Synthesis and Evaluation of 11-Butyl Matrine Derivatives as Potential Anti-Virus Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis
2.2. Biological Assay
2.2.1. Antiviral Activity
2.2.2. Insecticidal Activities
2.2.3. Fungicidal Activity
3. Materials and Methods
3.1. Instruments and Chemicals
3.2. General Synthesis
3.2.1. Synthesis of N-t-Butyloxycarbonyl-11-(4-hydroxybutyl) Matrine Derivative (C)
3.2.2. Synthesis of Methanesulfonate of N-t-Butyloxycarbonyl-11-(4-hydroxybutyl) Matrine Derivative (D)
3.2.3. Synthesis of N-t-Butyloxycarbonyl-11-butyl Matrine Derivative (E)
3.2.4. Synthesis of N-H-11-Butyl Matrine Derivative (F)
3.2.5. Synthesis of N-Cyclopropyl Sulfonyl-11-butyl Matrine Derivative (1)
3.2.6. Synthesis of N-Benzyl-11-butyl Matrine Derivative (16)
3.2.7. Synthesis of N-[12-(11-Butyl Matrine)]-N′-cyclohexyl Urea (20)
3.3. Biological Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Sample Availability
References
- Huang, J.L.; Xu, H. Matrine: Bioactivities and Structural Modifications. Curr. Top. Med. Chem. 2016, 16, 3365–3378. [Google Scholar] [CrossRef] [PubMed]
- Zou, J.B.; Zhao, L.H.; Yi, P.; An, Q.; He, L.X.; Li, Y.N.; Lou, H.Y.; Yuan, C.M.; Gu, W.; Huang, L.J.; et al. Quinolizidine Alkaloids with Antiviral and Insecticidal Activities from the Seeds of Sophora tonkinensis Gagnep. J. Agric. Food Chem. 2020, 68, 15015–15026. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H.; Chen, L.L.; Sun, X.P.; Yang, Q.J.; Wan, L.L.; Guo, C. Matrine: A Promising Natural Product with Various Pharmacological Activities. Front. Pharmacol. 2020, 11, 588. [Google Scholar] [CrossRef] [PubMed]
- You, L.T.; Yang, C.J.; Du, Y.Y.; Wang, W.P.; Sun, M.Y.; Liu, J.; Ma, B.R.; Pang, L.N.; Zeng, Y.W.; Zhang, Z.Q.; et al. Systematic Review of the Pharmacology, Toxicology and Pharmacokinetics of Matrine. Front. Pharmacol. 2020, 11, 1067. [Google Scholar] [CrossRef]
- Li, Y.; Wang, G.; Liu, J.; Ouyang, L. Quinolizidine alkaloids derivatives from Sophora alopecuroides Linn: Bioactivities, structure-activity relationships and preliminary molecular mechanisms. Eur. J. Med. Chem. 2020, 188, 111972. [Google Scholar] [CrossRef]
- Li, X.; Tang, Z.W.; Wen, L.; Jiang, C.; Feng, Q.S. Matrine: A Review of its Pharmacology, Pharmacokinetics, Toxicity, Clinical Application and Preparation Researches. J. Ethnopharmacol. 2021, 269, 113682. [Google Scholar] [CrossRef]
