Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (39)

Search Parameters:
Keywords = anti-TMV

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 2739 KiB  
Article
Immunogenicity of DNA, mRNA and Subunit Vaccines Against Beak and Feather Disease Virus
by Buyani Ndlovu, Albertha R. van Zyl, Dirk Verwoerd, Edward P. Rybicki and Inga I. Hitzeroth
Vaccines 2025, 13(7), 762; https://doi.org/10.3390/vaccines13070762 - 17 Jul 2025
Viewed by 633
Abstract
Background/Objectives: Beak and feather disease virus (BFDV) is the causative agent of psittacine beak and feather disease (PBFD), affecting psittacine birds. There is currently no commercial vaccine or treatment for this disease. This study developed a novel BFDV coat protein mRNA vaccine encapsidated [...] Read more.
Background/Objectives: Beak and feather disease virus (BFDV) is the causative agent of psittacine beak and feather disease (PBFD), affecting psittacine birds. There is currently no commercial vaccine or treatment for this disease. This study developed a novel BFDV coat protein mRNA vaccine encapsidated by TMV coat protein to form pseudovirions (PsVs) and tested its immunogenicity alongside BFDV coat protein (CP) subunit and DNA vaccine candidates. Methods: mRNA and BFDV CP subunit vaccine candidates were produced in Nicotiana benthamiana and subsequently purified using PEG precipitation and gradient ultracentrifugation, respectively. The DNA vaccine candidate was produced in E. coli cells harbouring a plasmid with a BFDV1.1mer pseudogenome. Immunogenicity of the vaccine candidates was evaluated in African grey parrot chicks. Results: Successful purification of TMV PsVs harbouring the mRNA vaccine, and of the BFDV-CP subunit vaccine, was confirmed by SDS-PAGE and western blot analysis. TEM analyses confirmed formation of TMV PsVs, while RT-PCR and RT-qPCR cDNA amplification confirmed encapsidation of the mRNA vaccine candidate within TMV particles. Restriction digests verified presence of the BFDV1.1mer genome in the plasmid. Four groups of 5 ten-week-old African grey parrot (Psittacus erithacus) chicks were vaccinated and received two boost vaccinations 2 weeks apart. Blood samples were collected from all four groups on day 14, 28 and 42, and sera were analysed using indirect ELISA, which showed that all vaccine candidates successfully elicited specific anti-BFDV-CP immune responses. The subunit vaccine candidate showed the strongest immune response, indicated by higher binding titres (>6400), followed by the mRNA and DNA vaccine candidates. Conclusions: The candidate vaccines present an important milestone in the search for a protective vaccine against PBFD, and their inexpensive manufacture could considerably aid commercial vaccine development. Full article
(This article belongs to the Special Issue Innovations in Vaccine Technology)
Show Figures

Figure 1

12 pages, 11160 KiB  
Article
Discovery of Crinasiadine, Trisphaeridine, Bicolorine, and Their Derivatives as Anti-Tobacco Mosaic Virus (TMV) Agents
by Zhan Hu, Jincheng Guo, Dejun Ma, Ziwen Wang, Yuxiu Liu and Qingmin Wang
Int. J. Mol. Sci. 2025, 26(3), 1103; https://doi.org/10.3390/ijms26031103 - 27 Jan 2025
Cited by 1 | Viewed by 1124
Abstract
Plant viral diseases cause great harm to crops in terms of yield and quality. Natural products have been providing an excellent source of novel chemistry, inspiring the development of novel synthetic pesticides. The Amaryllidaceae alkaloids crinasiadine (3a), trisphaeridine (4a), [...] Read more.
Plant viral diseases cause great harm to crops in terms of yield and quality. Natural products have been providing an excellent source of novel chemistry, inspiring the development of novel synthetic pesticides. The Amaryllidaceae alkaloids crinasiadine (3a), trisphaeridine (4a), and bicolorine (5a) were selected as parent structures, and a series of their derivatives were designed, synthesized, and investigated for their anti-plant virus effects for the first time. Compounds 13b and 18 exhibited comparable inhibitory activities to ningnanmycin against tobacco mosaic virus (TMV). Preliminary research into the mechanism, involving transmission electron microscopy and molecular docking studies, suggests that compound 18 may interfere with the elongation phase of the TMV assembly process. This study provides some important information for the research and development of agrochemicals with phenanthridine structures. Full article
(This article belongs to the Special Issue Antiviral Drug Design, Synthesis and Molecular Mechanisms)
Show Figures

