Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (505)

Search Parameters:
Keywords = anthropogenic air pollution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 2973 KiB  
Article
Application of a DPSIR-Based Causal Framework for Sustainable Urban Riparian Forests: Insights from Text Mining and a Case Study in Seoul
by Taeheon Choi, Sangin Park and Joonsoon Kim
Forests 2025, 16(8), 1276; https://doi.org/10.3390/f16081276 - 4 Aug 2025
Abstract
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and [...] Read more.
As urbanization accelerates and climate change intensifies, the ecological integrity of urban riparian forests faces growing threats, underscoring the need for a systematic framework to guide their sustainable management. To address this gap, we developed a causal framework by applying text mining and sentence classification to 1001 abstracts from previous studies, structured within the DPSIR (Driver–Pressure–State–Impact–Response) model. The analysis identified six dominant thematic clusters—water quality, ecosystem services, basin and land use management, climate-related stressors, anthropogenic impacts, and greenhouse gas emissions—which reflect the multifaceted concerns surrounding urban riparian forest research. These themes were synthesized into a structured causal model that illustrates how urbanization, land use, and pollution contribute to ecological degradation, while also suggesting potential restoration pathways. To validate its applicability, the framework was applied to four major urban streams in Seoul, where indicator-based analysis and correlation mapping revealed meaningful linkages among urban drivers, biodiversity, air quality, and civic engagement. Ultimately, by integrating large-scale text mining with causal inference modeling, this study offers a transferable approach to support adaptive planning and evidence-based decision-making under the uncertainties posed by climate change. Full article
(This article belongs to the Section Forest Economics, Policy, and Social Science)
Show Figures

Figure 1

15 pages, 1071 KiB  
Article
A Synthetic Difference-in-Differences Approach to Assess the Impact of Shanghai’s 2022 Lockdown on Ozone Levels
by Yumin Li, Jun Wang, Yuntong Fan, Chuchu Chen, Jaime Campos Gutiérrez, Ling Huang, Zhenxing Lin, Siyuan Li and Yu Lei
Sustainability 2025, 17(15), 6997; https://doi.org/10.3390/su17156997 - 1 Aug 2025
Viewed by 212
Abstract
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O [...] Read more.
Promoting sustainable development requires a clear understanding of how short-term fluctuations in anthropogenic emissions affect urban environmental quality. This is especially relevant for cities experiencing rapid industrial changes or emergency policy interventions. Among key environmental concerns, variations in ambient pollutants like ozone (O3) are closely tied to both public health and long-term sustainability goals. However, traditional chemical transport models often face challenges in accurately estimating emission changes and providing timely assessments. In contrast, statistical approaches such as the difference-in-differences (DID) model utilize observational data to improve evaluation accuracy and efficiency. This study leverages the synthetic difference-in-differences (SDID) approach, which integrates the strengths of both DID and the synthetic control method (SCM), to provide a more reliable and accurate analysis of the impacts of interventions on city-level air quality. Using Shanghai’s 2022 lockdown as a case study, we compare the deweathered ozone (O3) concentration in Shanghai to a counterfactual constructed from a weighted average of cities in the Yangtze River Delta (YRD) that did not undergo lockdown. The quasi-natural experiment reveals an average increase of 4.4 μg/m3 (95% CI: 0.24–8.56) in Shanghai’s maximum daily 8 h O3 concentration attributable to the lockdown. The SDID method reduces reliance on the parallel trends assumption and improves the estimate stability through unit- and time-specific weights. Multiple robustness checks confirm the reliability of these findings, underscoring the efficacy of the SDID approach in quantitatively evaluating the causal impact of emission perturbations on air quality. This study provides credible causal evidence of the environmental impact of short-term policy interventions, highlighting the utility of SDID in informing adaptive air quality management. The findings support the development of timely, evidence-based strategies for sustainable urban governance and environmental policy design. Full article
Show Figures

