Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (225)

Search Parameters:
Keywords = antenna remoting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 4473 KiB  
Article
Dual-Band Wearable Antenna Integrated with Glasses for 5G and Wi-Fi Systems
by Łukasz Januszkiewicz
Appl. Sci. 2025, 15(14), 8018; https://doi.org/10.3390/app15148018 - 18 Jul 2025
Viewed by 229
Abstract
This paper presents a dual-band antenna designed for integration into eyewear. The antenna is intended for a system supporting visually impaired individuals, where a wearable camera integrated into glasses transmits data to a remote receiver. To enhance system reliability within indoor environments, the [...] Read more.
This paper presents a dual-band antenna designed for integration into eyewear. The antenna is intended for a system supporting visually impaired individuals, where a wearable camera integrated into glasses transmits data to a remote receiver. To enhance system reliability within indoor environments, the proposed design supports both fifth-generation (5G) wireless communication and Wi-Fi networks. The compact antenna is specifically dimensioned for integration within eyeglass temples and operates in the 3.5 GHz and 5.8 GHz frequency bands. Prototype measurements, conducted using a human head phantom, validate the antenna’s performance. The results demonstrate good impedance matching across the desired frequency bands and a maximum gain of at least 4 dBi in both bands. Full article
(This article belongs to the Special Issue Antenna Technology for 5G Communication)
Show Figures

Figure 1

18 pages, 3678 KiB  
Article
Performance Degradation in Monopulse Angle Measurement of Planar Phased-Array Due to Cross-Polarization Component
by Yunhui Zhang, Bo Pang, Dahai Dai, Bo Chen and Zhengkuan Tan
Remote Sens. 2025, 17(14), 2454; https://doi.org/10.3390/rs17142454 - 15 Jul 2025
Viewed by 260
Abstract
Due to the high-precision angle measurement performance, the monopulse technique plays a key role in fields such as remote sensing and space surveillance. The accuracy of monopulse angle measurement depends on the received amplitude and phase information, which is sensitive to the polarization [...] Read more.
Due to the high-precision angle measurement performance, the monopulse technique plays a key role in fields such as remote sensing and space surveillance. The accuracy of monopulse angle measurement depends on the received amplitude and phase information, which is sensitive to the polarization component. Previous research has demonstrated that the performance of monopulse radar equipped with a parabolic antenna suffers from the cross-polarization component. However, it is not clear whether phased arrays (PAs) with higher degrees of freedom will also be affected by the cross-polarization component, and the parameter tolerance for performance degradation remains uncertain. In this paper, we establish a mathematical model of monopulse angle measurement in PA radar, which provides a comprehensive consideration of the cross-polarization component. Then, the received amplitude and phase patterns of PA radar are analyzed, and the theoretical angle errors caused by the cross-polarization jamming are derived. The experiments are conducted based on the measured amplitude-phase patterns of both co-polarization and cross-polarization. Experimental results are consistent with the theoretical analysis: the angle errors caused by cross-polarization jamming can reach half of the beamwidth in both azimuth and elevation dimensions, provided that the power of the cross-polarization and co-polarization components at the receiver is equal. Full article
(This article belongs to the Special Issue Recent Advances in SAR: Signal Processing and Target Recognition)
Show Figures

Figure 1

9 pages, 3091 KiB  
Article
Microwave Detection of Carbon Monoxide Gas via a Spoof Localized Surface Plasmons-Enhanced Cavity Antenna
by Meng Wang, Wenjie Xu and Shitao Sun
Micromachines 2025, 16(7), 790; https://doi.org/10.3390/mi16070790 - 2 Jul 2025
Viewed by 344
Abstract
This paper presents a carbon monoxide (CO) detection mechanism achieved through further improvement of the sensing antenna based on hybrid spoof localized surface plasmons (SLSPs) and cavity resonance. Unlike conventional approaches relying on chemical reactions or photoelectric effects, the all-metal configuration detects dielectric [...] Read more.
This paper presents a carbon monoxide (CO) detection mechanism achieved through further improvement of the sensing antenna based on hybrid spoof localized surface plasmons (SLSPs) and cavity resonance. Unlike conventional approaches relying on chemical reactions or photoelectric effects, the all-metal configuration detects dielectric variations through microwave-regime resonance frequency shifts, enabling CO/air differentiation with theoretically enhanced robustness and environmental adaptability. The designed system achieves measured figures of merit (FoMs) of 183.2 RIU−1, resolving gases with dielectric contrast below 0.1%. Experimental validation successfully discriminated CO (εr = 1.00262) from air (εr = 1.00054) under standard atmospheric pressure at 18 °C. Full article
(This article belongs to the Special Issue Current Research Progress in Microwave Metamaterials and Metadevices)
Show Figures