Graphical abstract

11 pages, 3326 KiB  
Article
One-Step Multiplex RT-PCR Method for Detection of Melon Viruses
by Sheng Han, Tingting Zhou, Fengqin Zhang, Jing Feng, Chenggui Han and Yushanjiang Maimaiti
Microorganisms 2024, 12(11), 2337; https://doi.org/10.3390/microorganisms12112337 - 15 Nov 2024
Viewed by 1279
Abstract
This study presents a one-step multiplex reverse transcription polymerase chain reaction (RT-PCR) method for the simultaneous detection of multiple viruses affecting melon crops. Viruses such as Watermelon mosaic virus (WMV), Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus (ZYMV), Squash mosaic virus (SqMV), [...] Read more.
This study presents a one-step multiplex reverse transcription polymerase chain reaction (RT-PCR) method for the simultaneous detection of multiple viruses affecting melon crops. Viruses such as Watermelon mosaic virus (WMV), Cucumber mosaic virus (CMV), Zucchini yellow mosaic virus (ZYMV), Squash mosaic virus (SqMV), Tobacco mosaic virus (TMV), Papaya ring spot virus (PRSV), and Melon yellow spot virus (MYSV) pose a great threat to melons. The mixed infection of these viruses is the most common observation in the melon-growing fields. In this study, we surveyed northern Xingjiang (Altay, Changji, Wujiaqu, Urumqi, Turpan, and Hami) and southern Xingjiang (Aksu, Bayingolin, Kashgar, and Hotan) locations in Xinjiang province and developed a one-step multiplex RT-PCR to detect these melon viruses. The detection limits of this multiplex PCR were 103 copies/μL for ZYMV and MYSV and 102 copies/μL for WMV, SqMV, PRSV, CMV, and TMV. The detection results in the field showed 242 samples were infected by one or more viruses. The multiplex RT-PCR protocol demonstrated rapid, simultaneous, and relatively effective detection of viruses such as WMV, CMV, ZYMV, SqMV, TMV, PRSV, and MYSV. The technique is designed to identify these melon viruses in a single reaction, enhancing diagnostic efficiency and reducing costs, thus serving as a reference for muskmelon anti-virus breeding in Xinjiang. Full article
(This article belongs to the Section Virology)
Show Figures

Figure 1

19 pages, 2398 KiB  
Review
The Use of Bacteria, Actinomycetes and Fungi in the Bioprotection of Solanaceous Crops against Tobacco Mosaic Virus (TMV)
by Anna Trojak-Goluch
Agriculture 2024, 14(8), 1220; https://doi.org/10.3390/agriculture14081220 - 24 Jul 2024
Cited by 1 | Viewed by 2398
Abstract
Tobacco mosaic virus (TMV) is one of the most persistent and infectious plant viruses. The substantial economic losses caused by TMV in the production of tobacco and vegetables (especially in the Solanaceae family) are prompting the introduction of innovative solutions that effectively inhibit [...] Read more.
Tobacco mosaic virus (TMV) is one of the most persistent and infectious plant viruses. The substantial economic losses caused by TMV in the production of tobacco and vegetables (especially in the Solanaceae family) are prompting the introduction of innovative solutions that effectively inhibit infection by this pathogen. Biological control agents based on bacteria of the genera Pseudomonas, Bacillus, Pantoea and actinomycetes are becoming increasingly popular in the fight against TMV. Some fungi, including Fusarium spp., Trichoderma spp., Alternaria spp. and Sepedonium spp., as well as wood-rotting fungi, also exhibit high anti-TMV activity. This article presents a comprehensive review of recent scientific advances in the bioprotection of selected solanaceous crops against TMV. It provides information on the structure of the virus, its host range, pathogenicity and the severity of losses caused in pepper, tomato and tobacco production. The review characterises environmentally safe techniques involving biological control agents naturally occurring in the environment and the bioactive compounds extracted from them. It also identifies their effects on crops at the morphological, physiological and molecular levels. In addition, the manuscript outlines prospects for the future applications of beneficial micro-organisms and active compounds derived from them in the protection against TMV. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

