Discovery of Barakacin and Its Derivatives as Novel Antiviral and Fungicidal Agents
Abstract
:1. Introduction
2. Results and Discussion
2.1. Chemistry
2.2. Antiviral Activity Result and Structure-Activity Relationship (SAR)
2.3. Preliminary Mechanism Research
2.4. Molecular Docking
2.5. Fungicidal Activity Result and Structure-Activity Relationship (SAR)
3. Materials and Methods
3.1. Synthetic Procedures
3.1.1. Chemicals
3.1.2. Instruments
3.1.3. Preparation of 2-Methoxybenzonitrile (1)
3.1.4. Preparation of 2-Methoxybenzothioamide (2)
3.1.5. Preparation of Ethyl 2-(2-Methoxyphenyl)thiazole-4-carboxylate (3)
3.1.6. Preparation of (2-(2-Methoxyphenyl)thiazol-4-yl)methanol (4)
3.1.7. Preparation of 2-(2-Methoxyphenyl)thiazole-4-carbaldehyde (5)
3.1.8. Preparation of 4-(Di(1H-indol-3-yl)methyl)-2-(2-methoxyphenyl)thiazole (6)
3.1.9. Preparation of Barakacin (7)
3.2. Biological Assay
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Tudi, M.; Ruan, H.D.; Wang, L.; Lyu, J.; Sadler, R.; Connell, D.; Chu, C.; Phung, D.T. Agriculture development, pesticide application and its impact on the environment. Int. J. Environ. Res. Public Health 2021, 18, 1112. [Google Scholar] [CrossRef]
- Grigalunas, M.; Brakmann, S.; Waldmann, H. Chemical evolution of natural product structure. J. Am. Chem. Soc. 2022, 144, 3314–3329. [Google Scholar] [CrossRef] [PubMed]
- Begg, G.S.; Cook, S.M.; Dye, R.; Ferrante, M.; Franck, P.; Lavigne, C.; Lövei, G.L.; Mansion-Vaquie, A.; Pell, J.K.; Petit, S.; et al. A functional overview of conservation biological control. Crop Prot. 2017, 97, 145–158. [Google Scholar] [CrossRef]
- Battaglia, S.; Boldrini, E.; Settimo, F.D.; Dondio, G.; Motta, C.L.; Marini, A.M.; Primofiore, G. Indole amide derivatives: Synthesis, structure-activity relationships and molecular modelling studies of a new series of histamine H1-receptor antagonists. Eur. J. Med. Chem. 1999, 34, 93–105. [Google Scholar] [CrossRef]
- Przhevalskii, N.M.; Magedov, I.V.; Drozd, V.N. New derivatives of indole. Synthesis of s-(indolyl-3) diethyl dithiocarbamates. Chem. Heterocycl. Comp. 1997, 33, 1475–1476. [Google Scholar] [CrossRef]
- Hiari, Y.M.A.; Qaisi, A.M.; Abadelah, M.W.; Voelter, W. Synthesis and antibacterial activity of some substituted 3-(aryl)- and 3- (heteroaryl)indoles. Monatsh. Chem. 2006, 137, 243–248. [Google Scholar] [CrossRef]
- Creager, A.N.H. The life of a virus: Tobacco mosaic virus as an experimental model, 1930–1965. Endeavour 2002, 26, 76–427. [Google Scholar]
