Chemotherapy-Induced Alopecia by Docetaxel: Prevalence, Treatment and Prevention
Abstract
:1. Introduction
- Alopecia, or hair loss, is one of the most common adverse effects associated with docetaxel chemotherapy.
- The fear of chemotherapy-induced alopecia can cause up to 14% of patients to consider rejecting the recommended optimal life-saving cancer treatment.
2. Prevalence of Docetaxel-Induced CIA
- Increased alopecia prevalence is associated with docetaxel dose of >55 mg/m2.
- Increased alopecia prevalence is associated with docetaxel combination therapies.
Docetaxel Dose | Docetaxel Regimen | Cancer Type | Adjunctive Therapy | Prevalence | References |
---|---|---|---|---|---|
Monotherapy | |||||
75 mg/m2 | 10 cycles ^ | Metastatic castration-resistant prostate cancer, n = 379 men, Mean age = 68 | - | 34.3% | [6] |
4 cycles | Non-small cell lung cancer, n = 288, Median age = 57 | - | 37.7% | [22] | |
Not included | Metastatic castration-resistant prostate cancer, n = 49, Median age = 68.5 | - | 42.9% | [23] | |
100 mg/ m2 | 6 cycles | Recurrent breast cancer, n = 6, Mean age = 55 | - | 83.3% | [25] |
Combination Therapy | |||||
40 mg/m2 every 2 weeks * | 12 cycles ^ | Metastatic castration-naïve prostate cancer, n = 35, Median age = 68 | Androgen deprivation therapy | 74% | [26] |
60 mg/m2 | 3 cycles | Locally advanced gastric cancer, n = 20 Mean age = 58.1 | Bevacizumab 7.5 mg/kg Cisplatin 60 mg/m2 Capecitabine 937.5 mg/m2 | 90% | [28] |
75 mg/m2 | 6 cycles ^ | HER-2 positive metastatic breast cancer, n = 276, Mean age = 55.6 | Trastuzumab 600 mg @ Pertuzumab 420 mg/kg | 46.8% | [29] |
6 cycles ^ | Non-small cell lung cancer, n = 9, Mean age = 67 | GSK3052230 # | 44% | [32] | |
4 cycles | Locally advanced or early HER2-negative breast cancer, n = 65, Median age = 52 | Capecitabine 1000 mg/m2 | 76.9% | [27] | |
4 cycles | Locally advanced or early HER2-negative breast cancer, n = 74, Median age = 52 | Epirubicin 75 mg/m2 | 91.4% | [27] | |
4 cycles | Breast cancer, n = 9, Mean age = 49 | Cyclophosphamide 600 mg/m2 | 100% | [12] | |
4 cycles | Early-stage breast cancer, n = 30 Mean age = 53.96 | 96.7% | [31] | ||
85 mg/ m2 | 4 cycles adjunctive, then 4 cycles docetaxel | Locally advanced breast cancer, n = 100, Median age = 47 | Doxorubicin 40 mg/m2 Cyclophosphamide 600 mg/m2 (delivered in PEG-coated liposomes) | 64.3% | [30] |
3. Docetaxel-Induced Persistent or Permanent CIA (pCIA)
- Taxane-based treatment is associated with an eight times greater likelihood of inducing pCIA compared to other chemotherapeutic agents.
- Docetaxel is associated with a higher risk for pCIA than paclitaxel.
4. Treatment for CIA and pCIA
- There is currently no cure for pCIA, and the treatment outcomes are mostly disappointing.
- Various clinical trials are investigating the use of minoxidil, photobiomodulation, or platelet-rich plasma as a treatment for pCIA/CIA.
5. Preventative Measures
- The successful prevention of CIA is classified as <50% hair loss.
- Scalp cooling administered by healthcare professionals remains the only FDA-cleared measure to prevent CIA by docetaxel.
Miscellaneous Novel Options
6. Research Models of CIA
- Ex vivo and in vivo models of CIA have been developed to get a better understanding of the underlying mechanisms of CIA and pCIA.
- A limitation of the murine model of CIA is the short anagen duration compared to human scalp HF, making it difficult to recapitulate human HF damage/recovery upon multi-course chemotherapy in the clinic.
7. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Cortes, J.E.; Pazdur, R. Docetaxel. J. Clin. Oncol. 1995, 13, 2643–2655. [Google Scholar] [CrossRef]
- Ismail, U.; Killeen, R.B. Taxane Toxicity; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Farha, N.G.; Kasi, A. Docetaxel; StatPearls: Treasure Island, FL, USA, 2024. [Google Scholar]
- Herbst, R.S.; Khuri, F.R. Mode of action of docetaxel—A basis for combination with novel anticancer agents. Cancer Treat. Rev. 2003, 29, 407–415. [Google Scholar] [CrossRef] [PubMed]
- Hall, F.; de Freitas, H.M.; Kerr, C.; Ito, T.; Nafees, B.; Lloyd, A.J.; Penton, J.; Hadi, M.; Lanar, S.; Pham, T.P. Estimating utilities/disutilities for high-risk metastatic hormone-sensitive prostate cancer (mHSPC) and treatment-related adverse events. Qual. Life Res. 2019, 28, 1191–1199. [Google Scholar] [CrossRef] [PubMed]
- Vogelzang, N.J.; Beer, T.M.; Gerritsen, W.; Oudard, S.; Wiechno, P.; Kukielka-Budny, B.; Samal, V.; Hajek, J.; Feyerabend, S.; Khoo, V.; et al. Efficacy and Safety of Autologous Dendritic Cell-Based Immunotherapy, Docetaxel, and Prednisone vs Placebo in Patients with Metastatic Castration-Resistant Prostate Cancer: The VIABLE Phase 3 Randomized Clinical Trial. JAMA Oncol. 2022, 8, 546–552. [Google Scholar] [CrossRef] [PubMed]
- Fortes, B.H.; Liou, H.; Dalvin, L.A. Ophthalmic adverse effects of taxanes: The Mayo Clinic experience. Eur. J. Ophthalmol. 2022, 32, 602–611. [Google Scholar] [CrossRef] [PubMed]
- Freites-Martinez, A.; Shapiro, J.; Goldfarb, S.; Nangia, J.; Jimenez, J.J.; Paus, R.; Lacouture, M.E. Hair disorders in patients with cancer. J. Am. Acad. Dermatol. 2019, 80, 1179–1196. [Google Scholar] [CrossRef]
- Paus, R.; Cotsarelis, G. The biology of hair follicles. N. Engl. J. Med. 1999, 341, 491–497. [Google Scholar] [CrossRef]
- Mounessa, J.; Caravaglio, J.V.; Domozych, R.; Chapman, S.; Dellavalle, R.P.; Dunnick, C.A.; Norris, D. Commonly prescribed medications associated with alopecia. J. Am. Acad. Dermatol. 2023, 88, 1326–1337.e1322. [Google Scholar] [CrossRef]
- Amarillo, D.; de Boni, D.; Cuello, M. Chemotherapy, Alopecia, and Scalp Cooling Systems. Actas Dermosifiliogr. 2022, 113, 278–283. [Google Scholar] [CrossRef]
- Kinoshita, T.; Nakayama, T.; Fukuma, E.; Inokuchi, M.; Ishiguro, H.; Ogo, E.; Kikuchi, M.; Jinno, H.; Yamazaki, N.; Toi, M. Efficacy of Scalp Cooling in Preventing and Recovering From Chemotherapy-Induced Alopecia in Breast Cancer Patients: The HOPE Study. Front. Oncol. 2019, 9, 733. [Google Scholar] [CrossRef]
- Michel, A.; Lee, R.T.; Salehi, E.; Accordino, M.K. Improving Quality of Life During Chemotherapy: Cannabinoids, Cryotherapy, and Scalp Cooling. Am. Soc. Clin. Oncol. Educ. Book 2023, 43, e390428. [Google Scholar] [CrossRef] [PubMed]
- Wikramanayake, T.C.; Haberland, N.I.; Akhundlu, A.; Laboy Nieves, A.; Miteva, M. Prevention and Treatment of Chemotherapy-Induced Alopecia: What Is Available and What Is Coming? Curr. Oncol. 2023, 30, 3609–3626. [Google Scholar] [CrossRef] [PubMed]
- Versluis, A.; van Alphen, K.; Dercksen, W.; de Haas, H.; van den Hurk, C.; Kaptein, A.A. “Dear hair loss”-illness perceptions of female patients with chemotherapy-induced alopecia. Support. Care Cancer 2022, 30, 3955–3963. [Google Scholar] [CrossRef]
- Martin, M.; de la Torre-Montero, J.C.; Lopez-Tarruella, S.; Pinilla, K.; Casado, A.; Fernandez, S.; Jerez, Y.; Puente, J.; Palomero, I.; Gonzalez Del Val, R.; et al. Persistent major alopecia following adjuvant docetaxel for breast cancer: Incidence, characteristics, and prevention with scalp cooling. Breast Cancer Res. Treat. 2018, 171, 627–634. [Google Scholar] [CrossRef] [PubMed]
- Chan, J.; Adderley, H.; Alameddine, M.; Armstrong, A.; Arundell, D.; Fox, R.; Harries, M.; Lim, J.; Salih, Z.; Tetlow, C.; et al. Permanent hair loss associated with taxane chemotherapy use in breast cancer: A retrospective survey at two tertiary UK cancer centres. Eur. J. Cancer Care 2021, 30, e13395. [Google Scholar] [CrossRef]