17 pages, 1991 KiB  
Article
Vaccination against Epstein–Barr Latent Membrane Protein 1 Protects against an Epstein–Barr Virus-Associated B Cell Model of Lymphoma
by Wesley I. Soo Hoo, Kaylie Higa and Alison A. McCormick
Biology 2023, 12(7), 983; https://doi.org/10.3390/biology12070983 - 11 Jul 2023
Cited by 1 | Viewed by 2467
Abstract
In this study, we demonstrate that expression of viral latent membrane protein 1 (LMP1) in a mouse B cell line renders the animals responsive to protection from a 38C13-LMP1 tumor challenge with a novel vaccine. The Epstein–Barr virus (EBV) preferentially infects circulating B [...] Read more.
In this study, we demonstrate that expression of viral latent membrane protein 1 (LMP1) in a mouse B cell line renders the animals responsive to protection from a 38C13-LMP1 tumor challenge with a novel vaccine. The Epstein–Barr virus (EBV) preferentially infects circulating B lymphocytes, has oncogenic potential, and is associated with a wide variety of B cell lymphomas. EBV is ectotrophic to human cells, and currently there are no B cell animal models of EBV-associated lymphoma that can be used to investigate vaccine immunotherapy. Since most EBV-infected human tumor cells express latent membrane protein 1 (LMP1) on their surface, this viral antigen was tested as a potential target for an anticancer vaccine in a mouse model. Here, we describe a new mouse model of LMP1-expressing B cell lymphoma produced with plasmid transduction of 38C13 into mouse B cells. The expression of LMP-1 was confirmed with a western blot analysis and immunocytochemistry. We then designed a novel LMP1 vaccine, by fusing viral antigen LMP1 surface loop epitopes to the surface of a viral antigen carrier, the Tobacco Mosaic virus (TMV). Vaccinated mice produced high titer antibodies against the TMV-LMP1 vaccine; however, cellular responses were at the baseline, as measured with IFNγ ELISpot. Despite this, the vaccine showed significant protection from a 38C13-LMP1 tumor challenge. To provide additional immune targets, we compared TMV-LMP1 peptide immunization with DNA immunization with the full-length LMP1 gene. Anti-LMP1 antibodies were significantly higher in TMV-LMP1-vaccinated mice compared to the DNA-immunized mice, but, as predicted, DNA-vaccinated mice had improved cellular responses using IFNγ ELISpot. Surprisingly, the TMV-LMP1 vaccine provided protection from a 38C13-LMP1 tumor challenge, while the DNA vaccine did not. Thus, we demonstrated that LMP1 expression in a mouse B cell line is responsive to antibody immunotherapy that may be applied to EBV-associated disease. Full article
(This article belongs to the Section Cancer Biology)
Show Figures

