevalent form of hair loss worldwide, faces significant therapeutic challenges due to high costs and limited efficacy of current interventions, necessitating safer and more effective solutions. Periplaneta americana (L.)-derived PA-011, endowed with anti-inflammatory and antioxidant properties, has demonstrated notable hair growth-promoting effects in AGA mouse models. This study employed LC-MS/MS, peptidomics, and network pharmacology to characterize PA-011’s chemical composition and predict its potential targets in AGA pathogenesis. Using Western blot and RT-qPCR, PA-011 intervention significantly inhibited inflammatory responses and oxidative stress levels in mouse skin tissues. Concurrently, PA-011 activated the proliferative potential of hair follicle stem cells, as demonstrated by upregulated expression of the cell proliferation marker Ki67, and activated the Wnt/β-catenin signaling pathway in DHT-induced AGA mice. Transcriptomic and metabolomic analyses revealed multi-target effects of PA-011, including modulation of PI3K-Akt/MAPK pathways, pentose phosphate metabolism, and amino acid biosynthesis. 16S rRNA sequencing and metagenomic analysis showed that AGA disrupts skin microbial homeostasis, while PA-011 intervention normalized the microbiota composition. Topical application of PA-011 promoted robust hair regrowth without detectable toxicity in safety assessments. This preclinical study establishes PA-011 as a promising candidate for AGA therapy, warranting further translational investigation. Full article
(This article belongs to the Section Medical Biology)
Show Figures

Figure 1

13 pages, 4405 KiB  
Article
Meloside A Protects Dermal Papilla Cells from DHT-Induced Damage via Androgen Receptor Modulation
by Hyun Jun Park, Bong Geun Song, Ji Hoon Song, Seung Hee Park, Da Hye Wang, Ho Kyun Kwon and Ji-Ean Lee
Curr. Issues Mol. Biol. 2025, 47(6), 436; https://doi.org/10.3390/cimb47060436 - 9 Jun 2025
Viewed by 827
Abstract
Androgenetic alopecia (AGA) is associated with dihydrotestosterone (DHT)-induced apoptosis in human dermal papilla cells (HDPCs) via androgen receptor (AR) upregulation. This study aimed to evaluate the potential of Cucumis melo var. makuwa leaf extract (CLE) to attenuate these DHT-mediated effects in HDPCs. HDPCs [...] Read more.
Androgenetic alopecia (AGA) is associated with dihydrotestosterone (DHT)-induced apoptosis in human dermal papilla cells (HDPCs) via androgen receptor (AR) upregulation. This study aimed to evaluate the potential of Cucumis melo var. makuwa leaf extract (CLE) to attenuate these DHT-mediated effects in HDPCs. HDPCs were treated with CLE, and DHT-induced apoptosis and AR expression were assessed. High-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry (HPLC–ESI–MS) identified Meloside A as the principal bioactive constituent within CLE. CLE significantly attenuated DHT-induced apoptosis in HDPCs, demonstrating a 57.74% reduction at 1000 ppm. Mechanistically, Meloside A inhibited DHT-stimulated AR nuclear translocation and reduced AR protein expression. Furthermore, Meloside A decreased the expression of downstream target genes at 100 ppm, showing a 16.27% reduction in IL-6, a 26.55% reduction in TGF-β1, and a 35.38% reduction in DKK-1. Additionally, Meloside A significantly inhibited ROS generation within DHT-stimulated HDPCs by 45.45% at 100 ppm. These findings suggest that Meloside A, isolated from CLE, exerts anti-AGA effects by modulating AR nuclear translocation and gene expression. This highlights its potential as a therapeutic agent for AGA and provides a basis for developing novel therapeutic strategies for hair loss. Full article
(This article belongs to the Section Biochemistry, Molecular and Cellular Biology)
Show Figures