Figure 1

19 pages, 15535 KiB  
Article
Impact of Landfill Sites on Coastal Contamination Using GIS and Multivariate Analysis: A Case from Al-Qunfudhah in Western Saudi Arabia
by Talal Alharbi, Abdelbaset S. El-Sorogy, Naji Rikan and Hamdi M. Algarni
Minerals 2025, 15(8), 802; https://doi.org/10.3390/min15080802 - 30 Jul 2025
Viewed by 189
Abstract
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi [...] Read more.
The contamination due to coastal landfill is a growing environmental concern, particularly in fragile marine ecosystems, where leachate can mobilize toxic elements into soil, water, air, and sediment. This study aims to assess the impact of a coastal landfill in Al-Qunfudhah, western Saudi Arabia, on nearby coastal sediments by identifying the concentration, distribution, and ecological risk of potentially toxic elements (PTEs) using geospatial and multivariate analysis tools. The results indicate significant accumulation of Pb, Zn, Cu, and Fe, with Pb reaching alarming levels of up to 1160 mg/kg in the landfill area, compared to 120 mg/kg in the coastal sediments. Zn contamination also exhibited substantial elevation, with values reaching 278 mg/kg in landfill soil and 157 mg/kg in coastal sediment. The enrichment factor values indicate moderate to severe enrichment for Pb (up to 73.20) and Zn (up to 6.91), confirming anthropogenic influence. The contamination factor analysis categorized Pb contamination as very high (CF > 6), suggesting significant ecological risk. Comparison with sediment quality guidelines suggest that Pb, Zn, and Cu concentrations exceeded threshold effect levels (TEL) in some samples, posing potential risks to marine organisms. The spatial distribution maps revealed pollutant migration from the landfill toward the coastal zone, emphasizing the necessity of monitoring and mitigation strategies. As the first comprehensive study on landfill-induced PTEs contamination in Al-Qunfudhah, these findings provide essential insights for environmental management and pollution control policies along the Red Sea coast. Full article
Show Figures

Figure 1

29 pages, 3259 KiB  
Review
The Role of the Environment (Water, Air, Soil) in the Emergence and Dissemination of Antimicrobial Resistance: A One Health Perspective
by Asma Sassi, Nosiba S. Basher, Hassina Kirat, Sameh Meradji, Nasir Adam Ibrahim, Takfarinas Idres and Abdelaziz Touati
Antibiotics 2025, 14(8), 764; https://doi.org/10.3390/antibiotics14080764 - 29 Jul 2025
Viewed by 391
Abstract
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes [...] Read more.
Antimicrobial resistance (AMR) has emerged as a planetary health emergency, driven not only by the clinical misuse of antibiotics but also by diverse environmental dissemination pathways. This review critically examines the role of environmental compartments—water, soil, and air—as dynamic reservoirs and transmission routes for antibiotic-resistant bacteria (ARB) and resistance genes (ARGs). Recent metagenomic, epidemiological, and mechanistic evidence demonstrates that anthropogenic pressures—including pharmaceutical effluents, agricultural runoff, untreated sewage, and airborne emissions—amplify resistance evolution and interspecies gene transfer via horizontal gene transfer mechanisms, biofilms, and mobile genetic elements. Importantly, it is not only highly polluted rivers such as the Ganges that contribute to the spread of AMR; even low concentrations of antibiotics and their metabolites, formed during or after treatment, can significantly promote the selection and dissemination of resistance. Environmental hotspots such as European agricultural soils and airborne particulate zones near wastewater treatment plants further illustrate the complexity and global scope of pollution-driven AMR. The synergistic roles of co-selective agents, including heavy metals, disinfectants, and microplastics, are highlighted for their impact in exacerbating resistance gene propagation across ecological and geographical boundaries. The efficacy and limitations of current mitigation strategies, including advanced wastewater treatments, thermophilic composting, biosensor-based surveillance, and emerging regulatory frameworks, are evaluated. By integrating a One Health perspective, this review underscores the imperative of including environmental considerations in global AMR containment policies and proposes a multidisciplinary roadmap to mitigate resistance spread across interconnected human, animal, and environmental domains. Full article
(This article belongs to the Special Issue The Spread of Antibiotic Resistance in Natural Environments)
Show Figures

