Synthesis and Biological Activity of Novel Oxazinyl Flavonoids as Antiviral and Anti-Phytopathogenic Fungus Agents
Abstract
:1. Introduction
2. Results
2.1. Chemistry
2.2. Phytotoxic Activity
2.3. Antiviral Activity
In Vivo Anti-TMV Activity
2.4. Mode of Action Studies
Docking Studies
2.5. Fungicidal Activity
In Vitro Fungicidal Activity
3. Discussion
3.1. Synthesis
3.2. Structure–Activity Relationship of the Antiviral Activity
3.3. Study on the Mechanism of Anti-TMV Activity
Molecular Docking Study
3.4. Structure–Activity Relationship of the Fungicidal Activity
4. Materials and Methods
4.1. General Procedures
4.1.1. Instruments
4.1.2. Synthesis of Compounds 2–6
4.2. Biological Assays
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Sample Availability
References
- Wilson, R.A.; Talbot, N.J. Fungal physiology—A future perspective. Microbiology 2009, 155, 3810–3815. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Guo, J.C.; Hao, Y.N.; Ji, X.F.; Wang, Z.W.; Liu, Y.X.; Ma, D.J.; Li, Y.Q.; Pang, H.L.; Ni, J.P.; Wang, Q.M. Optimization, structure−activity relationship, and mode of action of nortopsentin analogues containing thiazole and oxazole moieties. J. Agric. Food Chem. 2019, 67, 10018–10031. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Wang, T.N.; Zhou, Y.N.; Shi, L.; Lu, A.D.; Wang, Z.W. Discovery of cysteine and its derivatives as novel antiviral and antifungal agents. Molecules 2021, 26, 383. [Google Scholar] [CrossRef]
- Guo, W.H.; Yan, H.; Ren, X.Y.; Tang, R.R.; Sun, Y.B.; Wang, Y.; Feng, J.T. Berberine induces resistance against tobacco mosaic virus in tobacco. Pest Manag. Sci. 2020, 76, 1804–1813. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.N.; Yang, S.; Li, H.Y.; Lu, A.D.; Wang, Z.W.; Yao, Y.W.; Wang, Q.M. Discovery, structural optimization, and mode of action of essramycin alkaloid and its derivatives as anti-tobacco mosaic virus and anti-phytopathogenic fungus agents. J. Agric. Food Chem. 2020, 68, 471–484. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Zhu, Y.J.; Fan, Z.J.; Guo, X.F.; Zhang, Z.M.; Xu, J.H.; Song, Y.Q.; Yurievich, M.Y.; Belskaya, N.P.; Bakulev, V.A. Synthesis of 1,2,3-thiadiazole and thiazole-based strobilurins as potent fungicide candidates. J. Agric. Food Chem. 2017, 65, 745–751. [Google Scholar] [CrossRef] [PubMed]
- Cantrell, C.L.; Dayan, F.E.; Duke, S.O. Natural products as sources for new pesticides. J. Nat. Prod. 2012, 75, 1231–1242. [Google Scholar] [CrossRef] [PubMed]
- Koehn, F.E.; Carter, G.T. The evolving role of natural products in drug discovery. Nat. Rev. Drug Discov. 2005, 4, 206–220. [Google Scholar] [CrossRef] [PubMed]