Figure 1

14 pages, 9364 KiB  
Article
Development of Autonomous Electric USV for Water Quality Detection
by Chiung-Hsing Chen, Yi-Jie Shang, Yi-Chen Wu and Yu-Chen Lin
Sensors 2025, 25(12), 3747; https://doi.org/10.3390/s25123747 - 15 Jun 2025
Viewed by 733
Abstract
With the rise of industry, river pollution has become increasingly severe. Countries worldwide now face the challenge of effectively and promptly detecting river pollution. Traditional river detection methods rely on manual sampling and subsequent data analysis at various sampling sites, requiring significant time [...] Read more.
With the rise of industry, river pollution has become increasingly severe. Countries worldwide now face the challenge of effectively and promptly detecting river pollution. Traditional river detection methods rely on manual sampling and subsequent data analysis at various sampling sites, requiring significant time and labor costs. This article proposes using an electric unmanned surface vehicle (USV) to replace manual river and lake water quality detection, utilizing a 2.4 G high-power wireless data transmission system, an M9N GPS antenna, and an automatic identification system (AIS) to achieve remote and unmanned control. The USV is capable of autonomously navigating along pre-defined routes and conducting water quality measurements without human intervention. The water quality detection system includes sensors for pH, dissolved oxygen (DO), electrical conductivity (EC), and oxidation-reduction potential (ORP). This design uses a modular structure, it is easy to maintain, and it supports long-range wireless communication. These features help to reduce operational and maintenance costs in the long term. The data produced using this method effectively reflect the current state of river water quality and indicate whether pollution is present. Through practical testing, this article demonstrates that the USV can perform precise positioning while utilizing AIS to identify potential surrounding collision risks for the remote planning of water quality detection sailing routes. This autonomous approach enhances the efficiency of water sampling in rivers and lakes and significantly reduces labor requirements. At the same time, this contributes to the achievement of the United Nations Sustainable Development Goals (SDG 14), “Life Below Water”. Full article
(This article belongs to the Special Issue Sensors for Water Quality Monitoring and Assessment)
Show Figures

Figure 1

13 pages, 3609 KiB  
Article
A Compact Wideband Millimeter-Wave Crossover for Phased Array Antenna Systems in Remote Sensing Applications
by Fayyadh H. Ahmed, Rola Saad and Salam K. Khamas
Sensors 2025, 25(12), 3641; https://doi.org/10.3390/s25123641 - 10 Jun 2025
Viewed by 386
Abstract
A new compact, wideband, millimeter-wave microstrip crossover—designed without vias—demonstrates effective performance with an insertion loss of 2 dB across a wide frequency range. For Path 1, the operational bandwidth spans 11 GHz (13–24 GHz), while for Path 2, it extends over 10 GHz [...] Read more.
A new compact, wideband, millimeter-wave microstrip crossover—designed without vias—demonstrates effective performance with an insertion loss of 2 dB across a wide frequency range. For Path 1, the operational bandwidth spans 11 GHz (13–24 GHz), while for Path 2, it extends over 10 GHz (12–22 GHz). The overlapping bandwidth, maintaining the 2 dB insertion loss criterion, covers 9 GHz (13–22 GHz). The design introduces two transition mechanisms to achieve optimal scattering parameters for the crossover: a stair-shaped microstrip line (MST) to ground-backed coplanar waveguide (GCPW) for the initial crossed line (Path 1), and vertical coupling between microstrip and coplanar hourglass microstrip patches on a single-layer substrate for Path 2. This innovative approach ensures an insertion loss of approximately 1 dB for both paths across the bandwidth, with a slight increase beyond 20 GHz for Path 2 due to substrate losses. Both crossed lines maintain a return loss of 10 dB across the spectrum, with isolation of approximately 20 dB. This design presents a flat, compact, and via-less configuration, with physical dimensions measuring 6.5 mm × 7.6 mm. The proposed design exhibits excellent scattering parameters, which enhance the efficiency of phased array antenna systems in terms of power transfer between input and output ports, as well as improving isolation between different input ports in the feed network of these systems used in remote sensing. Consequently, this contributes to the increased sensitivity and accuracy of such systems. Full article
(This article belongs to the Special Issue Antennas for Wireless Communications)
Show Figures