Figure 1

17 pages, 3579 KiB  
Article
Source Apportionment of PM2.5 in a Chinese Megacity During Special Periods: Unveiling Impacts of COVID-19 and Spring Festival
by Kejin Tang, Xing Peng, Yuqi Liu, Sizhe Liu, Shihai Tang, Jiang Wu, Shaoxia Wang, Tingting Xie and Tingting Yao
Atmosphere 2025, 16(8), 908; https://doi.org/10.3390/atmos16080908 - 26 Jul 2025
Viewed by 234
Abstract
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the [...] Read more.
Long-term source apportionment of PM2.5 during high-pollution periods is essential for achieving sustained reductions in both PM2.5 levels and their health impacts. This study conducted PM2.5 sampling in Shenzhen from January to March over the years 2021–2024 to investigate the long-term impact of coronavirus disease 2019 and the short-term impact of the Spring Festival on PM2.5 levels. The measured average PM2.5 concentration during the research period was 22.5 μg/m3, with organic matter (OM) being the dominant component. Vehicle emissions, secondary sulfate, secondary nitrate, and secondary organic aerosol were identified by receptor model as the primary sources of PM2.5 during the observational periods. The pandemic led to a decrease of between 30% and 50% in the contributions of most anthropogenic sources in 2022 compared to 2021, followed by a rebound. PM2.5 levels in January–March 2024 dropped by 1.4 μg/m3 compared to 2021, mainly due to reduced vehicle emissions, secondary sulfate, fugitive dust, biomass burning, and industrial emissions, reflecting Shenzhen’s and nearby cities’ effective control measures. However, secondary nitrate and fireworks-related emissions rose significantly. During the Spring Festival, PM2.5 concentrations were 23% lower than before the festival, but the contributions of fireworks burning exhibited a marked increase in both 2023 and 2024. Specifically, during intense peak events, fireworks burning triggered sharp, short-term spikes in characteristic metal concentrations, accounting for over 50% of PM2.5 on those peak days. In the future, strict control over vehicle emissions and enhanced management of fireworks burning during special periods like the Spring Festival are necessary to reduce PM2.5 concentration and improve air quality. Full article
(This article belongs to the Special Issue New Insights in Air Quality Assessment: Forecasting and Monitoring)
Show Figures

Figure 1

29 pages, 32010 KiB  
Article
Assessing Environmental Sustainability in the Eastern Mediterranean Under Anthropogenic Air Pollution Risks Through Remote Sensing and Google Earth Engine Integration
by Mohannad Ali Loho, Almustafa Abd Elkader Ayek, Wafa Saleh Alkhuraiji, Safieh Eid, Nazih Y. Rebouh, Mahmoud E. Abd-Elmaboud and Youssef M. Youssef
Atmosphere 2025, 16(8), 894; https://doi.org/10.3390/atmos16080894 - 22 Jul 2025
Viewed by 778
Abstract
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using [...] Read more.
Air pollution monitoring in ungauged zones presents unique challenges yet remains critical for understanding environmental health impacts and socioeconomic dynamics in the Eastern Mediterranean region. This study investigates air pollution patterns in northwestern Syria during 2019–2024, analyzing NO2 and CO concentrations using Sentinel-5P TROPOMI satellite data processed through Google Earth Engine. Monthly concentration averages were examined across eight key locations using linear regression analysis to determine temporal trends, with Spearman’s rank correlation coefficients calculated between pollutant levels and five meteorological parameters (temperature, humidity, wind speed, atmospheric pressure, and precipitation) to determine the influence of political governance, economic conditions, and environmental sustainability factors on pollution dynamics. Quality assurance filtering retained only measurements with values ≥ 0.75, and statistical significance was assessed at a p < 0.05 level. The findings reveal distinctive spatiotemporal patterns that reflect the region’s complex political-economic landscape. NO2 concentrations exhibited clear political signatures, with opposition-controlled territories showing upward trends (Al-Rai: 6.18 × 10−8 mol/m2) and weak correlations with climatic variables (<0.20), indicating consistent industrial operations. In contrast, government-controlled areas demonstrated significant downward trends (Hessia: −2.6 × 10−7 mol/m2) with stronger climate–pollutant correlations (0.30–0.45), reflecting the impact of economic sanctions on industrial activities. CO concentrations showed uniform downward trends across all locations regardless of political control. This study contributes significantly to multiple Sustainable Development Goals (SDGs), providing critical baseline data for SDG 3 (Health and Well-being), mapping urban pollution hotspots for SDG 11 (Sustainable Cities), demonstrating climate–pollution correlations for SDG 13 (Climate Action), revealing governance impacts on environmental patterns for SDG 16 (Peace and Justice), and developing transferable methodologies for SDG 17 (Partnerships). These findings underscore the importance of incorporating environmental safeguards into post-conflict reconstruction planning to ensure sustainable development. Full article
(This article belongs to the Special Issue Study of Air Pollution Based on Remote Sensing (2nd Edition))
Show Figures