Figure 1

15 pages, 1576 KiB  
Article
Design, Synthesis and Various Bioactivity of Acylhydrazone-Containing Matrine Analogues
by Wanjun Ni, Hongjian Song, Lizhong Wang, Yuxiu Liu and Qingmin Wang
Molecules 2023, 28(10), 4163; https://doi.org/10.3390/molecules28104163 - 18 May 2023
Cited by 13 | Viewed by 2626
Abstract
Compounds with acylhydrazone fragments contain amide and imine groups that can act as electron donors and acceptors, so they are easier to bind to biological targets and thus generally exhibit significant biological activity. In this work, acylhydrazone fragments were introduced to the C-14 [...] Read more.
Compounds with acylhydrazone fragments contain amide and imine groups that can act as electron donors and acceptors, so they are easier to bind to biological targets and thus generally exhibit significant biological activity. In this work, acylhydrazone fragments were introduced to the C-14 or C-11 position of matrine, a natural alkaloid, aiming to enhance their biological activities. The result of this bioassay showed that many synthesized compounds exhibited excellent anti-virus activity against the tobacco mosaic virus (TMV). Seventeen out of 25 14-acylhydrazone matrine derivatives and 17 out of 20 11-butanehydrazone matrine derivatives had a higher inhibitory activity against TMV than the commercial antiviral agent Ribavirin (the in vitro activity, in vivo inactivation, curative and protection activities at 500 µg/mL were 40.9, 36.5 ± 0.9, 38.0 ± 1.6 and 35.1 ± 2.2%, respectively), and four 11-butanehydrazone matrine derivatives even had similar to or higher activity than the most efficient antiviral agent Ningnanmycin (55.4, 57.8 ± 1.4, 55.3 ± 0.5 and 60.3 ± 1.2% at 500 µg/mL for the above four test modes). Among them, the N-benzyl-11-butanehydrazone of matrine formed with 4-bromoindole-3-carboxaldehyde exhibited the best anti-TMV activity (65.8, 71.8 ± 2.8, 66.8 ± 1.3 and 69.5 ± 3.1% at 500 µg/mL; 29, 33.5 ± 0.7, 24.1 ± 0.2 and 30.3 ± 0.6% at 100 µg/mL for the above four test modes), deserving further investigation as an antiviral agent. Other than these, the two series of acylhydrazone-containing matrine derivatives were evaluated for their insecticidal and fungicidal activities. Several compounds were found to have good insecticidal activities against diamondback moth (Plutella xylostella) and mosquito larvae (Culex pipiens pallens), showing broad biological activities. Full article
(This article belongs to the Special Issue Emerging Trends in Pesticides Discovery Based on Natural Products)
Show Figures

Figure 1

15 pages, 2057 KiB  
Article
Natural Products for Pesticides Discovery: Structural Diversity Derivation and Biological Activities of Naphthoquinones Plumbagin and Juglone
by Kaihua Wang, Beibei Wang, Henan Ma, Ziwen Wang, Yuxiu Liu and Qingmin Wang
Molecules 2023, 28(8), 3328; https://doi.org/10.3390/molecules28083328 - 9 Apr 2023
Cited by 13 | Viewed by 2897
Abstract
Plant diseases and insect pests seriously affect the yield and quality of crops and are difficult to control. Natural products are an important source for the discovery of new pesticides. In this work, naphthoquinones plumbagin and juglone were selected as parent structures, and [...] Read more.
Plant diseases and insect pests seriously affect the yield and quality of crops and are difficult to control. Natural products are an important source for the discovery of new pesticides. In this work, naphthoquinones plumbagin and juglone were selected as parent structures, and a series of their derivatives were designed, synthesized and evaluated for their fungicidal activities, antiviral activities and insecticidal activities. We found that the naphthoquinones have broad-spectrum anti-fungal activities against 14 types of fungus for the first time. Some of the naphthoquinones showed higher fungicidal activities than pyrimethanil. Compounds I, I-1e and II-1a emerged as new anti-fungal lead compounds with excellent fungicidal activities (EC50 values: 11.35–17.70 µg/mL) against Cercospora, arachidicola Hori. Some compounds also displayed good to excellent antiviral activities against the tobacco mosaic virus (TMV). Compounds I-1f and II-1f showed similar level of anti-TMV activities with ribavirin, and could be used as new antiviral candidates. These compound also exhibited good to excellent insecticidal activities. Compounds II-1d and III-1c displayed a similar level of insecticidal activities with matrine, hexaflumuron and rotenone against Plutella xylostella. In current study, plumbagin and juglone were discovered as parent structures, which lays a foundation for their application in plant protection. Full article
Show Figures