- Lin, Y.D.; He, F.M.; Wu, L.; Xu, Y.; Du, Q. Matrine Exerts Pharmacological Effects Through Multiple Signaling Pathways: A Comprehensive Review. Drug Des. Dev. Ther. 2022, 16, 533–569. [Google Scholar] [CrossRef]
- Cai, X.H.; Guo, H.; Xie, B. Structural Modifications of Matrine-Type Alkaloids. Mini Rev. Med. Chem. 2018, 18, 730–744. [Google Scholar] [CrossRef]
- Cai, X.H.; Zhang, H.Y.; Xie, B. Matrine-Family Alkaloids: Versatile Precursors for Bioactive Modifications. Med. Chem. 2020, 16, 431–453. [Google Scholar] [CrossRef]
- Huang, J.L.; Lv, M.; Xu, H. Semisynthesis of some Matrine Ether Derivatives as Insecticidal Agents. RSC Adv. 2017, 7, 15997–16004. [Google Scholar] [CrossRef] [Green Version]
- Li, S.C.; Sun, Z.Q.; Zhang, B.C.; Lv, M.; Xu, H. Non-food bioactive products: Semisynthesis, biological activities, and mechanisms of action of oximinoether derivatives of matrine from Sophora Flavescens. Ind. Crop. Prod. 2019, 131, 134–141. [Google Scholar] [CrossRef]
- Lv, M.; Ma, Q.J.; Zhang, S.Y.; Xu, H. Agrochemical Properties Evaluation of some Imines Alkaloids of Matrine/Oxymatrine. Bioorg. Med. Chem. Lett. 2021, 48, 128246. [Google Scholar] [CrossRef] [PubMed]
- Lv, M.; Ma, Q.J.; Zhang, S.Y.; Xu, H. Construction of spiro-1,2,4-Oxadiazoline-Fused Matrine-Type Alkaloids as Pesticidal Agents. Bioorg. Med. Chem. Lett. 2021, 51, 128356. [Google Scholar] [CrossRef] [PubMed]
- Kong, W.L.; Bao, Y.H.; Ma, Q.J.; Xu, H. Synthesis and biological activities of novel pyrazolomatrine derivatives. Bioorg. Med. Chem. Lett. 2018, 28, 3338–3341. [Google Scholar] [CrossRef]
- Zhang, B.C.; Sun, Z.Q.; Lv, M.; Xu, H. Semisynthesis of Matrinic Acid/Alcohol/Ester Derivatives, their Pesticidal Activities, and Investigation of Mechanisms of Action against Tetranychus cinnabarinus. J. Agric. Food Chem. 2018, 66, 12898–12910. [Google Scholar] [CrossRef]
- Xu, J.W.; Lv, M.; Hao, M.; Li, T.Z.; Zhang, S.Y.; Xu, H. Natural-product-based Pesticides: Semisynthesis, Structural Elucidation, and Evaluation of new Cholesterol-Matrine Conjugates as Pesticidal Agents. Bioorg. Med. Chem. Lett. 2021, 50, 128350. [Google Scholar] [CrossRef]
- Lv, M.; Liu, G.C.; Jia, M.H.; Xu, H. Synthesis of matrinic amide derivatives containing 1,3,4-thiadiazole scaffold as insecticidal/acaricidal agents. Bioorg. Chem. 2018, 81, 88–92. [Google Scholar] [CrossRef]
- Xu, H.; Xu, M.; Sun, Z.Q.; Li, S.C. Preparation of Matrinic/Oxymatrinic Amide Derivatives as Insecticidal/Acaricidal Agents and Study on the Mechanisms of Action against Tetranychus cinnabarinu. J. Agric. Food Chem. 2019, 67, 12182–12190. [Google Scholar] [CrossRef]