Figure 1

22 pages, 5335 KiB  
Article
An Italian Study of PM0.5 Toxicity: In Vitro Investigation of Cytotoxicity, Oxidative Stress, Intercellular Communication, and Extracellular Matrix Metalloproteases
by Nathalie Steimberg, Giovanna Mazzoleni, Jennifer Boniotti, Milena Villarini, Massimo Moretti, Annalaura Carducci, Marco Verani, Tiziana Grassi, Francesca Serio, Sara Bonetta, Elisabetta Carraro, Alberto Bonetti, Silvia Bonizzoni, Umberto Gelatti and the MAPEC_LIFE Study Group
Int. J. Mol. Sci. 2025, 26(14), 6769; https://doi.org/10.3390/ijms26146769 - 15 Jul 2025
Viewed by 214
Abstract
Particulate matter (PM), mainly PM0.5, represents a significant concern for human health, particularly relating to lung homeostasis, and more research is required to ascertain its tissue tropism and the molecular pathways involved. In this study, we first focus on classical in [...] Read more.
Particulate matter (PM), mainly PM0.5, represents a significant concern for human health, particularly relating to lung homeostasis, and more research is required to ascertain its tissue tropism and the molecular pathways involved. In this study, we first focus on classical in vitro toxicological endpoints (cytotoxicity and cell growth) in human bronchial and alveolar epithelial cell lines mimicking the two pulmonary target tissues. Air samples were collected in five Italian cities (Brescia, Lecce, Perugia, Pisa, Turin) during winter and spring. To better decipher the PM0.5 effects on pulmonary cells, a further winter sampling was performed in Brescia, and studies were extended to assess tumour promotion, oxidative stress, and the activity of Matrix metalloproteases (MMP). The results confirmed that the effect of air pollution is linked to the seasons (winter is usually more cytotoxic than spring) and is correlated with the peculiar characteristics of the cities studied (meteoclimatic conditions, economic/anthropogenic activities). Alveolar cells were often less sensitive than bronchial cells. All PM samples from Brescia inhibited intercellular communication mediated by gap junctions (GJIC), increased the total content in glutathione, and decreased the reduced form of glutathione, whereas the Reactive Oxygen Species (ROS) content was almost constant. Long-term treatments at higher doses of PM decreased MMP2 and MMP9 activity. Taken together, the results confirmed that PM is cytotoxic and can potentially act as tumour promoters, but the mechanisms involved in oxidative stress and lung homeostasis are dose- and time-dependent and quite complex. Full article
(This article belongs to the Special Issue The Influence of Environmental Factors on Disease and Health Outcomes)
Show Figures

Figure 1

26 pages, 1541 KiB  
Article
Projected Urban Air Pollution in Riyadh Using CMIP6 and Bayesian Modeling
by Khadeijah Yahya Faqeih, Mohamed Nejib El Melki, Somayah Moshrif Alamri, Afaf Rafi AlAmri, Maha Abdullah Aldubehi and Eman Rafi Alamery
Sustainability 2025, 17(14), 6288; https://doi.org/10.3390/su17146288 - 9 Jul 2025
Viewed by 554
Abstract
Rapid urbanization and climate change pose significant challenges to air quality in arid metropolitan areas, with critical implications for public health and sustainable development. This study projects the evolution of air pollution in Riyadh, Saudi Arabia, through 2070 using an integrated modeling approach [...] Read more.
Rapid urbanization and climate change pose significant challenges to air quality in arid metropolitan areas, with critical implications for public health and sustainable development. This study projects the evolution of air pollution in Riyadh, Saudi Arabia, through 2070 using an integrated modeling approach that combines CMIP6 climate projections with localized air quality data. We analyzed daily concentrations of major pollutants (SO2, NO2) across 15 strategically selected monitoring stations representing diverse urban environments, including traffic corridors, residential areas, healthcare facilities, and semi-natural zones. Climate data from two Earth System Models (CNRM-ESM2-1 and MPI-ESM1.2) were bias-corrected and integrated with historical pollution measurements (2000–2015) using hierarchical Bayesian statistical modeling under SSP2-4.5 and SSP5-8.5 emission scenarios. Our results revealed substantial deterioration in air quality, with projected increases of 80–130% for SO2 and 45–55% for NO2 concentrations by 2070 under high-emission scenarios. Spatial analysis demonstrated pronounced pollution gradients, with traffic corridors (Eastern Ring Road, Northern Ring Road, Southern Ring Road) and densely urbanized areas (King Fahad Road, Makkah Road) experiencing the most severe increases, exceeding WHO guidelines by factors of 2–3. Even semi-natural areas showed significant increases in pollution due to regional transport effects. The hierarchical Bayesian framework effectively quantified uncertainties while revealing consistent degradation trends across both climate models, with the MPI-ESM1.2 model showing a greater sensitivity to anthropogenic forcing. Future concentrations are projected to reach up to 70 μg m−3 for SO2 and exceed 100 μg m−3 for NO2 in heavily trafficked areas by 2070, representing 2–3 times the Traffic corridors showed concentration increases of 21–24% compared to historical baselines, with some stations (R5, R13, and R14) recording projected levels above 4.0 ppb for SO2 under the SSP5-8.5 scenario. These findings highlight the urgent need for comprehensive emission reduction strategies, accelerated renewable energy transition, and reformed urban planning approaches in rapidly developing arid cities. Full article
Show Figures