- Creager, A.N.H.; Scholthof, K.B.G.; Citovsky, V.; Scholthof, H.B. Tobacco mosaic virus. Pioneering research for a century. Plant cell 1999, 11, 301–308. [Google Scholar]
- Lacey, L.A.; Grzywacz, D.; Shapiro-Ilan, D.I.; Frutos, R.; Brownbridge, M.; Goettel, M.S. Insect pathogens as biological control agents: Back to the future. J. Invertebr. Pathol. 2015, 132, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Tan, D.X.; Chen, L.D.; Poeggeler, B.; Manchester, L.C.; Reiter, R.J. Melatonin: A potent, endogenous hydroxyl radical scavenger. Endocr. J. 1993, 1, 57–60. [Google Scholar]
- Abele, E.; Abele, R.; Dzenitis, O.; Lukevics, E. Indole and isatin oximes: Synthesis, reactions, and biological activity (review). Chem. Heterocycl. Comp. 2003, 39, 3–35. [Google Scholar] [CrossRef]
- Suzen, S.; Buyukbingol, E. Evaluation of anti-HIV activity of 5-(2-phenyl-3’-indolyl)-2-thiohydantoin. IL Farmaco 1998, 53, 525–527. [Google Scholar] [CrossRef] [PubMed]
- Bartik, K.; Braekman, J.C.; Daloze, D.; Stoller, C.; Huysecom, J.; Vandevyver, G.; Ottinger, R. Topsentins, new toxic bis-indole alkaloids from the marine sponge Topsentia genitrix. Can. J. Chem. 1987, 65, 2118–2121. [Google Scholar] [CrossRef]
- Pandey, K.P.; Rahman, M.T.; Cook, J.M. Bisindole alkaloids from the Alstonia species: Recent isolation, bioactivity, biosynthesis, and synthesis. Molecules 2021, 26, 3459. [Google Scholar] [CrossRef]
- Zendah, I.; Shaaban, K.A.; Helmke, E.; Maier, A.; Fiebig, H.H.; Laatsch, H. Barakacin: A thiazolyl-indole alkaloid isolated from a ruminal Pseudomonas sp. Z. Naturforsch. 2012, 67, 417–420. [Google Scholar] [CrossRef]
- Buzid, A.; Muimhneacháin, E.Ó.; Reen, F.J.; Hayes, P.E.; Pardo, L.M.; Shang, F.J.; O’Gara, F.; Sperry, J.; Luong, J.H.T.; Glennon, J.D.; et al. Synthesis and electrochemical detection of a thiazolyl-indole natural product isolated from the nosocomial pathogen Pseudomonas aeruginosa. Anal. Bioanal. Electrochem. 2016, 408, 6361–6367. [Google Scholar] [CrossRef]
- El-Gendy Adel, A.; Abdou Naida, A.; El-Taber, Z.S.; El-Banna Hosny, A. Synthesis and biological activity of functionalized indole-2-carboxyates, triazino and pyridazino indoles. Alex. J. Pharm. Sci. 1997, 7, 99–103. [Google Scholar]
- Kumar, A.; Archana; Sharma, S.; Malik, N.; Sharma, P.; Kushik, K.; Saxena, K.K.; Srivastava, V.K. Synthesis of anti-inflammatory, analgesic and COX-II inhibitory activities of indolylpyrazolines. Indian J. Chem. B. 2004, 43, 1532–1536. [Google Scholar]