Graphical abstract

27 pages, 700 KiB  
Review
Inflammatory Signatures and Biological Markers in Platelet-Rich Plasma Therapy for Hair Regrowth: A Comprehensive Narrative Analysis
by Adelina Vrapcea, Cătălina Gabriela Pisoschi, Eleonora Daniela Ciupeanu-Calugaru, Emil-Tiberius Traşcă, Cristina Violeta Tutunaru, Patricia-Mihaela Rădulescu and Dumitru Rădulescu
Diagnostics 2025, 15(9), 1123; https://doi.org/10.3390/diagnostics15091123 - 28 Apr 2025
Viewed by 1160
Abstract
Context: Hair loss (alopecia) presents both aesthetic and psychological challenges, significantly impacting quality of life. Platelet-rich plasma (PRP) therapy has gained prominence due to its ability to deliver growth factors and modulate local inflammation. However, uncertainties remain regarding the mechanisms through which systemic [...] Read more.
Context: Hair loss (alopecia) presents both aesthetic and psychological challenges, significantly impacting quality of life. Platelet-rich plasma (PRP) therapy has gained prominence due to its ability to deliver growth factors and modulate local inflammation. However, uncertainties remain regarding the mechanisms through which systemic inflammation, oxidative stress, and coagulation factors influence PRP’s efficacy. Objectives: This narrative review explores the impact of inflammatory biomarkers (e.g., NLR, PLR, IL-6, TNF-α) and growth factors (VEGF, TGF-β, FGF) on hair regeneration in PRP therapy. It discusses how oxidative stress and vitamin status (B12, D, folate) correlate with therapeutic success. Additionally, it examines the PRP preparation protocols and combined approaches (microneedling, minoxidil, LLLT) that may amplify clinical responses. Results: The synthesized data highlight that elevated systemic inflammation (increased NLR/PLR values) can limit PRP’s effectiveness, while the regulation of inflammation and optimization of antioxidant status can enhance hair density and thickness. Integrating vitamins and an anti-inflammatory diet into the therapeutic protocol is associated with more stable hair growth and reduced adverse reactions. The variability in PRP’s preparation and activation methods remains a major obstacle, underscoring the need for standardization. Conclusions: Integrating inflammatory biomarkers with oxidative stress indicators provides fresh insights for tailoring PRP therapies in alopecia. Multimodal treatment strategies combined with collaborative multicenter studies—in which biological markers are embedded within rigorous protocols—could establish standardized methodologies and significantly enhance the treatment success. Full article
(This article belongs to the Special Issue Advances in the Diagnosis of Skin Disease)
Show Figures

Figure 1

10 pages, 10515 KiB  
Article
Clinical, Immunological and Pathological Characteristics of Ischemic Dermatopathy in Dogs with Leishmaniosis
by Nuria García, Àlex Cobos, Laia Solano-Gallego, Marina García and Laura Ordeix
Pathogens 2025, 14(3), 246; https://doi.org/10.3390/pathogens14030246 - 3 Mar 2025
Viewed by 1359
Abstract
Cutaneous lesions suggestive of vasculitis and/or ischemic dermatopathy (ID) are anecdotally reported in canine leishmaniosis, and the clinicopathological features of these conditions have not been fully characterized. The objective of this case series was to describe six dogs with leishmaniosis and ID. In [...] Read more.
Cutaneous lesions suggestive of vasculitis and/or ischemic dermatopathy (ID) are anecdotally reported in canine leishmaniosis, and the clinicopathological features of these conditions have not been fully characterized. The objective of this case series was to describe six dogs with leishmaniosis and ID. In 5/6 dogs, leishmaniosis was diagnosed at the time of ID diagnosis, whereas in 1/6 dogs, ID developed during the first month of anti-Leishmania conventional treatment. One each of greyhound, Chihuahua, whippet, American bully, hound and mixed breeds were represented, and the median age at presentation was 6 years [2–8]. All patients presented high or very high levels of circulating anti-Leishmania infantum antibodies. The cutaneous lesions were multifocal alopecia with atrophic skin with hyper- or hypopigmentation (6/6), ulcers located on the extremities and trunk (3/6) and onychodystrophy (2/6). Histologically, ID was confirmed by the presence of follicular atrophy (faded follicles) (6/6), perivascular or interstitial lymphoplasmacytic dermatitis or panniculitis (6/6), collagen smudging (3/6), dermal fibrosis (3/6), lymphocytic interface dermatitis (3/6) and ulceration (3/6). Vasculopathy was observed in the superficial and mid-vascular plexuses in 4/6 dogs and characterized by the combination of some of the following lesions: vasocongestion, hemorrhagic foci, mild hyaline mural degeneration, thrombi and fragmented degenerating nuclear debris of neutrophils in the vascular wall. Moreover, myositis was observed in 1/6 cases. Leishmania-specific immunohistochemistry was positive in the skin of 4/6 cases. Leishmaniosis might be considered an underlying cause of ID in dogs. However, the immune mechanisms and pathogenesis need to be elucidated. Full article
Show Figures