Figure 1

21 pages, 2892 KiB  
Article
Inherent Trade-Offs Between the Conflicting Aspects of Designing the Compact Global Navigation Satellite System (GNSS) Anti-Interference Array
by Xiangjun Li, Xiaoyu Zhao, Xiaozhou Ye, Zukun Lu, Feixue Wang and Peiguo Liu
Remote Sens. 2025, 17(10), 1760; https://doi.org/10.3390/rs17101760 - 18 May 2025
Viewed by 337
Abstract
The Global Navigation Satellite System (GNSS) has emerged as a critical spatiotemporal infrastructure for ensuring the integrity of remote sensing data links. However, traditional GNSS antenna arrays, typically configured with the antenna spacing of half a wavelength, are constrained by the spatial limitations [...] Read more.
The Global Navigation Satellite System (GNSS) has emerged as a critical spatiotemporal infrastructure for ensuring the integrity of remote sensing data links. However, traditional GNSS antenna arrays, typically configured with the antenna spacing of half a wavelength, are constrained by the spatial limitations of remote sensing platforms. This limitation results in a restricted number of interference-resistant antennas, posing a risk of failure in scenarios involving distributed multi-source interference. To address this challenge, this paper focuses on the multidimensional trade-off problem in the design of compact GNSS anti-interference arrays under finite spatial constraints. For the first time, we systematically reveal the intrinsic relationships and game-theoretic mechanisms among key parameters, including the number of antennas, antenna spacing, antenna size, null width, coupling effects, and receiver availability. First, we propose a novel null width analysis method based on the steering vector correlation coefficient (SVCC), elucidating the inverse regulatory mechanism between increasing the number of antennas and reducing antenna spacing on null width. Furthermore, we demonstrate that increasing antenna size enhances the signal-to-noise ratio (SNR) while also introducing trade-offs with mutual coupling losses, which degrade SNR after compensation. Building on these insights, we innovatively propose a multi-objective optimization framework based on the non-dominated sorting genetic algorithm-II (NSGA-II) model, integrating antenna electromagnetic characteristics and signal processing constraints. Through iterative generation of the Pareto front, this framework achieves a globally optimal solution that balances spatial efficiency and anti-interference performance. Experimental results show that, under a platform constraint of 1 wavelength × 1 wavelength, the optimal number of antennas ranges from 15 to 17, corresponding to receiver availability rates of 89%, 72%, and 55%, respectively. Full article
Show Figures

Figure 1

18 pages, 11212 KiB  
Article
Analysis and Correction of Antenna Pattern Errors for In-Orbit Fully Polarimetric Aperture Synthesis Radiometer
by Yuanchao Wu, Yinan Li, Xiaojiao Yang, Pengfei Li, Guangnan Song, Haofeng Dou and Hao Li
Remote Sens. 2025, 17(8), 1414; https://doi.org/10.3390/rs17081414 - 16 Apr 2025
Viewed by 321
Abstract
The fully polarimetric aperture synthesis radiometer (FPASR) is capable of acquiring the fully polarimetric brightness temperature (BT), which has become increasingly significant in remote sensing. Antenna pattern errors can introduce significant errors to the reconstructed image of the FPASR. Analyzing and correcting the [...] Read more.
The fully polarimetric aperture synthesis radiometer (FPASR) is capable of acquiring the fully polarimetric brightness temperature (BT), which has become increasingly significant in remote sensing. Antenna pattern errors can introduce significant errors to the reconstructed image of the FPASR. Analyzing and correcting the antenna pattern errors is crucial for obtaining high-quality BT images. In this paper, the antenna pattern errors are analyzed and classified into additive and multiplicative errors. A two-step correction method is proposed to reduce the influence of antenna pattern errors on the reconstructed BT. An end-to-end simulator for FPASR has been developed to assess both the antenna pattern errors and the effectiveness of the correction method. The simulation results show that the two-step correction method can reduce the brightness temperature error caused by the antenna pattern errors by over 70%. The successful image of the flight experiment validates the correction method as well. Full article
(This article belongs to the Special Issue Recent Advances in Microwave and Millimeter-Wave Imaging Sensing)
Show Figures