- Li, G.; Guo, J.C.; Wang, Z.W.; Liu, Y.X.; Song, H.B.; Wang, Q.M. Marine natural products for drug discovery: First discovery of kealiinines A–C and their derivatives as novel antiviral and antiphytopathogenic fungus agents. J. Agric. Food Chem. 2018, 66, 7310–7318. [Google Scholar] [CrossRef]
- Guo, J.C.; Hao, Y.N.; Ji, X.F.; Wang, Z.W.; Liu, Y.X.; Ma, D.J.; Li, Y.Q.; Pang, H.L.; Ni, J.P.; Wang, Q.M. Optimization, structure-activity relationship and mode of action of nortopsentin analogues containing thiazole and oxazole moieties. J. Agric. Food Chem. 2019, 67, 10018–10031. [Google Scholar] [CrossRef] [PubMed]
- Ji, X.F.; Wang, Z.W.; Dong, J.; Liu, Y.X.; Lu, A.D.; Wang, Q.M. Discovery of topsentin alkaloids and their derivatives as novel antiviral and anti-phytopathogenic fungus agents. J. Agric. Food Chem. 2016, 64, 9143–9151. [Google Scholar] [CrossRef] [PubMed]
- Newman, D.J.; Cragg, G.M. Natural products as sources of new drugs over the nearly four decades from 01/1981 to 09/2019. J. Nat. Prod. 2020, 83, 770–803. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sparks, T.C.; Duke, S.O. Structure simplification of natural products as a lead generation approach in agrochemical discovery. J. Agric. Food chem. 2021, 69, 8324–8346. [Google Scholar] [CrossRef] [PubMed]
- Butler, P.J.G. The current picture of the structure and assembly of tobacco mosaic virus. J. Gen. Virol. 1984, 65, 253–279. [Google Scholar] [CrossRef]
- Hao, G.F.; Jiang, W.; Ye, Y.N.; Wu, F.X.; Zhu, X.L.; Guo, F.B.; Yang, G.F. ACFIS: A web server for fragment-based drug discovery. Nucleic Acids Res. 2016, 44, 550–556. [Google Scholar] [CrossRef] [Green Version]
- Dong, A.Y.; Wang, Z.; Huang, J.J.; Song, B.A.; Hao, G.F. Bioinformatic tools support decision-making in plant disease management. Trends Plant Sci. 2021, 26, 953–967. [Google Scholar] [CrossRef]
- Vidal-Limon, A.; Aguilar-Toalá, J.E.; Liceaga, A.M. Integration of molecular docking analysis and molecular dynamics simulations for studying food proteins and bioactive peptides. J. Agric. Food Chem. 2022, 70, 934–943. [Google Scholar] [CrossRef]
- Trott, O.; Olson, A.J. Autodock vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem. 2010, 31, 455–461. [Google Scholar] [CrossRef] [Green Version]
- Wang, Z.W.; Wei, P.; Wang, L.Z.; Wang, Q.M. Design, synthesis, and anti-tobacco mosaic virus (TMV) activity of phenanthroindolizidines and their analogues. J. Agric. Food Chem. 2012, 60, 10212–10219. [Google Scholar] [CrossRef]
- Gooding, G.V., Jr.; Hebert, T.T. A simple technique for purification of tobacco mosaic virus in large quantities. Phytopathology 1967, 57, 1285–1290. [Google Scholar]