- Palamaras, I.; Misciali, C.; Vincenzi, C.; Robles, W.S.; Tosti, A. Permanent chemotherapy-induced alopecia: A review. J. Am. Acad. Dermatol. 2011, 64, 604–606. [Google Scholar] [CrossRef] [PubMed]
- Lyakhovitsky, A.; Segal, O.; Maly, A.; Zlotogorski, A.; Barzilai, A. Permanent chemotherapy-induced alopecia after hematopoietic stem cell transplantation treated with low-dose oral minoxidil. JAAD Case Rep. 2022, 22, 64–67. [Google Scholar] [CrossRef]
- Tosti, A.; Palamaras, I.; Miteva, M.; Misciali, C. Docetaxel and permanent alopecia. J. Am. Acad. Dermatol. 2013, 68, e151. [Google Scholar] [CrossRef]
- Kang, D.; Kim, I.R.; Choi, E.K.; Im, Y.H.; Park, Y.H.; Ahn, J.S.; Lee, J.E.; Nam, S.J.; Lee, H.K.; Park, J.H.; et al. Permanent Chemotherapy-Induced Alopecia in Patients with Breast Cancer: A 3-Year Prospective Cohort Study. Oncologist 2019, 24, 414–420. [Google Scholar] [CrossRef]
- Hanna, N.; Shepherd, F.A.; Fossella, F.V.; Pereira, J.R.; De Marinis, F.; von Pawel, J.; Gatzemeier, U.; Tsao, T.C.Y.; Pless, M.; Muller, T.; et al. Randomized Phase III Trial of Pemetrexed Versus Docetaxel in Patients with Non-Small-Cell Lung Cancer Previously Treated with Chemotherapy. J. Clin. Oncol. 2023, 41, 2682–2690. [Google Scholar] [CrossRef]
- Vaishampayan, U.N.; Keessen, M.; Dreicer, R.; Heath, E.I.; Buchler, T.; Arkosy, P.F.; Csoszi, T.; Wiechno, P.; Kopyltsov, E.; Orlov, S.V.; et al. A global phase II randomized trial comparing oral taxane ModraDoc006/r to intravenous docetaxel in metastatic castration resistant prostate cancer. Eur. J. Cancer 2024, 202, 114007. [Google Scholar] [CrossRef]
- Tolaney, S.M.; Tayob, N.; Dang, C.; Yardley, D.A.; Isakoff, S.J.; Valero, V.; Faggen, M.; Mulvey, T.; Bose, R.; Hu, J.; et al. Adjuvant Trastuzumab Emtansine Versus Paclitaxel in Combination with Trastuzumab for Stage I HER2-Positive Breast Cancer (ATEMPT): A Randomized Clinical Trial. J. Clin. Oncol. 2021, 39, 2375–2385. [Google Scholar] [CrossRef] [PubMed]
- Hirata, T.; Ozaki, S.; Tabata, M.; Iwamoto, T.; Hinotsu, S.; Hamada, A.; Motoki, T.; Nogami, T.; Shien, T.; Taira, N.; et al. A Multicenter Study of Docetaxel at a Dose of 100 mg/m(2) in Japanese Patients with Advanced or Recurrent Breast Cancer. Intern. Med. 2021, 60, 1183–1190. [Google Scholar] [CrossRef] [PubMed]
- Yoon, S.E.; Kim, Y.; Cho, J.; Kang, M.; Sung, H.H.; Jeon, H.G.; Jeong, B.C.; Seo, S.I.; Jeon, S.S.; Lee, H.M.; et al. A retrospective feasibility study of biweekly docetaxel in patients with high-risk metastatic castration-naive prostate cancer. BMC Urol. 2019, 19, 30. [Google Scholar] [CrossRef]
- Yang, H.; Xu, L.; Guan, S.; Hao, X.; Ge, Z.; Tong, F.; Cao, Y.; Liu, P.; Zhou, B.; Cheng, L.; et al. Neoadjuvant docetaxel and capecitabine (TX) versus docetaxel and epirubicin (TE) for locally advanced or early her2-negative breast cancer: An open-label, randomized, multi-center, phase II Trial. BMC Cancer 2022, 22, 1357. [Google Scholar] [CrossRef] [PubMed]
- Yu, D.; Wang, Z.; He, T.; Yang, L. Neoadjuvant Bevacizumab Plus Docetaxel/Cisplatin/Capecitabine Chemotherapy in Locally Advanced Gastric Cancer Patients: A Pilot Study. Front. Surg. 2022, 9, 842828. [Google Scholar] [CrossRef]
- Kuemmel, S.; Tondini, C.A.; Abraham, J.; Nowecki, Z.; Itrych, B.; Hitre, E.; Karaszewska, B.; Juarez-Ramiro, A.; Morales-Vasquez, F.; Perez-Garcia, J.M.; et al. Subcutaneous trastuzumab with pertuzumab and docetaxel in HER2-positive metastatic breast cancer: Final analysis of MetaPHER, a phase IIIb single-arm safety study. Breast Cancer Res. Treat. 2021, 187, 467–476. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Tian, F.; Qi, Y.; Ma, L.; Zhou, T.; Li, Y.; Hui, T.; Zhang, L.; Wang, S.; Song, Z. Pegylated liposomal doxorubicin plus cyclophosphamide followed by docetaxel as neoadjuvant chemotherapy in locally advanced breast cancer (registration number: ChiCTR1900023052). Sci. Rep. 2019, 9, 18135. [Google Scholar] [CrossRef]