Figure 1

18 pages, 6921 KiB  
Article
Chitosan Nanoparticulate System Loaded with Cannabidiol: A Topical Formulation for Potential Alopecia Management
by Josenildo R. Oliveira, Débora S. Lopes, Milena C. S. Barbosa, Henrique N. Silva, Marcus V. L. Fook, Suédina M. L. Silva, João M. P. Q. Delgado and Antonio G. B. Lima
Processes 2025, 13(3), 617; https://doi.org/10.3390/pr13030617 - 21 Feb 2025
Cited by 1 | Viewed by 782
Abstract
This study explores an innovative topical formulation to treat alopecia by encapsulating cannabidiol (CBD) in chitosan nanoparticles. CBD, widely known for its anti-inflammatory, antioxidant, and endocannabinoid-modulating effects, shows significant potential for treating alopecia, a condition characterized by hair loss influenced by genetic, hormonal, [...] Read more.
This study explores an innovative topical formulation to treat alopecia by encapsulating cannabidiol (CBD) in chitosan nanoparticles. CBD, widely known for its anti-inflammatory, antioxidant, and endocannabinoid-modulating effects, shows significant potential for treating alopecia, a condition characterized by hair loss influenced by genetic, hormonal, or environmental factors. However, its low water solubility presents a significant challenge for topical applications. To address this issue, chitosan nanoparticles were synthesized using chitosan of reduced molecular mass (270 kDa) with an acetylation level of 12%, β-glycerophosphate as a crosslinking agent, and 1% glycerol to improve CBD encapsulation efficiency. Physicochemical characterization using scanning electron microscopy (SEM), zeta potential measurement, and Fourier transform infrared spectroscopy (FTIR) revealed that the β-glycerophosphate concentration impacted nanoparticle size and the electrostatic interactions between chitosan’s primary amines and phosphate groups of β-glycerophosphate. Among the tested concentrations (0.05, 0.1, 0.2, and 0.25 mol/L), 0.20 mol/L produced the smallest nanoparticles (390 nm), which were further optimized to encapsulate CBD, reaching a particle size of 227 nm. This optimized formulation may improve the solubility of CBD and enable targeted and sustained delivery to hair follicles. These findings highlight chitosan nanoparticles as a cutting-edge and scalable platform for transdermal delivery of hydrophobic bioactive compounds, presenting a promising approach for the effective management of alopecia. Full article
(This article belongs to the Special Issue Development and Characterization of Advanced Polymer Nanocomposites)
Show Figures