- Li, S.Z.; Wang, D.M.; Jiao, S.M. Pesticide Experiment Methods-Fungicide Sector; Li, S.Z., Ed.; Agriculture Press of China: Beijing, China, 1991; pp. 93–94. [Google Scholar]
- Zhao, H.P.; Liu, Y.X.; Cui, Z.P.; Beattie, D.; Gu, Y.C.; Wang, Q.M. Design, synthesis, and biological activities of arylmethylamine substituted chlorotriazine and methylthiotriazine compounds. J. Agric. Food Chem. 2011, 59, 11711–11717. [Google Scholar] [CrossRef] [PubMed]
- Leberman, R. Isolation of plant viruses by means of simple coacervates. Virol 1966, 30, 341–347. [Google Scholar] [CrossRef] [PubMed]
- Fraenkel Conrat, H.; Williams, R.C. Reconstitution of active tobacco mosaic virus fromits inactive protein and nucleic acid components. Proc. Natl. Acad. Sci. USA 1955, 41, 690–698. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Seyedi, S.S.; Shukri, M.; Hassandarvish, P.; Oo, A.; Muthu, S.E.; Abubakar, S.; Zandi, K. Computational approach towards exploring potential anti-chikungunya activity of selected flavonoids. Sci. Rep. 2016, 6, 24027. [Google Scholar] [CrossRef] [PubMed]
Compd | Inactive Effect (%) | Curative Effect (%) | Protective Effect (%) |
---|---|---|---|
6 | 26 ± 2 | 22 ± 3 | 24 ± 3 |
7 | 54 ± 1 | 48 ± 4 | 46 ± 2 |
8a | 36 ± 4 | 33 ± 3 | 35 ± 1 |
8b | 55 ± 4 | 54 ± 1 | 42 ± 3 |
9a | 27 ± 3 | 25 ± 2 | 22 ± 4 |
9b | 15 ± 1 | — | — |
9c | 48 ± 3 | 46 ± 2 | 42 ± 4 |
9d | 35 ± 3 | 34 ± 2 | 31 ± 4 |
9e | 17 ± 2 | — | — |
13a | 41 ± 1 | 37 ± 3 | 35 ± 4 |
13b | 38 ± 4 | 33 ± 1 | 34 ± 2 |
13c | 44 ± 3 | 40 ± 2 | 41 ± 3 |
13d | 39 ± 2 | 35 ± 4 | 37 ± 3 |
14a | 39 ± 2 | 34 ± 3 | 35 ± 1 |
14b | 53 ± 2 | 50 ± 1 | 49 ± 3 |
14c | 38 ± 1 | 32 ± 4 | 33 ± 2 |
14d | 39 ± 3 | 30 ± 4 | 33 ± 1 |
14e | 19 ± 2 | — | — |
14f | 15 ± 3 | — | — |
14g | 38 ± 3 | 35 ± 1 | 30 ± 4 |
15 | 27 ± 1 | 21 ± 3 | 24 ± 1 |
16a | 28 ± 2 | 24 ± 3 | 21 ± 4 |
16b | 25 ± 1 | 20 ± 3 | 22 ± 2 |
16c | 18 ± 2 | — | — |
Ribavirin | 38 ± 3 | 36 ± 2 | 39 ± 1 |
Compd | Fungicidal Activities (%) at 50 μg/mL | ||||||
---|---|---|---|---|---|---|---|
F.C | P.P | R.C | A.S | B.C | P.C | S.S | |
6 | 8 ± 1 | 39 ± 2 | 18 ± 2 | 41 ± 3 | 38 ± 3 | 13 ± 2 | 53 ± 1 |
7 | 11 ± 2 | 25 ± 2 | 28 ± 3 | 47 ± 1 | 75 ± 2 | 19 ± 2 | 53 ± 1 |
8a | 3 ± 1 | 56 ± 1 | 11 ± 1 | 41 ± 2 | 38 ± 1 | 13 ± 1 | 66 ± 2 |
8b | 11 ± 2 | 53 ± 3 | 11 ± 1 | 35 ± 2 | 13 ± 1 | 16 ± 2 | 50 ± 1 |
9a | 8 ± 1 | 42 ± 1 | 10 ± 1 | 41 ± 1 | 13 ± 2 | 19 ± 1 | 69 ± 2 |
9b | 3 ± 1 | 57 ± 3 | 13 ± 2 | 29 ± 2 | 13 ± 1 | 13 ± 2 | 63 ± 1 |