- Xu, Y.; Chao, L.; Wang, J.; Sun, Y.; Li, C. Effect of different chemotherapy schemes on early-stage breast cancer patients with Low HER-2 expression. Pak. J. Med. Sci. 2023, 39, 1355–1360. [Google Scholar] [CrossRef]
- Morgensztern, D.; Karaseva, N.; Felip, E.; Delgado, I.; Burdaeva, O.; Domine, M.; Lara, P.; Paik, P.K.; Lassen, U.; Orlov, S.; et al. An open-label phase IB study to evaluate GSK3052230 in combination with paclitaxel and carboplatin, or docetaxel, in FGFR1-amplified non-small cell lung cancer. Lung Cancer 2019, 136, 74–79. [Google Scholar] [CrossRef]
- Sawaki, M.; Taira, N.; Uemura, Y.; Saito, T.; Baba, S.; Kobayashi, K.; Kawashima, H.; Tsuneizumi, M.; Sagawa, N.; Bando, H.; et al. Randomized Controlled Trial of Trastuzumab with or without Chemotherapy for HER2-Positive Early Breast Cancer in Older Patients. J. Clin. Oncol. 2020, 38, 3743–3752. [Google Scholar] [CrossRef] [PubMed]
- Freites-Martinez, A.; Chan, D.; Sibaud, V.; Shapiro, J.; Fabbrocini, G.; Tosti, A.; Cho, J.; Goldfarb, S.; Modi, S.; Gajria, D.; et al. Assessment of Quality of Life and Treatment Outcomes of Patients With Persistent Postchemotherapy Alopecia. JAMA Dermatol. 2019, 155, 724–728. [Google Scholar] [CrossRef] [PubMed]
- Purba, T.S.; Ng’andu, K.; Brunken, L.; Smart, E.; Mitchell, E.; Hassan, N.; O’Brien, A.; Mellor, C.; Jackson, J.; Shahmalak, A.; et al. CDK4/6 inhibition mitigates stem cell damage in a novel model for taxane-induced alopecia. EMBO Mol. Med. 2019, 11, e11031. [Google Scholar] [CrossRef]
- Asfour, L.; Cranwell, W.; Sinclair, R. Male Androgenetic Alopecia; Feingold, K.R., Anawalt, B., Blackman, M.R., Boyce, A., Chrousos, G., Corpas, E., de Herder, W.W., Dhatariya, K., Dungan, K., Hofland, J., et al., Eds.; Endotext: South Dartmouth, MA, USA, 2000. [Google Scholar]
- Kolla, A.; Liu, L.; Freedman, J.; Ugonabo, N.; Kaunitz, G.; Milam, E.; Lo Sicco, K.; Brinster, N.K. Permanent chemotherapy-induced alopecia presenting with erosive pustular dermatosis-like retention hyperkeratosis. JAAD Case Rep. 2022, 21, 77–79. [Google Scholar] [CrossRef] [PubMed]
- Kluger, N.; Jacot, W.; Frouin, E.; Rigau, V.; Poujol, S.; Dereure, O.; Guillot, B.; Romieu, G.; Bessis, D. Permanent scalp alopecia related to breast cancer chemotherapy by sequential fluorouracil/epirubicin/cyclophosphamide (FEC) and docetaxel: A prospective study of 20 patients. Ann. Oncol. 2012, 23, 2879–2884. [Google Scholar] [CrossRef]
- Nunez-Torres, R.; Martin, M.; Garcia-Saenz, J.A.; Rodrigo-Faus, M.; Del Monte-Millan, M.; Tejera-Perez, H.; Pita, G.; de la Torre-Montero, J.C.; Pinilla, K.; Herraez, B.; et al. Association between ABCB1 Genetic Variants and Persistent Chemotherapy-Induced Alopecia in Women with Breast Cancer. JAMA Dermatol. 2020, 156, 987–991. [Google Scholar] [CrossRef] [PubMed]
- Randolph, M.; Tosti, A. Oral minoxidil treatment for hair loss: A review of efficacy and safety. J. Am. Acad. Dermatol. 2021, 84, 737–746. [Google Scholar] [CrossRef]
- Rossi, A.; Caro, G.; Fortuna, M.C.; Pigliacelli, F.; D’Arino, A.; Carlesimo, M. Prevention and Treatment of Chemotherapy-Induced Alopecia. Dermatol. Pract. Concept. 2020, 10, e2020074. [Google Scholar] [CrossRef]
- Rodriguez, R.; Machiavelli, M.; Leone, B.; Romero, A.; Cuevas, M.A.; Langhi, M.; Romero Acuna, L.; Romero Acuna, J.; Amato, S.; Barbieri, M.; et al. Minoxidil (Mx) as a prophylaxis of doxorubicin--induced alopecia. Ann. Oncol. 1994, 5, 769–770. [Google Scholar] [CrossRef]
- Stoehr, J.R.; Choi, J.N.; Colavincenzo, M.; Vanderweil, S. Off-Label Use of Topical Minoxidil in Alopecia: A Review. Am. J. Clin. Dermatol. 2019, 20, 237–250. [Google Scholar] [CrossRef]
- da Silveira, S.P.; Moita, S.R.U.; da Silva, S.V.; Rodrigues, M.; da Silva, D.F.T.; Pavani, C. The role of photobiomodulation when associated with microneedling in female pattern hair loss: A randomized, double blind, parallel group, three arm, clinical study protocol. Medicine 2019, 98, e14938. [Google Scholar] [CrossRef] [PubMed]