Figure 1

19 pages, 1214 KiB  
Article
Physical and Chemical Characteristics of Different Aerosol Fractions in the Southern Baikal Region (Russia) During the Warm Season
by Liudmila P. Golobokova, Tamara V. Khodzher, Vladimir A. Obolkin, Vladimir L. Potemkin and Natalia A. Onischuk
Atmosphere 2025, 16(7), 829; https://doi.org/10.3390/atmos16070829 - 8 Jul 2025
Viewed by 264
Abstract
The Baikal region, including areas with poor environmental conditions, has significant clean background zones. In the summer of 2023, we analyzed the physical and chemical parameters of aerosol particles with different size fractions at Irkutsk and Listvyanka monitoring stations. Reduced wildfires and minimal [...] Read more.
The Baikal region, including areas with poor environmental conditions, has significant clean background zones. In the summer of 2023, we analyzed the physical and chemical parameters of aerosol particles with different size fractions at Irkutsk and Listvyanka monitoring stations. Reduced wildfires and minimal impact from fuel and energy industries allowed us to observe regional and transboundary pollution transport. A large data array indicated that, during the shift of cyclones from Mongolia to the south of the Baikal region, the concentrations of Na+, Ca2+, Mg2+, K+, and Cl ions increased at the Irkutsk station, dominated by NH4+ and SO42−. The growth of the ionic concentrations at the Listvyanka station was observed in aerosol particles during the northwesterly transport. When air masses arrived from the southerly direction, the atmosphere was the cleanest. The analysis of 27 elements in aerosols revealed that Al, Fe, Mn, Cu, and Zn made the greatest contribution to air pollution at the Irkutsk station, while Fe, Al, Cu, Cr, Mn, and Ni made the greatest contribution to air pollution at the Listvyanka station. The dynamics of the investigated elements were mainly due to natural processes in the air under various synoptic situations and weather conditions in the region, although anthropogenic factors also affected the formation of aerosol composition wth certain directions of air mass transport. Full article
Show Figures

Figure 1

20 pages, 4381 KiB  
Article
Silvicultural and Ecological Characteristics of Populus bolleana Lauche as a Key Introduced Species in the Urban Dendroflora of Industrial Cities
by Vladimir Kornienko, Valeriya Reuckaya, Alyona Shkirenko, Besarion Meskhi, Anastasiya Olshevskaya, Mary Odabashyan, Victoria Shevchenko and Svetlana Teplyakova
Plants 2025, 14(13), 2052; https://doi.org/10.3390/plants14132052 - 4 Jul 2025
Viewed by 392
Abstract
In this work, we evaluated the silvicultural and ecological parameters of Populus bolleana Lauche trees growing in conditions of anthropogenic pollution, using the example of one of the largest megacities of the Donetsk ridge, the city of Donetsk. The objectives of this study [...] Read more.
In this work, we evaluated the silvicultural and ecological parameters of Populus bolleana Lauche trees growing in conditions of anthropogenic pollution, using the example of one of the largest megacities of the Donetsk ridge, the city of Donetsk. The objectives of this study included determining the level of anthropogenic load of the territory; conducting dendrological studies to assess morphometric and allometric parameters, age structure, and condition of P. bolleana stands under the influence of environmental factors; as well as completing biomechanical studies to assess and predict the mechanical stability of stands. A total of 1109 plants growing in areas with increased anthropogenic load and in the control areas were studied. The model territories of the study were located in the city of Donetsk on Fallen Communards Avenue (length of field routes: 2.6 km) and Ilyicha Avenue (length of field routes: 9.7 km). Control plantings grew on the territory of the Donetsk botanical garden and residential (dormitory) districts of the city. The age structure of P. bolleana plantations remained uniform throughout the city for 50–55 years due to the fact that the landscaping was under a single state program. In the steppe zone in the south of the East European Plain, with a high level of anthropogenic load and severe natural climatic factors, the critical age of P. bolleana (55 years) was determined. The condition of plantations and their morphometric indices correlate with the level of anthropogenic load of the city (H, Dbase, DBH). Under control conditions, the plants are in good condition with signs of weakening (2 points). Under conditions of increased anthropogenic load, the plants are in a severely weakened condition (3 points). A total of 25% of the plants in the sample are in critical condition (4–5 points). The main damages to the crowns and trunks of plants include core rot, mechanical damage to bark and tissues, the development of core rot through the affected skeletal branch, crown thinning, and drying. P. bolleana trees are valued for their crown area and ability to retain dust particles from the air. The analysis of experimentally obtained data on the crown area showed that in the initial phases of ontogenesis, the average deviation in the crown area of plants does not depend on the place of growth. Due to artificial narrowing and sanitary pruning of the crown, as well as skeletal branches dying along the busiest highways, the values do not exceed 22–23 m2 on average, with an allometric coefficient of 0.35–0.37. When comparing this coefficient in the control areas, the crown area in areas with a high level of anthropogenic load is 36 ± 11% lower. For trees growing under the conditions of the anthropogenic load of an industrial city and having reached the critical age, mechanical resistance varied depending on the study area and load level. At sites with a high level of pollution of the territory, a significant decrease in indicators was revealed in comparison with the control (mcr—71%, EI—75%, RRB—43%). Having analyzed all the obtained data, we can conclude that, until the age of 50–55 years, P. bolleana retains good viability, mechanical resistance, and general allometric ratios, upon which the stability of the whole plant depends. Even with modern approaches and tendencies toward landscaping with exotic introductions, it is necessary to keep P. bolleana as the main species in dendrobanocenoses. Full article
(This article belongs to the Special Issue Plants for Biodiversity and Sustainable Cities)
Show Figures