9c | 0 | 42 ± 2 | 20 ± 2 | 35 ± 3 | 6 ± 1 | 16 ± 1 | 69 ± 2 |
9d | 11 ± 2 | 11 ± 1 | 20 ± 1 | 35 ± 2 | 13 ± 2 | 19 ± 2 | 63 ± 2 |
9e | 11 ± 1 | 89 ± 1 | 13 ± 2 | 35 ± 1 | 13 ± 1 | 3 ± 1 | 69 ± 1 |
13a | 11 ± 1 | 43 ± 1 | 31 ± 2 | 29 ± 1 | 63 ± 2 | 13 ± 1 | 53 ± 2 |
13b | 5 ± 1 | 42 ± 3 | 10 ± 1 | 35 ± 2 | 25 ± 1 | 19 ± 2 | 47 ± 1 |
13c | 5 ± 1 | 67 ± 2 | 4 ± 1 | 29 ± 1 | 6 ± 1 | 9 ± 1 | 34 ± 3 |
13d | 3 ± 1 | 92 ± 1 | 14 ± 1 | 35 ± 2 | 25 ± 1 | 13 ± 2 | 34 ± 1 |
14a | 11 ± 1 | 39 ± 1 | 44 ± 2 | 41 ± 1 | 50 ± 2 | 13 ± 1 | 50 ± 3 |
14b | 68 ± 3 | 78 ± 3 | 97 ± 1 | 47 ± 3 | 75 ± 2 | 81 ± 3 | 72 ± 1 |
14c | 8 ± 1 | 42 ± 1 | 39 ± 2 | 29 ± 1 | 38 ± 1 | 31 ± 1 | 53 ± 3 |
14d | 32 ± 2 | 94 ± 3 | 58 ± 1 | 41 ± 3 | 6 ± 1 | 41 ± 2 | 59 ± 1 |
14e | 22 ± 1 | 31 ± 1 | 68 ± 2 | 35 ± 1 | 50 ± 2 | 72 ± 3 | 53 ± 2 |
14f | 5 ± 1 | 62 ± 3 | 7 ± 1 | 35 ± 3 | 13 ± 1 | 9 ± 1 | 28 ± 2 |
14g | 14 ± 1 | 94 ± 1 | 66 ± 2 | 41 ± 1 | 38 ± 2 | 66 ± 3 | 59 ± 1 |
15 | 11 ± 2 | 39 ± 3 | 31 ± 1 | 41 ± 2 | 13 ± 1 | 56 ± 2 | 50 ± 3 |
16a | 11 ± 1 | 73 ± 2 | 35 ± 1 | 35 ± 1 | 25 ± 2 | 28 ± 2 | 59 ± 1 |
16b | 5 ± 1 | 14 ± 1 | 18 ± 1 | 29 ± 2 | 13 ± 1 | 13 ± 1 | 63 ± 3 |
16c | 5 ± 1 | 42 ± 2 | 62 ± 3 | 29 ± 1 | 25 ± 2 | 13 ± 1 | 66 ± 1 |
Carbendazim b | 93 ± 1 | 100 | 95 ± 3 | 93 ± 1 | 100 | 83 ± 3 | 59 ± 1 |
Chlorothalonil b | 98 ± 1 | 100 | 100 | 54 ± 2 | 35 ± 1 | 79 ± 2 | 16 ± 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gao, Y.; He, X.; Yan, L.; Zhang, H.; Liu, S.; Ma, Q.; Zhang, P.; Zhang, Y.; Zhang, Z.; Wang, Z.; et al. Discovery of Barakacin and Its Derivatives as Novel Antiviral and Fungicidal Agents. Molecules 2023, 28, 3032. https://doi.org/10.3390/molecules28073032
Gao Y, He X, Yan L, Zhang H, Liu S, Ma Q, Zhang P, Zhang Y, Zhang Z, Wang Z, et al. Discovery of Barakacin and Its Derivatives as Novel Antiviral and Fungicidal Agents. Molecules. 2023; 28(7):3032. https://doi.org/10.3390/molecules28073032
Chicago/Turabian StyleGao, Yongyue, Xingxing He, Lili Yan, Hongyu Zhang, Sijia Liu, Qian Ma, Peiyao Zhang, Yan Zhang, Zijun Zhang, Ziwen Wang, and et al. 2023. "Discovery of Barakacin and Its Derivatives as Novel Antiviral and Fungicidal Agents" Molecules 28, no. 7: 3032. https://doi.org/10.3390/molecules28073032
APA StyleGao, Y., He, X., Yan, L., Zhang, H., Liu, S., Ma, Q., Zhang, P., Zhang, Y., Zhang, Z., Wang, Z., Lu, A., & Wang, Q. (2023). Discovery of Barakacin and Its Derivatives as Novel Antiviral and Fungicidal Agents. Molecules, 28(7), 3032. https://doi.org/10.3390/molecules28073032