- Rodrigues, T.; Reker, D.; Schneider, P.; Schneider, G. Counting on natural products for drug design. Nat. Chem. 2016, 8, 531–541. [Google Scholar] [CrossRef]
- Yao, H.; Liu, J.; Xu, S.; Zhu, Z.; Xu, J. The structural modification of natural products for novel drug discovery. Expert Opin. Drug Dis. 2017, 12, 121–140. [Google Scholar] [CrossRef]
- Kalaria, P.N.; Karad, S.C.; Raval, D.K. A review on diverse heterocyclic compounds as the privileged scaffolds in antimalarial drug discovery. Eur. J. Med. Chem. 2018, 158, 917–936. [Google Scholar] [CrossRef] [PubMed]
- Pomel, S.; Dubar, F.; Forge, D.; Loiseau, P.M.; Biot, C. New heterocyclic compounds: Synthesis and antitrypanosomal properties. Bioorg. Med. Chem. 2015, 23, 5168–5174. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Pandey, A.K. Chemistry and biological activities of flavonoids: An overview. Sci. World J. 2013, 2013, 162750. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- García-Lafuente, A.; Guillamón, E.; Villares, A.; Rostagno, M.A.; Martínez, J.A. Flavonoids as Anti-Inflammatory Agents: Implications in Cancer and Cardiovascular Disease. Inflamm. Res. 2009, 58, 537–552. [Google Scholar] [CrossRef]
- Shamsudin, N.F.; Ahmed, Q.U.; Mahmood, S.; Ali Shah, S.A.; Khatib, A.; Mukhtar, S.; Alsharif, M.A.; Parveen, H.; Zakaria, Z.A. Antibacterial effects of flavonoids and their structure-activity relationship study: A comparative interpretation. Molecules 2022, 27, 1149. [Google Scholar] [CrossRef]
- Ferraz, C.R.; Carvalho, T.T.; Manchope, M.F.; Artero, N.A.; Rasquel-Oliveira, F.S.; Fattori, V.; Casagrande, R.; Verri, W.A., Jr. Therapeutic potential of flavonoids in pain and inflammation: Mechanisms of action, pre-clinical and clinical data, and pharmaceutical development. Molecules 2020, 25, 762. [Google Scholar] [CrossRef] [Green Version]
- Ullah, A.; Munir, S.; Badshah, S.L.; Khan, N.; Ghani, L.; Poulson, B.G.; Emwas, A.-H.; Jaremko, M. Important flavonoids and their role as a therapeutic agent. Molecules 2020, 25, 5243. [Google Scholar] [CrossRef]
- Crozier, A.; Jaganath, I.B.; Clifford, M.N. Dietary phenolics: Chemistry, bioavailability and effects on health. Nat. Prod. Rep. 2009, 26, 1001–1043. [Google Scholar] [CrossRef]
- Al-Khayri, J.M.; Sahana, G.R.; Nagella, P.; Joseph, B.V.; Alessa, F.M.; Al-Mssallem, M.Q. Flavonoids as potential anti-inflammatory molecules: A review. Molecules 2022, 27, 2901. [Google Scholar] [CrossRef]
- Krcatović, E.; Rusak, G.; Bezić, N.; Krajacić, M. Inhibition of tobacco mosaic virus infection by quercetin and vitexin. Acta Virol. 2008, 52, 119–124. Available online: https://pubmed.ncbi.nlm.nih.gov/18564899/ (accessed on 25 May 2022).