Figure 1

21 pages, 852 KiB  
Article
Technological Progress and Chinese Residents’ Willingness to Pay for Cleaner Air
by Xinhao Liu and Guangjie Ning
Sustainability 2025, 17(13), 6143; https://doi.org/10.3390/su17136143 - 4 Jul 2025
Viewed by 314
Abstract
This study examines whether China’s rapid spread of internet and mobile information technologies has translated into greater household support for government air-quality programs. Using nationally representative data from the Chinese General Social Survey (2018), this study estimates the causal impact of digital media [...] Read more.
This study examines whether China’s rapid spread of internet and mobile information technologies has translated into greater household support for government air-quality programs. Using nationally representative data from the Chinese General Social Survey (2018), this study estimates the causal impact of digital media use on residents’ willing to pay (WTP) each month for one additional “good-air” day. Ordinary least squares shows that individuals who rely primarily on the internet or mobile push services are willing to contribute CNY 1.9–2.7 more—about 43 percent above the sample mean of CNY 4.41. To address potential endogeneity, we instrumented digital media adoption using provincial computer penetration; two-stage least squares yielded roughly CNY 10.5, confirming a causal effect. Mechanism tests showed that digital access lowers complacency about local air quality, strengthens anthropogenic attribution of pollution, and heightens the moral norm that economic sacrifice is legitimate, jointly mediating the rise in WTP. Heterogeneity analyses revealed stronger effects among high-income households and renters, while extended tests showed that (i) the impact intensifies when the promised environmental gain rises from one to three or five clean-air days, (ii) attention to international news can crowd out local WTP, and (iii) digital media raise not only the likelihood of paying but also the amount paid among existing contributors. The findings suggest that targeted digital outreach—especially messages with concrete, locally salient goals—can substantially enlarge the fiscal base for air-quality initiatives, helping China advance its ecological-civilization and dual-carbon objectives. Full article
(This article belongs to the Special Issue Innovation and Low Carbon Sustainability in the Digital Age)
Show Figures