- Dompe, C.; Moncrieff, L.; Matys, J.; Grzech-Lesniak, K.; Kocherova, I.; Bryja, A.; Bruska, M.; Dominiak, M.; Mozdziak, P.; Skiba, T.H.I.; et al. Photobiomodulation-Underlying Mechanism and Clinical Applications. J. Clin. Med. 2020, 9, 1724. [Google Scholar] [CrossRef] [PubMed]
- Hamblin, M.R. Photobiomodulation for the management of alopecia: Mechanisms of action, patient selection and perspectives. Clin. Cosmet. Investig. Dermatol. 2019, 12, 669–678. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.J.; Wikramanayake, T.C.; Bergfeld, W.; Hordinsky, M.; Hickman, J.G.; Hamblin, M.R.; Schachner, L.A. Efficacy and safety of a low-level laser device in the treatment of male and female pattern hair loss: A multicenter, randomized, sham device-controlled, double-blind study. Am. J. Clin. Dermatol. 2014, 15, 115–127. [Google Scholar] [CrossRef]
- Zhang, Y.; Su, J.; Ma, K.; Fu, X.; Zhang, C. Photobiomodulation Therapy With Different Wavebands for Hair Loss: A Systematic Review and Meta-Analysis. Dermatol. Surg. 2022, 48, 737–740. [Google Scholar] [CrossRef]
- Avci, P.; Gupta, G.K.; Clark, J.; Wikonkal, N.; Hamblin, M.R. Low-level laser (light) therapy (LLLT) for treatment of hair loss. Lasers Surg. Med. 2014, 46, 144–151. [Google Scholar] [CrossRef]
- Wikramanayake, T.C.; Villasante, A.C.; Mauro, L.M.; Nouri, K.; Schachner, L.A.; Perez, C.I.; Jimenez, J.J. Low-level laser treatment accelerated hair regrowth in a rat model of chemotherapy-induced alopecia (CIA). Lasers Med. Sci. 2013, 28, 701–706. [Google Scholar] [CrossRef]
- Robijns, J.; Nair, R.G.; Lodewijckx, J.; Arany, P.; Barasch, A.; Bjordal, J.M.; Bossi, P.; Chilles, A.; Corby, P.M.; Epstein, J.B.; et al. Photobiomodulation therapy in management of cancer therapy-induced side effects: WALT position paper 2022. Front. Oncol. 2022, 12, 927685. [Google Scholar] [CrossRef] [PubMed]
- Pixley, J.N.; Cook, M.K.; Singh, R.; Larrondo, J.; McMichael, A.J. A comprehensive review of platelet-rich plasma for the treatment of dermatologic disorders. J. Dermatolog. Treat. 2023, 34, 2142035. [Google Scholar] [CrossRef]
- Justicz, N.; Derakhshan, A.; Chen, J.X.; Lee, L.N. Platelet-Rich Plasma for Hair Restoration. Facial Plast. Surg. Clin. N. Am. 2020, 28, 181–187. [Google Scholar] [CrossRef]
- Luzo, A.C.M.; Favaro, W.J.; Seabra, A.B.; Duran, N. What is the potential use of platelet-rich-plasma (PRP) in cancer treatment? A mini review. Heliyon 2020, 6, e03660. [Google Scholar] [CrossRef] [PubMed]
- Eichler, C.; Baucks, C.; Uner, J.; Pahmeyer, C.; Ratiu, D.; Gruettner, B.; Malter, W.; Warm, M. Platelet-Rich Plasma (PRP) in Breast Cancer Patients: An Application Analysis of 163 Sentinel Lymph Node Biopsies. Biomed. Res. Int. 2020, 2020, 3432987. [Google Scholar] [CrossRef] [PubMed]
- Stamatiou, C.A.; Lens, A.; Perez, C.I.; Daunert, S.; Jimenez, J.J. The Role of Platelet-Rich Plasma in the Prevention of Chemotherapy-Induced Alopecia. Skin. Appendage Disord. 2020, 6, 58–60. [Google Scholar] [CrossRef]
- Cruciani, M.; Masiello, F.; Pati, I.; Marano, G.; Pupella, S.; De Angelis, V. Platelet-rich plasma for the treatment of alopecia: A systematic review and meta-analysis. Blood Transfus. 2023, 21, 24–36. [Google Scholar]
- Fabbrocini, G.; Cantelli, M.; Masara, A.; Annunziata, M.C.; Marasca, C.; Cacciapuoti, S. Female pattern hair loss: A clinical, pathophysiologic, and therapeutic review. Int. J. Womens Dermatol. 2018, 4, 203–211. [Google Scholar] [CrossRef] [PubMed]
- Barron-Hernandez, Y.L.; Tosti, A. Bimatoprost for the treatment of eyelash, eyebrow and scalp alopecia. Expert. Opin. Investig. Drugs 2017, 26, 515–522. [Google Scholar] [CrossRef]
- Glaser, D.A.; Hossain, P.; Perkins, W.; Griffiths, T.; Ahluwalia, G.; Weng, E.; Beddingfield, F.C. Long-term safety and efficacy of bimatoprost solution 0.03% application to the eyelid margin for the treatment of idiopathic and chemotherapy-induced eyelash hypotrichosis: A randomized controlled trial. Br. J. Dermatol. 2015, 172, 1384–1394. [Google Scholar] [CrossRef] [PubMed]