Figure 1

13 pages, 1352 KiB  
Review
Blue Light Therapy in Dermatological Practice: A Review
by Giuseppe Lodi, Fortunato Cassalia, Mario Sannino, Giovanni Cannarozzo, Adone Baroni, Simone Amato, Elena Zappia, Giovanni Pellacani and Steven Paul Nisticò
Cosmetics 2025, 12(1), 30; https://doi.org/10.3390/cosmetics12010030 - 18 Feb 2025
Cited by 2 | Viewed by 6064
Abstract
For some years, blue light at a wavelength of 400–500 nm has emerged as a non-invasive and innovative treatment in dermatology. This narrative review provides a comprehensive exploration of the mechanisms by which blue light exerts therapeutic effects on various skin disorders including [...] Read more.
For some years, blue light at a wavelength of 400–500 nm has emerged as a non-invasive and innovative treatment in dermatology. This narrative review provides a comprehensive exploration of the mechanisms by which blue light exerts therapeutic effects on various skin disorders including treatment of acne vulgaris, psoriasis, atopic dermatitis, vitiligo, androgenetic alopecia, ulcers and photoaging. We delve into the antimicrobial properties of blue light, highlighting its ability to generate reactive oxygen species that target and destroy pathogenic microorganisms such as Cutibacterium acnes. Additionally, we examine its anti-inflammatory effects, which involve the modulation of cytokine production and reduction in inflammatory cell infiltration, contributing to symptom relief in chronic inflammatory conditions. Blue light, through interaction with some photoreceptors, belonging to the Opsin family, is able to stimulate and prolong the anagen phase in the hair’s life cycle and stimulate repigmentation in vitiligoid patches. The photobiomodulation properties of blue light are also discussed, emphasizing how it influences cellular activities like proliferation and differentiation, thereby aiding in skin rejuvenation and healing processes. By assessing the clinical efficacy, safety profiles, and potential adverse effects reported in the current literature, we aim to present a balanced perspective on the utility of blue light therapy. The review also discusses advancements in light-emitting diode (LED) technology that have enhanced treatment delivery and patient outcomes. Furthermore, we outline future directions for research and clinical applications, emphasizing the need for standardized treatment protocols and long-term safety studies to fully integrate blue light therapy into dermatological practice. Full article
Show Figures

Figure 1

23 pages, 4240 KiB  
Article
Effect of Scenedesmus deserticola JD052 Extracts on Hair Inductivity by Regulating the AKT and GSK3β/β-Catenin Signaling Pathways in Human Dermal Papilla Cells
by Hee-Jae Shin, Seok-Yun Jeong, Seokmuk Park and Seunghee Bae
Appl. Sci. 2025, 15(4), 2015; https://doi.org/10.3390/app15042015 - 14 Feb 2025
Viewed by 767
Abstract
The extract of Scenedesmus deserticola JD052 has been reported to exhibit anti-aging effects on the skin, with research indicating an increase in loliolide, a major active component, through heterotrophic cultivation. In this study, we evaluated the effects of extracts obtained from both photoautotrophic [...] Read more.
The extract of Scenedesmus deserticola JD052 has been reported to exhibit anti-aging effects on the skin, with research indicating an increase in loliolide, a major active component, through heterotrophic cultivation. In this study, we evaluated the effects of extracts obtained from both photoautotrophic (PE) and heterotrophic (HE) cultures on hair-inductive properties in human dermal papilla (HDP) cells. Biochemical assays demonstrated that both extracts enhanced HDP cell viability and increased the size of three-dimensional dermal papilla (DP) spheres. Notably, the activation of β-catenin, a crucial marker associated with hair growth, was assessed using a luciferase reporter assay, revealing that HE exhibited a significantly higher efficacy than PE. Further analyses indicated that HE promoted the translocation of β-catenin into the nucleus through the phosphorylation and activation of AKT, which also elevated the expression levels of DP signature genes and hair-growth-related autocrine factors. Additionally, conditioned media from HE-treated HDP cells enhanced keratinocyte migration and increased the expression of growth factors, including VEGF and IGF-1. HPLC-MS analysis showed no significant difference in loliolide content; however, specific peaks in HE were identified as pheophorbide A and linolelaidic acid. Thus, HE may enhance hair growth inductivity via AKT/β-catenin signaling. Full article
Show Figures