Figure 1

25 pages, 3014 KiB  
Article
Performance Assessment of Low- and Medium-Cost PM2.5 Sensors in Real-World Conditions in Central Europe
by Bushra Atfeh, Zoltán Barcza, Veronika Groma, Ágoston Vilmos Tordai and Róbert Mészáros
Atmosphere 2025, 16(7), 796; https://doi.org/10.3390/atmos16070796 - 30 Jun 2025
Viewed by 389
Abstract
In addition to the use of reference instruments, low-cost sensors (LCSs) are becoming increasingly popular for air quality monitoring both indoors and outdoors. These sensors provide real-time measurements of pollutants and facilitate better spatial and temporal coverage. However, these simpler devices are typically [...] Read more.
In addition to the use of reference instruments, low-cost sensors (LCSs) are becoming increasingly popular for air quality monitoring both indoors and outdoors. These sensors provide real-time measurements of pollutants and facilitate better spatial and temporal coverage. However, these simpler devices are typically characterised by lower accuracy and precision and can be more sensitive to the environmental conditions than the reference instruments. It is therefore crucial to characterise the applicability and limitations of these instruments, for which a possible solution is their comparison with reference measurements in real-world conditions. To this end, a measurement campaign has been carried out to evaluate the PM2.5 readings of several low- and medium-cost air quality instruments of different types and categories (IQAir AirVisual Pro, TSI DustTrak™ II Aerosol Monitor 8532, Xiaomi Mijia Air Detector, and Xiaomi Smartmi PM2.5 Air Detector). A GRIMM EDM180 instrument was used as the reference. This campaign took place in Budapest, Hungary, from 12 November to 15 December 2020, during typically humid and foggy weather conditions, when the air pollution level was high due to the increased anthropogenic emissions, including wood burning for heating purposes. The results indicate that the individual sensors tracked the dynamics of PM2.5 concentration changes well (in a linear fashion), but the readings deviated from the reference measurements to varying degrees. Even though the AirVisual sensors performed generally well (0.85 < R2 < 0.93), the accuracy of the units showed inconsistency (13–93%) with typical overestimation, and their readings were significantly affected by elevated relative humidity levels and by temperature. Despite the overall overestimation of PM2.5 by the Xiaomi sensors, they also exhibited strong correlation coefficients with the reference, with R2 values of 0.88 and 0.94. TSI sensors exhibited slight underestimations with high explained variance (R2 = 0.93–0.94) and good accuracy. The results indicated that despite the inherent bias, the low-cost sensors are capable of capturing the temporal variability of PM2.5, thus providing relevant information. After simple and multiple linear regression-based correction, the low-cost sensors provided acceptable results. The results indicate that sensor data correction is a necessary prerequisite for the usability of the instruments. The ensemble method is a reasonable alternative for more accurate estimations of PM2.5. Full article
Show Figures

Figure 1

16 pages, 1877 KiB  
Review
Capillary Rise and Salt Weathering in Spain: Impacts on the Degradation of Calcareous Materials in Historic Monuments
by Elías Afif-Khouri, Alfonso Lozano-Martínez, José Ignacio López de Rego, Belén López-Gallego and Rubén Forjan-Castro
Buildings 2025, 15(13), 2285; https://doi.org/10.3390/buildings15132285 - 29 Jun 2025
Viewed by 758
Abstract
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble [...] Read more.
The crystallization of soluble salts is one of the most significant agents of deterioration affecting porous building materials in historical architecture. This process not only compromises the physical integrity of the materials but also results in considerable aesthetic, structural, and economic consequences. Soluble salts involved in these processes may originate from geogenic sources—including soil leachate, marine aerosols, and the natural weathering of parent rocks—or from anthropogenic factors such as air pollution, wastewater infiltration, and the use of incompatible restoration materials. This study examines the role of capillary rise as a primary mechanism responsible for the vertical migration of saline solutions from the soil profile into historic masonry structures, especially those constructed with calcareous stones. It describes how water retained or sustained within the soil matrix ascends via capillarity, carrying dissolved salts that eventually crystallize within the pore network of the stone. This phenomenon leads to a variety of damage types, ranging from superficial staining and efflorescence to more severe forms such as subflorescence, microfracturing, and progressive mass loss. By adopting a multidisciplinary approach that integrates concepts and methods from soil physics, hydrology, petrophysics, and conservation science, this paper examines the mechanisms that govern saline water movement, salt precipitation patterns, and their cumulative effects on stone durability. It highlights the influence of key variables such as soil texture and structure, matric potential, hydraulic conductivity, climatic conditions, and stone porosity on the severity and progression of deterioration. This paper also addresses regional considerations by focusing on the context of Spain, which holds one of the highest concentrations of World Heritage Sites globally and where many monuments are constructed from vulnerable calcareous materials such as fossiliferous calcarenites and marly limestones. Special attention is given to the types of salts most commonly encountered in Spanish soils—particularly chlorides and sulfates—and their thermodynamic behavior under fluctuating environmental conditions. Ultimately, this study underscores the pressing need for integrated, preventive conservation strategies. These include the implementation of drainage systems, capillary barriers, and the use of compatible materials in restoration, as well as the application of non-destructive diagnostic techniques such as electrical resistivity tomography and hyperspectral imaging. Understanding the interplay between soil moisture dynamics, salt crystallization, and material degradation is essential for safeguarding the cultural and structural value of historic buildings in the face of ongoing environmental challenges and climate variability. Full article
(This article belongs to the Special Issue Selected Papers from the REHABEND 2024 Congress)
Show Figures