Graphical abstract

12 pages, 2800 KiB  
Article
Discovery of Barakacin and Its Derivatives as Novel Antiviral and Fungicidal Agents
by Yongyue Gao, Xingxing He, Lili Yan, Hongyu Zhang, Sijia Liu, Qian Ma, Peiyao Zhang, Yan Zhang, Zijun Zhang, Ziwen Wang, Aidang Lu and Qingmin Wang
Molecules 2023, 28(7), 3032; https://doi.org/10.3390/molecules28073032 - 29 Mar 2023
Cited by 5 | Viewed by 2272
Abstract
Pesticides are essential for the development of agriculture. It is urgent to develop green, safe and efficient pesticides. Bisindole alkaloids have unique and concise structures and broad biological activities, which make them an important leading skeleton in the creation of new pesticides. In [...] Read more.
Pesticides are essential for the development of agriculture. It is urgent to develop green, safe and efficient pesticides. Bisindole alkaloids have unique and concise structures and broad biological activities, which make them an important leading skeleton in the creation of new pesticides. In this work, we synthesized bisindole alkaloid barakacin in a simple seven-step process, and simultaneously designed and synthesized a series of its derivatives. Biological activity research indicated that most of these compounds displayed good antiviral activities against tobacco mosaic virus (TMV). Among them, compound 14b exerted a superior inhibitory effect in comparison to commercially available antiviral agent ribavirin, and could be expected to become a novel antiviral candidate. Molecular biology experiments and molecular docking research found that the potential target of compound 14b was TMV coat protein (CP). These compounds also showed broad-spectrum anti-fungal activities against seven kinds of plant fungi. Full article
(This article belongs to the Special Issue Emerging Trends in Pesticides Discovery Based on Natural Products)
Show Figures

Figure 1

18 pages, 2684 KiB  
Article
Discovery of Flavone Derivatives Containing Carboxamide Fragments as Novel Antiviral Agents
by Bobo Zhao, Jiali Wang, Lu Wang, Ziwen Wang and Aidang Lu
Molecules 2023, 28(5), 2179; https://doi.org/10.3390/molecules28052179 - 26 Feb 2023
Cited by 5 | Viewed by 2082
Abstract
Plant virus diseases seriously affect the yield and quality of agricultural products, and their prevention and control are difficult. It is urgent to develop new and efficient antiviral agents. In this work, a series of flavone derivatives containing carboxamide fragments were designed, synthesized, [...] Read more.
Plant virus diseases seriously affect the yield and quality of agricultural products, and their prevention and control are difficult. It is urgent to develop new and efficient antiviral agents. In this work, a series of flavone derivatives containing carboxamide fragments were designed, synthesized, and systematically evaluated for their antiviral activities against tobacco mosaic virus (TMV) on the basis of a structural–diversity–derivation strategy. All the target compounds were characterized by 1H-NMR, 13C-NMR, and HRMS techniques. Most of these derivatives displayed excellent in vivo antiviral activities against TMV, especially 4m (inactivation inhibitory effect, 58%; curative inhibitory effect, 57%; and protection inhibitory effect, 59%), which displayed similar activity to ningnanmycin (inactivation inhibitory effect, 61%; curative inhibitory effect, 57%; and protection inhibitory effect, 58%) at 500 μg mL−1; thus, it emerged as a new lead compound for antiviral research against TMV. Antiviral mechanism research by molecular docking demonstrated that compounds 4m, 5a, and 6b could interact with TMV CP and disturb virus assembly. Full article
Show Figures