- Cheng, X.A.; He, H.Q.; Wang, W.X.; Dong, F.Y.; Zhang, H.H.; Ye, J.M.; Tan, C.C.; Wu, Y.H.; Lv, X.J.; Jiang, X.H.; et al. Semi-synthesis and characterization of some new matrine derivatives as insecticidal agents. Pest Manag. Sci. 2020, 76, 2711–2719. [Google Scholar] [CrossRef]
- Cheng, X.A.; He, H.Q.; Dong, F.Y.; Xu, C.C.; Zhang, H.H.; Liu, Z.M.; Lv, X.J.; Wu, Y.H.; Jiang, X.H.; Qin, X.J. Synthesis of Halopyrazole Matrine Derivatives and Their Insecticidal and Fungicidal Activities. Molecules 2022, 27, 4974. [Google Scholar] [CrossRef]
- Huang, L.Y.; Xu, J.B.; Li, X.Y.; Song, H.N.; Chen, L.; Zhou, X.L.; Gao, F. Palladium-Catalyzed Direct Synthesis and Insecticidal Activity of Arylmatrine Derivatives. J. Nat. Prod. 2022, 85, 2026–2034. [Google Scholar] [CrossRef] [PubMed]
- Wang, K.L.; Su, B.; Wang, Z.W.; Wu, M.; Li, Z.; Hu, Y.N.; Fan, Z.J.; Mi, N.; Wang, Q.M. Synthesis and Antiviral Activities of Phenanthroindolizidine Alkaloids and Their Derivatives. J. Agric. Food Chem. 2010, 58, 2703–2709. [Google Scholar] [CrossRef] [PubMed]
- Song, H.J.; Liu, Y.X.; Liu, Y.X.; Wang, L.Z.; Wang, Q.M. Synthesis and Antiviral and Fungicidal Activity Evaluation of β-Carboline, Dihydro-β-carboline, Tetrahydro-β-carboline Alkaloids, and Their Derivatives. J. Agric. Food Chem. 2014, 62, 1010–1018. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.F.; Guo, J.C.; Liu, Y.X.; Lu, A.D.; Wang, Z.W.; Li, Y.Q.; Yang, S.X.; Wang, Q.M. Marine-Natural-Product Development: First Discovery of Nortopsentin Alkaloids as Novel Antiviral, Anti-phytopathogenic-Fungus, and Insecticidal Agents. J. Agric. Food Chem. 2018, 66, 4062–4072. [Google Scholar] [CrossRef]
- Hao, Y.N.; Guo, J.C.; Wang, Z.W.; Liu, Y.X.; Li, Y.Q.; Ma, D.J.; Wang, Q.M. Discovery of Tryptanthrins as Novel Antiviral and Anti-Phytopathogenic-Fungus Agents. J. Agric. Food Chem. 2020, 68, 5586–5595. [Google Scholar] [CrossRef]
- Li, L.L.; Yang, R.X.; Liu, J.H.; Zhang, J.J.; Song, H.J.; Liu, Y.X.; Wang, Q.M. Design, Synthesis, and Bioactivities of Novel Tryptophan Derivatives Containing 2,5-Diketopiperazine and Acyl Hydrazine Moieties. Molecules 2022, 27, 5758. [Google Scholar] [CrossRef]
- Ni, W.J.; Li, C.J.; Liu, Y.X.; Song, H.J.; Wang, L.Z.; Song, H.B.; Wang, Q.M. Various bioactivity and relationship of structure–activity of matrine analogues. J. Agric. Food Chem. 2017, 65, 2039–2047. [Google Scholar] [CrossRef]