Figure 1

20 pages, 5129 KiB  
Article
Multi-Band Analog Radio-over-Fiber Mobile Fronthaul System for Indoor Positioning, Beamforming, and Wireless Access
by Hang Yang, Wei Tian, Jianhua Li and Yang Chen
Sensors 2025, 25(7), 2338; https://doi.org/10.3390/s25072338 - 7 Apr 2025
Viewed by 626
Abstract
In response to the urgent demands of the Internet of Things for precise indoor target positioning and information interaction, this paper proposes a multi-band analog radio-over-fiber mobile fronthaul system. The objective is to obtain the target’s location in indoor environments while integrating remote [...] Read more.
In response to the urgent demands of the Internet of Things for precise indoor target positioning and information interaction, this paper proposes a multi-band analog radio-over-fiber mobile fronthaul system. The objective is to obtain the target’s location in indoor environments while integrating remote beamforming capabilities to achieve wireless access to the targets. Vector signals centered at 3, 4, 5, and 6 GHz for indoor positioning and centered at 30 GHz for wireless access are generated centrally in the distributed unit (DU) and fiber-distributed to the active antenna unit (AAU) in the multi-band analog radio-over-fiber mobile fronthaul system. Target positioning is achieved by radiating electromagnetic waves indoors through four omnidirectional antennas in conjunction with a pre-trained neural network, while high-speed wireless communication is realized through a phased array antenna (PAA) comprising four antenna elements. Remote beamforming for the PAA is implemented through the integration of an optical true time delay pool in the multi-band analog radio-over-fiber mobile fronthaul system. This integration decouples the weight control of beamforming from the AAU, enabling centralized control of beam direction at the DU and thereby reducing the complexity and cost of the AAU. Simulation results show that the average accuracy of localization classification can reach 86.92%, and six discrete beam directions are achieved via the optical true time delay pool. In the optical transmission layer, when the received optical power is 10 dBm, the error vector magnitudes (EVMs) of vector signals in all frequency bands remain below 3%. In the wireless transmission layer, two beam directions were selected for verification. Once the beam is aligned with the target device at maximum gain and the received signal is properly processed, the EVM of millimeter-wave vector signals remains below 11%. Full article
(This article belongs to the Section Communications)
Show Figures

Figure 1

9 pages, 2578 KiB  
Proceeding Paper
Concept of a Multi-Receiver-Vector Tracking Algorithm Within a Gnss Network
by Stefan Laller and Philipp Berglez
Eng. Proc. 2025, 88(1), 20; https://doi.org/10.3390/engproc2025088020 - 26 Mar 2025
Viewed by 225
Abstract
This paper deals with the concept of a GNSS monitoring network, which fulfills requirements in relation to sustainability, cost efficiency and flexibility. For the proposed approach, the hardware of the GNSS monitoring stations should be reduced to a minimum. Therefore, Remote Radio Head [...] Read more.
This paper deals with the concept of a GNSS monitoring network, which fulfills requirements in relation to sustainability, cost efficiency and flexibility. For the proposed approach, the hardware of the GNSS monitoring stations should be reduced to a minimum. Therefore, Remote Radio Head sensors or especially RF Front-Ends, which are already used in the field of GNSS, should be used. In this concept, GNSS network stations are equipped with an antenna, an RF Front-End, and hardware for data transfer (raw I&Q samples) to a central processing facility. The idea is to realize a collaborative processing of all receivers with a Multi-Receiver-Vector Tracking (MRVT) algorithm in one single Software-Defined GNSS receiver (SDR). Full article
(This article belongs to the Proceedings of European Navigation Conference 2024)
Show Figures