Figure 1

25 pages, 4861 KiB  
Review
Role of Polyphenols in Dermatological Diseases: Exploring Pharmacotherapeutic Mechanisms and Clinical Implications
by Juan Salazar, Ángel Ortega, José Luis Pérez, Bermary Garrido, Raquel Santeliz, Néstor Galbán, Maria Paula Díaz, Raquel Cano, Gabriel Cano, Julio Cesar Contreras-Velasquez and Maricarmen Chacín
Pharmaceuticals 2025, 18(2), 247; https://doi.org/10.3390/ph18020247 - 12 Feb 2025
Cited by 2 | Viewed by 2177
Abstract
Although not frequently lethal, dermatological diseases represent a common cause of consultation worldwide. Due to the natural and non-invasive approach of phytotherapy, research for novel alternatives, such as polyphenols, to treat skin disorders is a subject of interest in modern medicine. Polyphenols, in [...] Read more.
Although not frequently lethal, dermatological diseases represent a common cause of consultation worldwide. Due to the natural and non-invasive approach of phytotherapy, research for novel alternatives, such as polyphenols, to treat skin disorders is a subject of interest in modern medicine. Polyphenols, in particular, have been considered because of their anti-inflammatory, antitumoral, antimicrobial, and antioxidant properties, low molecular weight, and lipophilic nature that enables the passage of these compounds through the skin barrier. This review discusses the treatment of common dermatological diseases such as acne vulgaris, fungal infections, dermatitis, alopecia, and skin cancer, using polyphenols as therapeutic and prophylactic options. The specific molecules considered for each disorder, mechanisms of action, current clinical trials, and proposed applications are also reviewed. Full article
(This article belongs to the Special Issue Pharmacological Activities of Flavonoids and Their Analogues 2024)
Show Figures

Figure 1

29 pages, 22746 KiB  
Article
Polyphenols from Bacopa procumbens Nanostructured with Gold Nanoparticles Stimulate Hair Growth Through Apoptosis Modulation in C57BL/6 Mice
by Salvador Pérez-Mora, Juan Ocampo-López, María del Consuelo Gómez-García, Sandra Viridiana Salgado-Hernández, Yazmin Montserrat Flores-Martinez and David Guillermo Pérez-Ishiwara
Pharmaceutics 2025, 17(2), 222; https://doi.org/10.3390/pharmaceutics17020222 - 9 Feb 2025
Viewed by 1421
Abstract
Background/Objectives: Alopecia is a hair disorder with a significant impact on quality of life, and its incidence has been increasing in recent years. Current therapeutic options are limited and may cause adverse side effects, highlighting the need to develop safer and more [...] Read more.
Background/Objectives: Alopecia is a hair disorder with a significant impact on quality of life, and its incidence has been increasing in recent years. Current therapeutic options are limited and may cause adverse side effects, highlighting the need to develop safer and more effective formulations. Therefore, the objective of this study was to evaluate the effect of a formulation based on the bioactive fraction of Bacopa procumbens (BFNB), conjugated with gold nanoparticles, on hair growth through the modulation of apoptosis in C57BL/6 mice. Methods: The potential biological activities of the secondary metabolites of B. procumbens present in BFNB were analyzed in silico. In vivo experiments evaluated the expression of pro-apoptotic markers p53, caspase 3-p11, caspase 9-p10, and Bax, as well as anti-apoptotic marker Bcl-2, through Western blotting. Immunohistochemistry further assessed the expression and localization of some of these markers. Additionally, molecular docking and interactomic analyses were performed, complemented by functional enrichment, to explore molecular pathways modulated by the evaluated proteins. Results: In silico analyses suggested that BFNB metabolites are involved in the modulation of hair growth, hair fragility, and apoptosis. This finding was supported by in vivo experiments in mice, where BFNB significantly decreased the expression of p53, caspase 3-p11, caspase 9-p10, and Bax while increasing Bcl-2 levels. Immunohistochemistry showcased a reduction in pro-apoptotic markers in dermal and follicular bulb cells. Furthermore, molecular docking studies identified BFNB metabolites as potential direct modulators of these key proteins, strengthening evidence of their role in apoptotic regulation. The interactomic analysis highlighted 50 proteins associated with apoptosis, and functional enrichment underscored key processes such as p53 signaling, regulation of the apoptosome, and mitochondrial membrane involvement in the intrinsic apoptosis mechanism, among other pathways. Conclusions: This study demonstrates that BFNB effectively modulates apoptosis through key molecular mechanisms, highlighting its potential as an innovative therapy for promoting hair growth. Full article
Show Figures