- Harii, K.; Arase, S.; Tsuboi, R.; Weng, E.; Daniels, S.; VanDenburgh, A. Bimatoprost for eyelash growth in Japanese subjects: Two multicenter controlled studies. Aesthetic Plast. Surg. 2014, 38, 451–460. [Google Scholar] [CrossRef]
- Coolbrandt, A.; T’Jonck, A.; Blauwens, K.; Dejaeger, E.; Neven, P.; Punie, K.; Vancoille, K.; Wildiers, H. Scalp cooling in breast cancer patients treated with docetaxel-cyclophosphamide: Patient- and nurse-reported results. Breast Cancer Res. Treat. 2021, 186, 715–722. [Google Scholar] [CrossRef]
- Carbognin, L.; Accetta, C.; Di Giorgio, D.; Fuso, P.; Muratore, M.; Tiberi, G.; Pavese, F.; D’Angelo, T.; Fabi, A.; Giannarelli, D.; et al. Prospective Study Investigating the Efficacy and Safety of a Scalp Cooling Device for the Prevention of Alopecia in Women Undergoing (Neo)Adjuvant Chemotherapy for Breast Cancer. Curr. Oncol. 2022, 29, 7218–7228. [Google Scholar] [CrossRef]
- Giarratano, T.; Frezzini, S.; Zanocco, M.; Giorgi, C.A.; Mioranza, E.; Miglietta, F.; Griguolo, G.; Falci, C.; Faggioni, G.; Tasca, G.; et al. Use of scalp cooling device to prevent alopecia for early breast cancer patients receiving chemotherapy: A prospective study. Breast J. 2020, 26, 1296–1301. [Google Scholar] [CrossRef] [PubMed]
- Villarreal-Garza, C.; Mesa-Chavez, F.; Garza-Ledezma, M.R.A.; Pena-Curiel, O.; Martinez-Cannon, B.A.; Canavati-Marcos, M.; Cardona-Huerta, S. Impact of chemotherapy regimen and sequence on the effectiveness of scalp cooling for alopecia prevention. Breast Cancer Res. Treat. 2021, 185, 453–458. [Google Scholar] [CrossRef]
- Weaver, B.A. How Taxol/paclitaxel kills cancer cells. Mol. Biol. Cell 2014, 25, 2677–2681. [Google Scholar] [CrossRef] [PubMed]
- Weaver, D.; Pershing, M.L.; Golden, B.; Hammel, L.; Russ, P.K.; Cripe, M. Retrospective evaluation of Penguin Cold Caps for chemotherapy-induced alopecia. Support. Care Cancer 2024, 32, 225. [Google Scholar] [CrossRef] [PubMed]
- Fushimi, A.; Shinozaki, N.; Takeyama, H. Hair regrowth using a properly fitted scalp cooling cap during adjuvant chemotherapy for breast cancer. Int. Cancer Conf. J. 2019, 8, 181–184. [Google Scholar] [CrossRef] [PubMed]
- Rugo, H.S.; Melin, S.A.; Voigt, J. Scalp cooling with adjuvant/neoadjuvant chemotherapy for breast cancer and the risk of scalp metastases: Systematic review and meta-analysis. Breast Cancer Res. Treat. 2017, 163, 199–205. [Google Scholar] [CrossRef]
- Beaumont, K.A.; Hill, D.S.; Daignault, S.M.; Lui, G.Y.L.; Sharp, D.M.; Gabrielli, B.; Weninger, W.; Haass, N.K. Cell Cycle Phase-Specific Drug Resistance as an Escape Mechanism of Melanoma Cells. J. Investig. Dermatol. 2016, 136, 1479–1489. [Google Scholar] [CrossRef]
- Blagosklonny, M.V. The power of chemotherapeutic engineering: Arresting cell cycle and suppressing senescence to protect from mitotic inhibitors. Cell Cycle 2011, 10, 2295–2298. [Google Scholar] [CrossRef]
- McClendon, A.K.; Dean, J.L.; Rivadeneira, D.B.; Yu, J.E.; Reed, C.A.; Gao, E.; Farber, J.L.; Force, T.; Koch, W.J.; Knudsen, E.S. CDK4/6 inhibition antagonizes the cytotoxic response to anthracycline therapy. Cell Cycle 2012, 11, 2747–2755. [Google Scholar] [CrossRef]
- Paus, R.; Haslam, I.S.; Sharov, A.A.; Botchkarev, V.A. Pathobiology of chemotherapy-induced hair loss. Lancet Oncol. 2013, 14, e50–e59. [Google Scholar] [CrossRef]
- Shah, M.A.; Schwartz, G.K. Cell cycle-mediated drug resistance: An emerging concept in cancer therapy. Clin. Cancer Res. 2001, 7, 2168–2181. [Google Scholar] [PubMed]
- Abal, M.; Andreu, J.M.; Barasoain, I. Taxanes: Microtubule and centrosome targets, and cell cycle dependent mechanisms of action. Curr. Cancer Drug Targets 2003, 3, 193–203. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.G.; Horwitz, S.B. Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs. Cancer Res. 2002, 62, 1935–1938. [Google Scholar]