Graphical abstract

20 pages, 7717 KiB  
Article
NbMLP43 Ubiquitination and Proteasomal Degradation via the Light Responsive Factor NbBBX24 to Promote Viral Infection
by Liyun Song, Yubing Jiao, Hongping Song, Yuzun Shao, Daoshun Zhang, Chengying Ding, Dong An, Ming Ge, Ying Li, Lili Shen, Fenglong Wang and Jinguang Yang
Cells 2023, 12(4), 590; https://doi.org/10.3390/cells12040590 - 11 Feb 2023
Cited by 5 | Viewed by 2841
Abstract
The ubiquitin–proteasome system (UPS) plays an important role in virus–host interactions. However, the mechanism by which the UPS is involved in innate immunity remains unclear. In this study, we identified a novel major latex protein-like protein 43 (NbMLP43) that conferred resistance to Nicotiana [...] Read more.
The ubiquitin–proteasome system (UPS) plays an important role in virus–host interactions. However, the mechanism by which the UPS is involved in innate immunity remains unclear. In this study, we identified a novel major latex protein-like protein 43 (NbMLP43) that conferred resistance to Nicotiana benthamiana against potato virus Y (PVY) infection. PVY infection strongly induced NbMLP43 transcription but decreased NbMLP43 at the protein level. We verified that B-box zinc finger protein 24 (NbBBX24) interacted directly with NbMLP43 and that NbBBX24, a light responsive factor, acted as an essential intermediate component targeting NbMLP43 for its ubiquitination and degradation via the UPS. PVY, tobacco mosaic virus, (TMV) and cucumber mosaic virus (CMV) infections could promote NbMLP43 ubiquitination and proteasomal degradation to enhance viral infection. Ubiquitination occurred at lysine 38 (K38) within NbMLP43, and non-ubiquitinated NbMLP43(K38R) conferred stronger resistance to RNA viruses. Overall, our results indicate that the novel NbMLP43 protein is a target of the UPS in the competition between defense and viral anti-defense and enriches existing theoretical studies on the use of UPS by viruses to promote infection. Full article
Show Figures

Figure 1

11 pages, 6304 KiB  
Article
A Monoclonal Antibody-Based Immunochromatographic Test Strip and Its Application in the Rapid Detection of Cucumber Green Mottle Mosaic Virus
by Zichen Zhao, Yanli Tian, Chang Xu, Yuanfei Xing, Lili Yang, Guoliang Qian, Xiude Hua, Weirong Gong, Baishi Hu and Limin Wang
Biosensors 2023, 13(2), 199; https://doi.org/10.3390/bios13020199 - 29 Jan 2023
Cited by 4 | Viewed by 4159
Abstract
Two specific monoclonal antibodies (mAbs) were screened, and an immunochromatographic strip (ICS) test for rapid and specific detection of cucumber green mottle mosaic virus (CGMMV) was developed. The coat protein of CGMMV was heterologously expressed as an immunogen, and specific capture mAb 2C9 [...] Read more.
Two specific monoclonal antibodies (mAbs) were screened, and an immunochromatographic strip (ICS) test for rapid and specific detection of cucumber green mottle mosaic virus (CGMMV) was developed. The coat protein of CGMMV was heterologously expressed as an immunogen, and specific capture mAb 2C9 and the detection mAb 4D4 were screened by an uncompetitive immunoassay. The test and control lines on the nitrocellulose membrane were coated with the purified 2C9 and a goat anti-mouse IgG, respectively, and a nanogold probe combined with 4D4 was applied to the conjugate pad. Using these mAbs, a rapid and sensitive ICS was developed. Within the sandwich mode of 2C9–CGMMV–4D4, the test line showed a corresponding positive relationship with CGMMV in infected samples. The ICS test had a detection limit of 1:5000 (w/v) for CGMMV in samples and was specific for CGMMV, with no observed cross-reaction with TMV or CMV. Full article
(This article belongs to the Special Issue Immunoassays and Biosensing)
Show Figures