- Zhang, W.; Zeng, X.Y.; Zhang, T.; Wang, L.; Yang, G.Y.; Chen, Y.K.; Hu, Q.F.; Miao, M.M. Flavonoids from the bark and stems of Cassia fistula and their anti-tobacco mosaic virus activities. Phytochem. Lett. 2013, 6, 179–182. [Google Scholar] [CrossRef]
- Li, Y.T.; Ye, S.W.; Hu, Z.L.; Hao, N.; Bo, X.; Liang, H.G.; Tian, X.R. Identification of anti-TMV active flavonoidn glycosides and their mode of action on virus particles from Clematis lasiandra Maxim. Pest Manag. Sci. 2021, 77, 5268–5277. [Google Scholar] [CrossRef] [PubMed]
- Gaonkar, S.L.; Nagaraj, V.U.; Nayak, S. A review on current synthetic strategies of oxazines. Mini-Rev. Org. Chem. 2019, 16, 43–58. [Google Scholar] [CrossRef]
- Wang, D.; Hou, L.; Wu, L.; Yu, X. Synthesis and anti-tumor activities of novel oxazinyl isoflavonoids. Chem. Pharm. Bull. 2012, 60, 513–520. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chen, Y.; Cass, S.L.; Kutty, S.K.; Yee, E.M.H.; Chan, D.S.H.; Gardner, C.R.; Vittorio, O.; Pasquier, E.; Black, D.S.; Kumar, N. Synthesis, biological evaluation and structure–activity relationship studies of isoflavene based Mannich bases with potent anti-cancer activity. Bioorg. Med. Chem. Lett. 2015, 25, 5377–5383. [Google Scholar] [CrossRef]
- Serdiuk, I.E.; Roshal, A.D. Single and double intramolecular proton transfers in the electronically excited state of flavone derivatives. RSC Adv. 2015, 5, 102191–102203. [Google Scholar] [CrossRef]
- Liu, B.; Li, R.; Li, Y.A.; Li, S.Y.; Yu, J.; Zhao, B.F.; Liao, A.C.; Wang, Y.; Wang, Z.W.; Lu, A.D.; et al. Discovery of pimprinine alkaloids as novel agents against a plant virus. J. Agric. Food Chem. 2019, 67, 1795–1806. [Google Scholar] [CrossRef]
- Lu, A.D.; Wang, T.N.; Hui, H.; Wei, X.Y.; Cui, W.H.; Zhou, C.L.; Li, H.Y.; Wang, Z.W.; Guo, J.C.; Ma, D.Y.; et al. Natural products for drug discovery: Discovery of gramines as novel agents against a plant virus. J. Agric. Food Chem. 2019, 67, 2148–2156. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.P.; Liu, Y.X.; Cui, Z.P.; Beattie, D.; Gu, Y.C.; Wang, Q.M. Design, synthesis, and biological activities of arylmethylamine substituted chlorotriazine and methylthiotriazine compounds. J. Agric. Food Chem. 2011, 59, 11711–11717. [Google Scholar] [CrossRef]
- Badavath, V.N.; Yabanoglu, S.C.; Bhakat, S.; Timiri, A.K.; Sinha, B.N.; Ucar, G.; Soliman, M.E.; Jayaprakash, V. Monoamine oxidase inhibitory activity of 2-aryl-4H-chromen-4-ones. Bioorg. Chem. 2015, 58, 72–80. [Google Scholar] [CrossRef] [PubMed]
- Wei, F.; Ma, S.C.; Ma, L.Y.; But, P.P.H.; Lin, R.C.; Khan, I.A. An tiviral flavon oids from th e seeds of aesculus chinensis. J. Nat. Prod. 2004, 67, 650–653. [Google Scholar] [CrossRef] [PubMed]