- de Kouchkovsky, I.; Rao, A.; Carneiro, B.A.; Zhang, L.; Lewis, C.; Phone, A.; Small, E.J.; Friedlander, T.; Fong, L.; Paris, P.L.; et al. A Phase Ib/II Study of the CDK4/6 Inhibitor Ribociclib in Combination with Docetaxel plus Prednisone in Metastatic Castration-Resistant Prostate Cancer. Clin. Cancer Res. 2022, 28, 1531–1539. [Google Scholar] [CrossRef]
- Morse, D.L.; Gray, H.; Payne, C.M.; Gillies, R.J. Docetaxel induces cell death through mitotic catastrophe in human breast cancer cells. Mol. Cancer Ther. 2005, 4, 1495–1504. [Google Scholar] [CrossRef]
- Smith, E.R.; Huang, M.; Schlumbrecht, M.P.; George, S.H.L.; Xu, X.X. Rationale for combination of paclitaxel and CDK4/6 inhibitor in ovarian cancer therapy—Non-mitotic mechanisms of paclitaxel. Front. Oncol. 2022, 12, 907520. [Google Scholar] [CrossRef]
- Zasadil, L.M.; Andersen, K.A.; Yeum, D.; Rocque, G.B.; Wilke, L.G.; Tevaarwerk, A.J.; Raines, R.T.; Burkard, M.E.; Weaver, B.A. Cytotoxicity of paclitaxel in breast cancer is due to chromosome missegregation on multipolar spindles. Sci. Transl. Med. 2014, 6, 229ra243. [Google Scholar] [CrossRef]
- CDK4/6 Inhibitors for Metastatic Breast Cancer. 2024. Available online: https://www.komen.org/breast-cancer/metastatic/metastatic/cdk4-6-inhibitors-for-metastatic-breast-cancer/ (accessed on 20 September 2024).
- Danilenko, D.M.; Ring, B.D.; Yanagihara, D.; Benson, W.; Wiemann, B.; Starnes, C.O.; Pierce, G.F. Keratinocyte growth factor is an important endogenous mediator of hair follicle growth, development, and differentiation. Normalization of the nu/nu follicular differentiation defect and amelioration of chemotherapy-induced alopecia. Am. J. Pathol. 1995, 147, 145–154. [Google Scholar] [PubMed]
- Amaya, C.; Smith, E.R.; Xu, X.X. Low Intensity Ultrasound as an Antidote to Taxane/Paclitaxel-induced Cytotoxicity. J. Cancer 2022, 13, 2362–2373. [Google Scholar] [CrossRef]
- Cheret, J.; Samra, T.; Verling, S.D.; Gherardini, J.; Rodriguez-Feliz, J.; Bauman, A.J.; Sanchez, C.A.; Wikramanayake, T.C.; Xu, X.X.; Paus, R. Low-Intensity Ultrasound as a Potential Intervention Strategy to Protect Human Scalp Hair Follicles from Taxane-Induced Toxicity. J. Investig. Dermatol. 2023, 143, 1809–1813.e1802. [Google Scholar] [CrossRef]
- Keum, D.I.; Pi, L.Q.; Hwang, S.T.; Lee, W.S. Protective effect of Korean Red Ginseng against chemotherapeutic drug-induced premature catagen development assessed with human hair follicle organ culture model. J. Ginseng Res. 2016, 40, 169–175. [Google Scholar] [CrossRef] [PubMed]
- Haslam, I.S.; Zhou, G.; Xie, G.; Teng, X.; Ao, X.; Yan, Z.; Smart, E.; Rutkowski, D.; Wierzbicka, J.; Zhou, Y.; et al. Inhibition of Shh Signaling through MAPK Activation Controls Chemotherapy-Induced Alopecia. J. Investig. Dermatol. 2021, 141, 334–344. [Google Scholar] [CrossRef] [PubMed]
- Hussein, A.M.; Jimenez, J.J.; McCall, C.A.; Yunis, A.A. Protection from chemotherapy-induced alopecia in a rat model. Science 1990, 249, 1564–1566. [Google Scholar] [CrossRef] [PubMed]
- Jimenez, J.J.; Alvarez, E.; Bustamante, C.D.; Yunis, A.A. Pretreatment with 1,25(OH)2D3 protects from Cytoxan-induced alopecia without protecting the leukemic cells from Cytoxan. Am. J. Med. Sci. 1995, 310, 43–47. [Google Scholar] [CrossRef]
- Stojadinovic, O.; Wikramanayake, T.C.; Villasante Fricke, A.C.; Yin, N.C.; Liang, L.; Hinde, E.; Escandon, J.; Tomic-Canic, M.; Ansell, D.M.; Paus, R.; et al. Wound healing protects against chemotherapy-induced alopecia in young rats via up-regulating interleukin-1beta-mediated signaling. Heliyon 2017, 3, e00309. [Google Scholar] [CrossRef]
- Sun, B.; Wakame, K.; Sato, E.; Nishioka, H.; Aruoma, O.I.; Fujii, H. The effect of active hexose correlated compound in modulating cytosine arabinoside-induced hair loss, and 6-mercaptopurine- and methotrexate-induced liver injury in rodents. Cancer Epidemiol. 2009, 33, 293–299. [Google Scholar] [CrossRef]