Figure 1

11 pages, 1372 KiB  
Article
Synthesis and Evaluation of 11-Butyl Matrine Derivatives as Potential Anti-Virus Agents
by Wanjun Ni, Lizhong Wang, Hongjian Song, Yuxiu Liu and Qingmin Wang
Molecules 2022, 27(21), 7563; https://doi.org/10.3390/molecules27217563 - 4 Nov 2022
Cited by 6 | Viewed by 2186
Abstract
Matrine derivatives were reported to have various biological activities, especially the ester, amide or sulfonamide derivatives of matrine deriving from the hydroxyl or carboxyl group at the end of the branch chain after the D ring of matrine is opened. In this work, [...] Read more.
Matrine derivatives were reported to have various biological activities, especially the ester, amide or sulfonamide derivatives of matrine deriving from the hydroxyl or carboxyl group at the end of the branch chain after the D ring of matrine is opened. In this work, to investigate whether moving away all functional groups from the C-11 branch chain could have an impact on the bioactivities, such as anti-tobacco mosaic virus (TMV), insecticidal and fungicidal activities, a variety of N-substituted-11-butyl matrine derivatives were synthesized. The obtained bioassay result showed that most N-substituted-11-butyl matrine derivatives had obviously enhanced anti-TMV activity compared with matrine, especially many compounds had good inhibitory activity close to that of commercialized virucide Ningnanmycin (inhibition rate 55.4, 57.8 ± 1.4, 55.3 ± 0.5 and 60.3 ± 1.2% at 500 μg/mL; 26.1, 29.7 ± 0.2, 24.2 ± 1.0 and 27.0 ± 0.3% at 100 μg/mL, for the in vitro activity, in vivo inactivation, curative and protection activities, respectively). Notably, N-benzoyl (7), N-benzyl (16), and N-cyclohexylmethyl-11-butyl (19) matrine derivatives had higher anti-TMV activity than Ningnanmycin at both 500 and 100 μg/mL for the four test modes, showing high potential as anti-TMV agent. Furthermore, some compounds also showed good fungicidal activity or insecticidal activity. Full article
Show Figures

Figure 1

13 pages, 1509 KiB  
Article
Synthesis and Biological Activity of Novel Oxazinyl Flavonoids as Antiviral and Anti-Phytopathogenic Fungus Agents
by Yucong Ma, Lu Wang, Aidang Lu and Wei Xue
Molecules 2022, 27(20), 6875; https://doi.org/10.3390/molecules27206875 - 13 Oct 2022
Cited by 13 | Viewed by 2291
Abstract
A series of oxazinyl flavonoids were synthesized on the basis of flavone. The structures of all target compounds were characterized by 1H NMR, 13C NMR, and HRMS. The effect of the different substituent on the N-position of oxazinyl flavonoids against tobacco [...] Read more.
A series of oxazinyl flavonoids were synthesized on the basis of flavone. The structures of all target compounds were characterized by 1H NMR, 13C NMR, and HRMS. The effect of the different substituent on the N-position of oxazinyl flavonoids against tobacco mosaic virus (TMV) activities and plant pathogen activities was systematically investigated. In vivo anti-TMV activity showed that most of the compounds showed moderate-to-excellent antiviral activities against TMV at 500 μg/mL. Compounds 6b, 6d, 6j6k, and 6n6q showed better antiviral activities than ribavirin (a commercially available antiviral agent) and apigenin. In particular, compounds 6n and 6p even displayed slightly higher activities than ningnanmycin, which were expected to become new antiviral candidates. Antiviral mechanism research by molecular docking exhibited that compounds 6n and 6p could interact with TMV CP and inhibit virus assembly. Then, the antifungal activities of these compounds against six kinds of plant pathogenic fungi were tested, and the results showed that these oxazinyl flavonoids had broad-spectrum fungicidal activities. Compounds 6h exhibited antifungal activity of up to 91% against Physalospora piricola and might become a candidate drug for new fungicides. Full article
(This article belongs to the Special Issue Biological Activities of Natural Products III)
Show Figures