Figure 1

12 pages, 2107 KiB  
Article
Hair Growth Effect and the Mechanisms of Rosa rugosa Extract in DHT-Induced Alopecia Mice Model
by Ha-Rim Kim, Jung Up Park, Seung-Hyeon Lee, Jae Young Park, Wonwoo Lee, Kyung-Min Choi, Seon-Young Kim and Mi Hee Park
Int. J. Mol. Sci. 2024, 25(21), 11362; https://doi.org/10.3390/ijms252111362 - 22 Oct 2024
Cited by 1 | Viewed by 4133
Abstract
Rosa rugosa is a medicinal plant known for its potential anti-inflammatory, antioxidant, anti-cancer, and antimicrobial benefits. The pharmacological effects of Rosa rugosa extract on hair loss have not yet been documented. This research sought to assess the inhibitory effects and mechanisms of action [...] Read more.
Rosa rugosa is a medicinal plant known for its potential anti-inflammatory, antioxidant, anti-cancer, and antimicrobial benefits. The pharmacological effects of Rosa rugosa extract on hair loss have not yet been documented. This research sought to assess the inhibitory effects and mechanisms of action of Rosa rugosa water extract (RWE) in a mouse model of dihydrotestosterone (DHT)-induced alopecia. The study was conducted using C57BL/6 mice, which were assigned to five groups: control, DHT-treated, Rosa rugosa water extract (RWE) at doses of 25 mg/kg and 100 mg/kg body weight, and bicalutamide-treated. To induce hair loss, dihydrotestosterone (1 mg/day per body weight) was administered via intraperitoneal injections, and dorsal hair removal was timed to align with the telogen phase. Each group received oral treatments for a period of 23 days. In this study, we assessed hair growth activity, examined histological changes, and performed immunoblot analysis. We noted improvements in hair length and thickness. Additionally, the protein expression of growth factors associated with hair growth, including vascular endothelial growth factor (VEGF), epidermal growth factor (EGF), and insulin-like growth factor-1 (IGF-1), showed significant increases in the group treated with RWE. Additionally, treatment with RWE suppressed the protein expression of hair growth inhibitory factors, including dickkopf WNT signaling pathway inhibitor 1 (DKK1) and interleukin (IL)-6. Moreover, hair growth regulatory pathway related factors, including ERK, AKT, and GSK-3β, were activated. These findings indicate that RWE could serve as a promising natural therapy for preventing hair loss by enhancing the production of factors that promote hair growth while inhibiting those that suppress it. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