- Yoshizawa, K.; Nambu, H.; Yamamoto, D.; Yang, J.; Kiyozuka, Y.; Shikata, N.; Tsubura, A. Time-specific occurrence of alopecia in neonatal C57BL mice treated with N-methyl-N-nitrosourea and the therapeutic efficacy of tacrolimus hydrate. Pathol. Int. 2000, 50, 175–184. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Jimenez, J.J. Mild oxidative stress protects against chemotherapy-induced hair loss. Front. Oncol. 2022, 12, 1078916. [Google Scholar] [CrossRef]
- Wikramanayake, T.C.; Amini, S.; Simon, J.; Mauro, L.M.; Elgart, G.; Schachner, L.A.; Jimenez, J.J. A novel rat model for chemotherapy-induced alopecia. Clin. Exp. Dermatol. 2012, 37, 284–289. [Google Scholar] [CrossRef]
- Demir, B.; Demirci, B.; Tataroglu, C.; Barutca, S.; Barutca, D. The efficacy of HDDPiW-jSB solution on docetaxel-induced alopecia of rats. Cutan. Ocul. Toxicol. 2024, 43, 113–119. [Google Scholar] [CrossRef]
- Hendrix, S.; Handjiski, B.; Peters, E.M.; Paus, R. A guide to assessing damage response pathways of the hair follicle: Lessons from cyclophosphamide-induced alopecia in mice. J. Investig. Dermatol. 2005, 125, 42–51. [Google Scholar] [CrossRef] [PubMed]
- Paus, R.; Handjiski, B.; Eichmuller, S.; Czarnetzki, B.M. Chemotherapy-induced alopecia in mice. Induction by cyclophosphamide, inhibition by cyclosporine A, and modulation by dexamethasone. Am. J. Pathol. 1994, 144, 719–734. [Google Scholar]
- Yoneda, K.; Fujii, M.; Imaoka, A.; Kobayashi, R.; Hayashi, R.; Yoshida, Y.; Kohno, T.; Tsuji, T. Preventive effect of edaravone ointment on cyclophosphamide-chemotherapy induced alopecia. Support. Care Cancer 2021, 29, 6127–6134. [Google Scholar] [CrossRef] [PubMed]
- Muller-Rover, S.; Handjiski, B.; van der Veen, C.; Eichmuller, S.; Foitzik, K.; McKay, I.A.; Stenn, K.S.; Paus, R. A comprehensive guide for the accurate classification of murine hair follicles in distinct hair cycle stages. J. Investig. Dermatol. 2001, 117, 3–15. [Google Scholar] [CrossRef] [PubMed]
- Gilhar, A.; Krueger, G.G. Hair growth in scalp grafts from patients with alopecia areata and alopecia universalis grafted onto nude mice. Arch. Dermatol. 1987, 123, 44–50. [Google Scholar] [CrossRef]
- De Brouwer, B.; Tetelin, C.; Leroy, T.; Bonfils, A.; Van Neste, D. A controlled study of the effects of RU58841, a non-steroidal antiandrogen, on human hair production by balding scalp grafts maintained on testosterone-conditioned nude mice. Br. J. Dermatol. 1997, 137, 699–702. [Google Scholar] [CrossRef]
- Ghraieb, A.; Keren, A.; Ginzburg, A.; Ullmann, Y.; Schrum, A.G.; Paus, R.; Gilhar, A. iNKT cells ameliorate human autoimmunity: Lessons from alopecia areata. J. Autoimmun. 2018, 91, 61–72. [Google Scholar] [CrossRef]
- Krajcik, R.A.; Vogelman, J.H.; Malloy, V.L.; Orentreich, N. Transplants from balding and hairy androgenetic alopecia scalp regrow hair comparably well on immunodeficient mice. J. Am. Acad. Dermatol. 2003, 48, 752–759. [Google Scholar] [CrossRef]
- Van Neste, D.; De Brouwer, B.; Dumortier, M. Reduced linear hair growth rates of vellus and of terminal hairs produced by human balding scalp grafted onto nude mice. Ann. N. Y. Acad. Sci. 1991, 642, 480–482. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Perez, A.M.; Haberland, N.I.; Miteva, M.; Wikramanayake, T.C. Chemotherapy-Induced Alopecia by Docetaxel: Prevalence, Treatment and Prevention. Curr. Oncol. 2024, 31, 5709-5721. https://doi.org/10.3390/curroncol31090423
Perez AM, Haberland NI, Miteva M, Wikramanayake TC. Chemotherapy-Induced Alopecia by Docetaxel: Prevalence, Treatment and Prevention. Current Oncology. 2024; 31(9):5709-5721. https://doi.org/10.3390/curroncol31090423
Chicago/Turabian StylePerez, Aleymi M., Nicole I. Haberland, Mariya Miteva, and Tongyu C. Wikramanayake. 2024. "Chemotherapy-Induced Alopecia by Docetaxel: Prevalence, Treatment and Prevention" Current Oncology 31, no. 9: 5709-5721. https://doi.org/10.3390/curroncol31090423
APA StylePerez, A. M., Haberland, N. I., Miteva, M., & Wikramanayake, T. C. (2024). Chemotherapy-Induced Alopecia by Docetaxel: Prevalence, Treatment and Prevention. Current Oncology, 31(9), 5709-5721. https://doi.org/10.3390/curroncol31090423