Figure 1

14 pages, 2240 KiB  
Article
Antiviral and Antifungal of Ulva fasciata Extract: HPLC Analysis of Polyphenolic Compounds
by Emad H. El-Bilawy, Al-Naji A. Al-Mansori, Fatimah O. Alotibi, Abdulaziz A. Al-Askar, Amr A. Arishi, Islam I. Teiba, Abd El-Naser Sabry, Mohsen Mohamed Elsharkawy, Ahmed A. Heflish, Said I. Behiry and Ahmed Abdelkhalek
Sustainability 2022, 14(19), 12799; https://doi.org/10.3390/su141912799 - 7 Oct 2022
Cited by 19 | Viewed by 3548
Abstract
The increasing usage of chemical control agents, as well as fungicides to manage plant diseases, causes human and environmental health problems. Macroalgae represent a reservoir for a tremendous variety of secondary metabolites that display a wide range of biological activities. However, their anti-phytopathogenic [...] Read more.
The increasing usage of chemical control agents, as well as fungicides to manage plant diseases, causes human and environmental health problems. Macroalgae represent a reservoir for a tremendous variety of secondary metabolites that display a wide range of biological activities. However, their anti-phytopathogenic properties are still being studied. The current study was conducted to investigate whether or not the macroalgae Ulva fasciata extract exhibits antifungal and antiviral activities. In this regard, the organic extracts of U. fasciata were tested for their capabilities against tobacco mosaic virus (TMV) and three molecularly identified fungal isolates, Fusarium verticillioides, Alternaria tenuissima, and Botrytis cinerea with accession numbers OP363619, OP363620, and OP363621, respectively. Among the three tested extract concentrations, 100 µg/mL had the best biological activity against B. cinerea and TMV, with 69.26%and 81.25% inhibition rates, respectively. The HPLC analysis of chemical profiling of the extract showed the presence of a number of phenolic and flavonoid compounds widely known to display many biological activities. In this line, the 4-Hydroxybenzoic acid was the highest phenolic compound (12.3 µg/mL) present in the extract, followed by ferulic acid (9.05 µg/mL). The 7-hydroxyflavone (12.45 µg/mL) was the highest flavonoid in the organic extract of U. faciata followed by rutin, which recorded a concentration of 7.62 µg/ mL. The results of this study show that the U. fasciata extract has antiviral and antifungal properties, which makes it a possible source of natural antimicrobial agents. Full article
Show Figures

Figure 1

13 pages, 2294 KiB  
Article
Antifungal, Antiviral, and HPLC Analysis of Phenolic and Flavonoid Compounds of Amphiroa anceps Extract
by Emad H. El-Bilawy, Al-Naji A. Al-Mansori, Seham A. Soliman, Fatimah O. Alotibi, Abdulaziz A. Al-Askar, Amr A. Arishi, Abd El-Naser Sabry, Mohsen Mohamed Elsharkawy, Ahmed A. Heflish, Said I. Behiry and Ahmed Abdelkhalek
Sustainability 2022, 14(19), 12253; https://doi.org/10.3390/su141912253 - 27 Sep 2022
Cited by 12 | Viewed by 3284
Abstract
The increasing use of chemical control agents and pesticides to prevent plant disease has resulted in several human and environmental health problems. Seaweeds, e.g., Amphiroa anceps extracts, have significant antimicrobial activities against different human pathogens. However, their anti-phytopathogenic activities are still being investigated. [...] Read more.
The increasing use of chemical control agents and pesticides to prevent plant disease has resulted in several human and environmental health problems. Seaweeds, e.g., Amphiroa anceps extracts, have significant antimicrobial activities against different human pathogens. However, their anti-phytopathogenic activities are still being investigated. In the present investigation, three fungal isolates were isolated from root rot and grey mold symptomatic strawberry plants and were molecularly identified by ITS primers to Fusarium culmorum, Rhizoctonia solani, and Botrytis cinerea with accession numbers MN398396, MN398398, and MN398400, respectively. In addition, the organic extract of the red alga Amphiroa anceps was assessed for its antifungal activity against the three identified fungal isolates and tobacco mosaic virus (TMV) infection. At 100 µg/mL, the A. anceps extract had the best biological activity against R. solani, B. cinerea, and TMV infection, with inhibition rates of 66.67%, 40.61%, and 81.5%, respectively. Contrarily, the A. anceps extract exhibited lower activity against F. culmorum, causing inhibition in the fungal mycelia by only 4.4% at the same concentration. The extract’s HPLC analysis revealed the presence of numerous phenolic compounds, including ellagic acid and gallic acid, which had the highest concentrations of 19.05 and 18.36 µg/mL, respectively. In this line, the phytochemical analysis also showed the presence of flavonoids, with the highest concentration recorded for catechin at 12.45 µg/mL. The obtained results revealed for the first time the effect of the A. anceps extract against the plant fungal and viral pathogens, making the seaweed extract a promising source for natural antimicrobial agents. Full article
Show Figures

Figure 1

Back to TopTop