- Ni, W.J.; Song, H.J.; Wang, L.Z.; Liu, Y.X.; Wang, Q.M. Design, Synthesis and Various Bioactivity of Acylhydrazone-Containing Matrine Analogues. Molecules 2022, 27, 6700. [Google Scholar]
- Cheng, X.Y.; Li, Y.H.; Tang, S.; Zhag, X.; Wang, Y.X.; Wang, S.G.; Jiang, J.D.; Li, Y.H.; Song, D.Q. Synthesis and evaluation of halogenated 12N-sulfonyl matrinic butanes as potential anti-coxsackie virus agents. Eur. J. Med. Chem. 2017, 126, 133–142. [Google Scholar] [CrossRef]
Compound | Concentration (µg/mL) | In Vitro Inhibition Rate (%) a | In Vivo | ||
---|---|---|---|---|---|
Inactivation Effect (%) b | Curative Effect (%) b | Protection Effect (%) b | |||
Ningnanmycin | 500 | 55.4 | 57.8 ± 1.4 | 55.3 ± 0.5 | 60.3 ± 1.2 |
100 | 26.1 | 29.7 ± 0.2 | 24.2 ± 1.0 | 27.0 ± 0.3 | |
Ribavirin | 500 | 40.9 | 36.5 ± 0.9 | 38.0 ± 1.6 | 35.1 ± 2.2 |
100 | 10 | 8.5 ± 0.1 | 6.4 ± 0.8 | 12.1 ± 1.1 | |
Matrine | 500 | 33.7 | 37.6 ± 3.8 | 40.1 ± 2.4 | 45.2 ± 0.3 |
100 | 6.3 | 9.2 ± 0.7 | 4.5 ± 0.7 | 11.8 ± 1.2 | |
1 | 500 | 18.6 | 27.5 ± 2.9 | 31.4 ± 0.8 | 33.6 ± 2.0 |
100 | 0 | 0 | 0 | 0 | |
2 | 500 | 46.9 | 55.1 ± 1.7 | 51.6 ± 0.2 | 50.3 ± 3.6 |
100 | 15.4 | 10.2 ± 0.5 | 19.7 ± 1.6 | 21.6 ± 0.4 | |
3 | 500 | 50.8 | 56.8 ± 2.2 | 48.3 ± 2.5 | 54.0 ± 1.0 |
100 | 16 | 23.0 ± 1.3 | 14.1 ± 0.9 | 18.5 ± 0.1 | |
4 | 500 | 54.1 | 62.3 ± 0.8 | 58.7 ± 1.5 | 65.9 ± 3.0 |
100 | 25.4 | 30.5 ± 1.6 | 20.9 ± 3.0 | 22.3 ± 2.5 | |
5 | 500 | 48.3 | 60.0 ± 1.9 | 53.6 ± 0.7 | 51.5 ± 2.8 |
100 | 28 | 23.5 ± 2.3 | 17.6 ± 3.4 | 14.4 ± 0.9 | |
6 | 500 | 26.1 | 31.7 ± 2.7 | 35.8 ± 0.4 | 29.6 ± 1.1 |
100 | 0 | 0 | 5.6 ± 0.6 | 0 | |
7 | 500 | 62.4 | 65.9 ± 2.0 | 61.4 ± 3.0 | 67.4 ± 2.3 |
100 | 24.7 | 32.0 ± 0.8 | 27.5 ± 1.4 | 30.9 ± 1.6 | |
8 | 500 | 45.2 | 53.6 ± 1.2 | 48.9 ± 3.3 | 57.1 ± 1.0 |
100 | 18.3 | 10.4 ± 1.1 | 13.1 ± 0.2 | 19.0 ± 1.5 | |
9 | 500 | 48.2 | 46.8 ± 1.9 | 43.2 ± 0.7 | 41.5 ± 0.4 |
100 | 21 | 17.4 ± 0.3 | 9.6 ± 2.3 | 13.0 ± 0.7 | |
10 | 500 | 43.5 | 40.2 ± 1.5 | 46.2 ± 0.4 | 44.5 ± 2.2 |
100 | 0 | 5.7 ± 2.0 | 0 | 7.8 ± 0.6 | |
11 | 500 | 44.8 | 52.9 ± 3.9 | 47.5 ± 3.4 | 55.0 ± 2.6 |
100 | 16.9 | 9.3 ± 0.7 | 13.2 ± 0.2 | 20.7 ± 1.0 | |
12 | 500 | 51.7 | 63.8 ± 2.4 | 57.9 ± 3.5 | 61.0 ± 4.1 |
100 | 8.5 | 32.2 ± 0.2 | 28.1 ± 0.7 | 24.9 ± 1.5 | |
13 | 500 | 36.2 | 44.3 ± 4.3 | 39.0 ± 1.9 | 49.4 ± 2.2 |
100 | 18 | 6.6 ± 0.5 | 10.1 ± 1.6 | 15.3 ± 0.7 | |