- Keum, Y.S.; Jeong, Y.J. Development of chemical inhibitors of the SARS coronavirus: Viral helicase as a potential target. Biochem. Pharmacol. 2012, 84, 1351–1358. [Google Scholar] [CrossRef] [PubMed]
- Corona, A.; Wycisk, K.; Talarico, C.; Manelfi, C.; Milia, J.; Cannalire, R.; Esposito, F.; Gribbon, P.; Zaliani, A.; Iaconis, D.; et al. Natural compounds inhibit SARS-CoV-2 nsp13 unwinding and ATPase enzyme activities. ACS Pharmacol. Transl. Sci. 2022, 5, 226–239. [Google Scholar] [CrossRef]
- Seyedi, S.S.; Shukri, M.; Hassandarvish, P.; Oo, A.; Muthu, S.E.; Abubakar, S.; Zandi, K. Computational approach towards exploring potential anti-chikungunya activity of selected flavonoids. Sci. Rep. 2016, 6, 24027. [Google Scholar] [CrossRef]
- Takamasu, Y.; Sugiyama, A.; Purqon, A.; Nagao, H.; Nishikawa, K. Bingding free energy calculation and structural analysis for antigen-antibody complex. AIP Conf. Proc. 2006, 832, 566–569. [Google Scholar] [CrossRef]
- Osonga, F.J.; Akgul, A.; Miller, R.M.; Eshun, G.B.; Yazgan, I.; Akgul, A.; Sadik, O.A. Antimicrobial activity of a new class of phosphorylated and modified flavonoids. ACS Omega 2019, 4, 12865–12871. [Google Scholar] [CrossRef] [Green Version]
- Wang, W.; Zhang, S.; Wang, J.H.; Wu, F.R.; Wang, T.; Xu, G. Bioactivity-guided synthesis accelerates the discovery of 3-(iso)quinolinyl-4-chromenones as potent fungicide candidates. J. Agric. Food Chem. 2021, 69, 491–500. [Google Scholar] [CrossRef]
- Meenu, M.T.; Kaul, G.; Shukla, M.; Radhakrishnan, K.V.; Chopra, S. Cudraflavone C from artocarpus hirsutus as a promising inhibitor of pathogenic, multidrug-resistant S. aureus, persisters, and biofilms: A new insight into a rational explanation of traditional wisdom. J. Nat. Prod. 2021, 84, 2700–2708. [Google Scholar] [CrossRef]
- Wang, Z.W.; Wei, P.; Wang, L.Z.; Wang, Q.M. Design, synthesis, and anti-tobacco mosaic virus (TMV) activity of phenanthroindolizidines and their analogues. J. Agric. Food Chem. 2012, 60, 10212–10219. [Google Scholar] [CrossRef]
- Gooding, G.V., Jr.; Hebert, T.T. A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology 1967, 57, 1285–1290. Available online: https://pubmed.ncbi.nlm.nih.gov/6075009/ (accessed on 25 May 2022). [PubMed]
- Li, S.Z.; Wang, D.M.; Jiao, S.M. Pesticide Experiment Methods-Fungicide Sector; Li, S.Z., Ed.; Agriculture Press of China: Beijing, China, 1991; pp. 93–94. [Google Scholar]
Compd. | Anti-TMV Activities (%) a | ||
---|---|---|---|
Inactivation Effect | Curative Effect | Protection Effect | |
5 | 33 ± 1 | 30 ± 1 | 30 ± 1 |
6a | 38 ± 3 | 31 ± 3 | 36 ± 3 |
6b | 41 ± 2 | 40 ± 1 | 43 ± 1 |
6c | 34 ± 1 | 31 ± 2 | 33 ± 3 |
6d | 48 ± 2 | 43 ± 3 | 46 ± 2 |
6e | 41 ± 3 | 31 ± 1 | 34 ± 2 |