Figure 1

24 pages, 4061 KiB  
Article
Snow Cover as a Medium for Polycyclic Aromatic Hydrocarbons (PAHs) Deposition and a Measure of Atmospheric Pollution in Carpathian Village–Study Case of Zawoja, Poland
by Kinga Wencel, Witold Żukowski, Gabriela Berkowicz-Płatek and Igor Łabaj
Appl. Sci. 2025, 15(12), 6497; https://doi.org/10.3390/app15126497 - 9 Jun 2025
Viewed by 331
Abstract
Snow cover constitutes a medium that can be used as a way of assessing air pollution. The chemical composition of snow layers from the same snowfall event reflects the composition of atmospheric aerosols and dry precipitates, depending on the properties of the adsorbing [...] Read more.
Snow cover constitutes a medium that can be used as a way of assessing air pollution. The chemical composition of snow layers from the same snowfall event reflects the composition of atmospheric aerosols and dry precipitates, depending on the properties of the adsorbing surface and prevailing weather conditions. Analyzing snow samples provides reliable insights into anthropogenic pollution accumulated in soil and groundwater of different land use type areas, as well as allows the evaluation of the degree and sources of environmental pollution. The aim of the research was to determine the distribution of polycyclic aromatic hydrocarbons in various sites of Zawoja village and identify their possible sources and factors influencing their differentiation. A total of 15 surface snow samples of the same thickness and snowfall origin were collected from different locations in the village in the winter of 2024. The samples were pre-concentrated by solid phase extraction and analyzed by gas chromatography—tandem mass spectrometry. The sampling set was invented, and the extraction procedure and analysis parameters were optimized. A spatial distribution map of PAHs was created. The contamination of ∑16PAHs varied from 710 to 2310 ng/L in melted snow with the highest concentrations detected in Zawoja Markowa by the border of the Babia Góra National Park, which is interpreted mainly as a result of the topographical setting. Medium molecular weight PAHs were the dominant fraction, which, combined with specific PAH ratios, indicate the combustion of biomass and coal as the main source of contamination. Full article
(This article belongs to the Special Issue Air Pollution and Its Impact on the Atmospheric Environment)
Show Figures

Figure 1

19 pages, 1662 KiB  
Article
Environmental Changes as a Factor in the Dynamics of Aquatic Vegetation Distribution in Belarusian Soft-Water Lakes
by Nina Sukhovilo, Daria Vlasova, Aliaksei Novik and Boris Vlasov
Limnol. Rev. 2025, 25(2), 26; https://doi.org/10.3390/limnolrev25020026 - 5 Jun 2025
Viewed by 469
Abstract
This article describes the reasons for and trends in the overgrowth of soft-water lakes in Belarus. Due to their unique water properties (low mineralization, pH, and nitrogen and phosphorus concentrations) and high water transparency, soft-water lakes are home to protected plant species like [...] Read more.
This article describes the reasons for and trends in the overgrowth of soft-water lakes in Belarus. Due to their unique water properties (low mineralization, pH, and nitrogen and phosphorus concentrations) and high water transparency, soft-water lakes are home to protected plant species like Lobelia dortmanna L., Isöetes lacustris L., and Littorella uniflora L. The purpose of this study was to analyze changes in aquatic vegetation distribution in seven soft-water Belarusian lakes and identify the causes of these changes. The initial data for this research were the results of field observations, the archive materials of the research laboratory of lake research conducted by the Belarusian State University for the period from 1971 to 2016, including morphometric and hydrochemical parameters, the characteristics of catchments and water exchange, and the results of studying the species composition and distribution of aquatic vegetation. The authors’ field studies were carried out in 2022–2024. We used expeditionary, hydrochemical, cartographic, and comparative research methods. The most significant changes in overgrowth were observed in Lakes Svityaz and Beloe (Luninets District). These lakes have high recreational loads. Significant negative trends were also noted in Lakes Bolshoe Ostrovito and Bredno. Over 35 years, the depth of distribution of submerged macrophytes in Lake Svityaz has decreased from 7 to 2 m, and the abundance and projective cover of semi-submerged macrophytes have increased. In Lake Beloe, I. lacustris, which forms a tier of submerged plants, has almost completely disappeared, and a previously absent strip of air-aquatic plants has formed. The total area of overgrowth in the lake has decreased from 35% of the water area to 3.2%. In Lake Bolshoe Ostrovito, Fontinalis sp., previously common at depths of up to 5 m, has practically disappeared. In Lake Bredno, the water moss Drepanocladus has spread to a depth of 4 m. In Lake Glubokoe, a new area of I. lacustris growth was discovered around an island at depths of up to 4 m. In Lake Cherbomyslo, the decrease in the species’ depth and area of distribution is associated with a weakening of the inflow of bog waters due to their backwater. The main causes of these changes are largely due to anthropogenic factors (water pollution by biogenic compounds) and, to a lesser extent, hydrological changes (decrease in the moisture content of lake catchments). Full article
Show Figures

Figure 1

Back to TopTop