23 pages, 1227 KiB  
Article
Synergistic Phytochemical and Pharmacological Actions of Hair RiseTM Microemulsion: A Novel Herbal Formulation for Androgenetic Alopecia and Hair Growth Stimulation
by Anurak Muangsanguan, Warintorn Ruksiriwanich, Pichchapa Linsaenkart, Pensak Jantrawut, Pornchai Rachtanapun, Kittisak Jantanasakulwong, Sarana Rose Sommano, Korawan Sringarm, Chaiwat Arjin, Mathukorn Sainakham and Juan M. Castagnini
Plants 2024, 13(19), 2802; https://doi.org/10.3390/plants13192802 - 6 Oct 2024
Cited by 3 | Viewed by 4342
Abstract
Androgenetic alopecia (AGA) is a genetic condition characterized by an excessive response to androgens, leading to hairline regression in men and hair thinning at the vertex in women, which can negatively impact self-esteem. Conventional synthetic treatments for AGA are often limited by their [...] Read more.
Androgenetic alopecia (AGA) is a genetic condition characterized by an excessive response to androgens, leading to hairline regression in men and hair thinning at the vertex in women, which can negatively impact self-esteem. Conventional synthetic treatments for AGA are often limited by their side effects. In contrast, Thai medicinal plants offer a promising alternative with fewer adverse effects. This study investigates the synergistic phytochemical and pharmacological effects of a novel Hair RiseTM microemulsion, formulated with bioactive extracts from rice bran (Oryza sativa), shallot bulb (Allium ascalonicum), licorice root (Glycyrrhiza glabra), and corn kernels (Zea mays), for the treatment of hair loss. The microemulsion, in concentrations of 50%, 75%, and 100% (v/v), significantly enhanced the proliferation of human hair follicle dermal papilla cells (HFDPCs) compared to minoxidil. Additionally, it upregulated critical hair growth signaling pathways, including Wnt/β-catenin (CTNNB1), Sonic Hedgehog (SHH, SMO, GLI1), and vascular endothelial growth factor (VEGF), surpassing standard controls such as minoxidil and purmorphamine. The microemulsion also demonstrated potent anti-inflammatory and antioxidant properties by reducing nitric oxide production and oxidative stress, factors that contribute to inflammation and follicular damage in AGA. Furthermore, Hair RiseTM inhibited 5α-reductase (types 1–3), a key enzyme involved in androgen metabolism, in both human prostate cancer cells (DU-145) and HFDPCs. These findings suggest that Hair RiseTM microemulsion presents a promising natural therapy for promoting hair growth and reducing hair loss via multiple synergistic mechanisms, offering a potent, plant-based alternative to synthetic treatments. Full article
(This article belongs to the Special Issue Phytochemistry and Pharmacological Properties of Medicinal Plants)
Show Figures

Figure 1

13 pages, 994 KiB  
Review
Chemotherapy-Induced Alopecia by Docetaxel: Prevalence, Treatment and Prevention
by Aleymi M. Perez, Nicole I. Haberland, Mariya Miteva and Tongyu C. Wikramanayake
Curr. Oncol. 2024, 31(9), 5709-5721; https://doi.org/10.3390/curroncol31090423 - 23 Sep 2024
Cited by 6 | Viewed by 4972
Abstract
Docetaxel is a commonly used taxane chemotherapeutic agent in the treatment of a variety of cancers, including breast cancer, ovarian cancer, prostate cancer, non-small cell lung cancer, gastric cancer, and head and neck cancer. Docetaxel exerts its anti-cancer effects through inhibition of the [...] Read more.
Docetaxel is a commonly used taxane chemotherapeutic agent in the treatment of a variety of cancers, including breast cancer, ovarian cancer, prostate cancer, non-small cell lung cancer, gastric cancer, and head and neck cancer. Docetaxel exerts its anti-cancer effects through inhibition of the cell cycle and induction of proapoptotic activity. However, docetaxel also impacts rapidly proliferating normal cells in the scalp hair follicles (HFs), rendering the HFs vulnerable to docetaxel-induced cell death and leading to chemotherapy-induced alopecia (CIA). In severe cases, docetaxel causes persistent or permanent CIA (pCIA) when hair does not grow back completely six months after chemotherapy cessation. Hair loss has severe negative impacts on patients’ quality of life and may even compromise their compliance with treatment. This review discusses the notable prevalence of docetaxel-induced CIA and pCIA, as well as their prevention and management. At this moment, scalp cooling is the standard of care to prevent CIA. Treatment options to promote hair regrowth include but are not limited to minoxidil, photobiomodulation (PBMT), and platelet-rich plasma (PRP). In addition, a handful of current clinical trials are exploring additional agents to treat or prevent CIA. Research models of CIA, particularly ex vivo human scalp HF organ culture and in vivo mouse models with human scalp xenografts, will help expedite the translation of bench findings of CIA prevention and/or amelioration to the clinic. Full article
(This article belongs to the Topic Life of Cancer Survivor)
Show Figures

Figure 1

Back to TopTop