14 | 500 | 46.7 | 51.6 ± 1.5 | 53.7 ± 0.3 | 58.9 ± 0.4 |
100 | 28.4 | 18.5 ± 0.3 | 14.2 ± 2.0 | 19.5 ± 3.2 | |
15 | 500 | 49 | 53.0 ± 1.9 | 58.3 ± 0.6 | 51.0 ± 3.7 |
100 | 12.3 | 20.2 ± 0.6 | 23.9 ± 1.8 | 15.0 ± 0.1 | |
16 | 500 | 59.4 | 64.0 ± 3.0 | 69.7 ± 3.6 | 61.9 ± 2.5 |
100 | 30.5 | 27.1 ± 0.4 | 32.8 ± 0.9 | 34.6 ± 2.0 | |
17 | 500 | 56.1 | 68.1 ± 2.1 | 62.6 ± 3.7 | 60.5 ± 2.9 |
100 | 25 | 17.0 ± 4.4 | 28.9 ± 2.1 | 20.3 ± 1.6 | |
18 | 500 | 66.9 | 61.0 ± 3.3 | 56.4 ± 1.2 | 60.7 ± 4.1 |
100 | 27.6 | 22.5 ± 1.9 | 27.6 ± 0.9 | 30.4 ± 1.2 | |
19 | 500 | 63.1 | 70.1 ± 1.0 | 66.4 ± 3.5 | 72.3 ± 0.9 |
100 | 27 | 35.6 ± 0.7 | 34.5 ± 1.8 | 29.1 ± 1.2 | |
20 | 500 | 68.4 | 61.5 ± 3.5 | 63.3 ± 2.4 | 67.0 ± 1.5 |
100 | 22.1 | 24.0 ± 2.3 | 26.4 ± 0.5 | 19.2 ± 0.8 | |
21 | 500 | 55.3 | 52.8 ± 0.5 | 57.6 ± 2.3 | 59.0 ± 1.0 |
100 | 16 | 17.4 ± 1.1 | 24.5 ± 1.9 | 20.1 ± 0.6 |
Compound | Fungicidal Activity (%)/50 µg/mL | ||||
---|---|---|---|---|---|
C.H. | P.P. | R.C. | P.C. | S.S. | |
Chlorothalonil | 81 ± 2 | 74 ± 1 | 96 ± 2 | 98 ± 1 | 97 ± 1 |
Carbendazim | 35 ± 2 | 97 ± 1 | 98 ± 1 | 58 ± 2 | 80 ± 1 |
Matrine | 23 ± 1 | 31 ± 2 | 44 ± 1 | 12 ± 2 | 8 ± 1 |
3 | 52 ± 2 | 66 ± 2 | 80 ± 2 | 12 ± 1 | 33 ± 3 |
4 | 21 ± 3 | 47 ± 2 | 20 ± 2 | 31 ± 2 | 6 ± 3 |
8 | 28 ± 2 | 64 ± 3 | 26 ± 3 | 63 ± 2 | 39 ± 2 |
17 | 38 ± 2 | 57 ± 2 | 66 ± 2 | 19 ± 1 | 39 ± 3 |
18 | 66 ± 3 | 77 ± 2 | 79 ± 1 | 38 ± 2 | 52 ± 2 |
19 | 10 ± 2 | 38 ± 2 | 12 ± 3 | 69 ± 2 | 24 ± 1 |
21 | 10 ± 2 | 35 ± 1 | 8 ± 2 | 75 ± 1 | 72 ± 1 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ni, W.; Wang, L.; Song, H.; Liu, Y.; Wang, Q. Synthesis and Evaluation of 11-Butyl Matrine Derivatives as Potential Anti-Virus Agents. Molecules 2022, 27, 7563. https://doi.org/10.3390/molecules27217563
Ni W, Wang L, Song H, Liu Y, Wang Q. Synthesis and Evaluation of 11-Butyl Matrine Derivatives as Potential Anti-Virus Agents. Molecules. 2022; 27(21):7563. https://doi.org/10.3390/molecules27217563
Chicago/Turabian StyleNi, Wanjun, Lizhong Wang, Hongjian Song, Yuxiu Liu, and Qingmin Wang. 2022. "Synthesis and Evaluation of 11-Butyl Matrine Derivatives as Potential Anti-Virus Agents" Molecules 27, no. 21: 7563. https://doi.org/10.3390/molecules27217563
APA StyleNi, W., Wang, L., Song, H., Liu, Y., & Wang, Q. (2022). Synthesis and Evaluation of 11-Butyl Matrine Derivatives as Potential Anti-Virus Agents. Molecules, 27(21), 7563. https://doi.org/10.3390/molecules27217563