6f | 36 ± 2 | 34 ± 3 | 35 ± 3 |
6g | 30 ± 2 | 25 ± 3 | 28 ± 3 |
6h | 24 ± 1 | 23 ± 3 | 25 ± 3 |
6i | 21 ± 3 | 20 ± 3 | 21 ± 3 |
6j | 43 ± 3 | 38 ± 3 | 44 ± 2 |
6k | 40 ± 2 | 42 ± 1 | 40 ± 1 |
6l | 23 ± 3 | 21 ± 3 | 23 ± 3 |
6m | 18 ± 2 | 18 ± 3 | 19 ± 3 |
6n | 62 ± 1 | 59 ± 1 | 60 ± 1 |
6o | 53 ± 1 | 50 ± 1 | 51 ± 1 |
6p | 63 ± 1 | 61 ± 1 | 62 ± 1 |
6q | 45 ± 2 | 44 ± 1 | 42 ± 3 |
6r | 0 | 0 | 0 |
Apigenin | 28 ± 1 | 25 ± 1 | 26 ± 1 |
Ribavirin | 39 ± 2 | 38 ± 3 | 39 ± 2 |
Ningnanmycin | 60 ± 1 | 55 ± 2 | 57 ± 1 |
Compd. | Fungicidal Activity (%) a at 50 μg/mL | |||||
---|---|---|---|---|---|---|
F.c. b | C.h.b | P.p.b | R.c.b | P.g.b | S.s.b | |
5 | 26 ± 3 | 21 ± 2 | 49 ± 1 | 25 ± 2 | 42 ± 1 | 71 ± 2 |
6a | 47 ± 1 | 23 ± 2 | 80 ± 1 | 55 ± 1 | 20 ± 3 | 43 ± 1 |
6b | 36 ± 1 | 26 ± 1 | 10 ± 1 | 50 ± 3 | 71 ± 1 | 44 ± 3 |
6c | 35 ± 2 | 28 ± 2 | 74 ± 1 | 55 ± 1 | 33 ± 1 | 25 ± 3 |
6d | 22 ± 1 | 23 ± 2 | 12 ± 2 | 11 ± 3 | 28 ± 2 | 65 ± 2 |
6e | 19 ± 1 | 23 ± 2 | 21 ± 2 | 33 ± 1 | 20 ± 3 | 7 ± 2 |
6f | 21 ± 2 | 21 ± 3 | 58 ± 2 | 49 ± 1 | 7 ± 2 | 36 ± 2 |
6g | 24 ± 2 | 21 ± 3 | 61 ± 1 | 57 ± 2 | 7 ± 2 | 25 ± 3 |
6h | 26 ± 1 | 21 ± 3 | 91 ± 1 | 26 ± 2 | 33 ± 1 | 43 ± 1 |
6i | 23 ± 1 | 21 ± 3 | 44 ± 3 | 31 ± 3 | 20 ± 3 | 43 ± 1 |
6j | 52 ± 2 | 52 ± 2 | 27 ± 1 | 50 ± 3 | 43 ± 1 | 78 ± 1 |
6k | 19 ± 1 | 21 ± 3 | 69 ± 2 | 52 ± 1 | 7 ± 2 | 39 ± 1 |
6l | 19 ± 1 | 28 ± 2 | 54 ± 1 | 33 ± 1 | 20 ± 3 | 21 ± 1 |
6m | 31 ± 2 | 28 ± 2 | 76 ± 2 | 39 ± 1 | 20 ± 3 | 36 ± 2 |
6n | 29 ± 2 | 34 ± 2 | 10 ± 1 | 55 ± 1 | 43 ± 1 | 52 ± 2 |
6o | 18 ± 2 | 18 ± 1 | 22 ± 3 | 39 ± 3 | 71 ± 1 | 74 ± 1 |
6p | 18 ± 2 | 21 ± 2 | 7 ± 1 | 50 ± 3 | 71 ± 1 | 78 ± 1 |
6q | 23 ± 2 | 18 ± 1 | 31 ± 2 | 31 ± 2 | 71 ± 1 | 54 ± 1 |
6r | 24 ± 2 | 33 ± 1 | 50 ± 3 | 39 ± 1 | 7 ± 2 | 32 ± 2 |
Apigenin | 3 ± 2 | 16 ± 1 | 46 ± 1 | 50 ± 3 | 43 ± 1 | 48 ± 1 |
Chlorothalonil c | 100 | 74 ± 2 | 100 | 91 ± 1 | 89 ± 1 | 100 |
Carbendazim c | 92 ± 1 | 52 ± 1 | 100 | 90 ± 2 | 100 | 100 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ma, Y.; Wang, L.; Lu, A.; Xue, W. Synthesis and Biological Activity of Novel Oxazinyl Flavonoids as Antiviral and Anti-Phytopathogenic Fungus Agents. Molecules 2022, 27, 6875. https://doi.org/10.3390/molecules27206875
Ma Y, Wang L, Lu A, Xue W. Synthesis and Biological Activity of Novel Oxazinyl Flavonoids as Antiviral and Anti-Phytopathogenic Fungus Agents. Molecules. 2022; 27(20):6875. https://doi.org/10.3390/molecules27206875
Chicago/Turabian StyleMa, Yucong, Lu Wang, Aidang Lu, and Wei Xue. 2022. "Synthesis and Biological Activity of Novel Oxazinyl Flavonoids as Antiviral and Anti-Phytopathogenic Fungus Agents" Molecules 27, no. 20: 6875. https://doi.org/10.3390/molecules27206875