Figure 1

38 pages, 1656 KiB  
Article
Amplitude and Phase Calibration with the Aid of Beacons in Microwave Imaging Radiometry by Aperture Synthesis: Algebraic Aspects and Algorithmic Implications
by Eric Anterrieu
Remote Sens. 2025, 17(6), 1098; https://doi.org/10.3390/rs17061098 - 20 Mar 2025
Viewed by 478
Abstract
In remote sensing via aperture synthesis, the complex gains of every elementary antenna have to be very well known for measuring accurate complex visibilities. The role of calibration is to estimate the instrumental and environmental variations that may affect interferometric measurements. This contribution [...] Read more.
In remote sensing via aperture synthesis, the complex gains of every elementary antenna have to be very well known for measuring accurate complex visibilities. The role of calibration is to estimate the instrumental and environmental variations that may affect interferometric measurements. This contribution focuses on the calibration of the effective transfer function of aperture synthesis radiometers with the aid of a radio beacon, in the same way radio-astronomers use quasi-stellar radio sources to calibrate that of radio-telescope arrays. If the amplitude calibration of complex gains does not raise any issue, it is shown that phase calibration may bring up serious challenges if it is not given special attention. Indeed, the phase of the complex visibilities cannot be roughly unwrapped as the risk of a wrong estimation of the complex gains is real and proven. This problem is overcome with the aid of a non-linear optimization algorithm for iteratively and smoothly unwrapping these phases. The performances of both amplitude and phase calibration are then assessed by means of numerical simulations with emphasis on the sensitivity of the accuracy to the inversion method as well as to various errors. Full article
(This article belongs to the Section Remote Sensing Image Processing)
Show Figures

Figure 1

23 pages, 7257 KiB  
Article
Dual-Band 802.11 RF Energy Harvesting Optimization for IoT Devices with Improved Patch Antenna Design and Impedance Matching
by Ashraf Ali, Rama Eid, Digham Emad Manaseer, Hussein Khaled AbuJaber and Andrew Ware
Sensors 2025, 25(4), 1055; https://doi.org/10.3390/s25041055 - 10 Feb 2025
Cited by 1 | Viewed by 1664
Abstract
This paper investigates the feasibility of harvesting Radio Frequency (RF) energy from the Wi-Fi frequency band to power low-power Internet-of-Things (IoT) devices. With the increasing prevalence of IoT applications and wireless sensor networks (WSNs), there is a critical need for sustainable energy sources [...] Read more.
This paper investigates the feasibility of harvesting Radio Frequency (RF) energy from the Wi-Fi frequency band to power low-power Internet-of-Things (IoT) devices. With the increasing prevalence of IoT applications and wireless sensor networks (WSNs), there is a critical need for sustainable energy sources that can extend the operational lifespan of these devices, particularly in remote locations, where access to reliable power supplies is limited. The paper describes the design, simulation, and fabrication of a dual-band antenna capable of operating at 2.4 GHz and 5 GHz, the frequencies used by Wi-Fi. The simulation and experimental results show that the proposed design is efficient based on the reflection coefficient. Using a high-frequency simulator, we developed two C-shaped and an F-shaped microstrip antenna design, optimized for impedance matching and efficient RF–DC conversion.The captured RF energy is converted into usable electrical power that can be directly utilized by low-power IoT devices or stored in batteries for later use. The paper introduces an efficient design for dual-band antennas to maximize the reception of Wi-Fi signals. It also explains the construction of an impedance-matching network to reduce signal reflection and improve power transfer efficiency. The results indicate that the proposed antennas can effectively harvest Wi-Fi energy, providing a sustainable power source for IoT devices. The practical implementation of this system offers a promising solution to the energy supply challenges faced by remote and low-power IoT applications, paving the way for more efficient and longer-lasting wireless sensor networks. Full article
(This article belongs to the Special Issue RFID and Zero-Power Backscatter Sensors)
Show Figures

Figure 1

23 pages, 11488 KiB  
Article
Design and Analysis of Wideband Single-Layer Reflectarray Antenna for Remote Sensing and Environmental Monitoring
by Annal Joy J, Sandeep Kumar Palaniswamy, Sachin Kumar, Malathi Kanagasabai and Ladislau Matekovits
Sensors 2025, 25(3), 954; https://doi.org/10.3390/s25030954 - 5 Feb 2025
Viewed by 1052
Abstract
In this article, a wideband single-layer reflectarray antenna for Ku-band applications is presented. The proposed reflectarray antenna is suitable for applications such as fixed satellite service (FSS), broadcasting satellite service (BSS), earth exploration satellite service (EESS), remote sensing, and environmental monitoring. The developed [...] Read more.
In this article, a wideband single-layer reflectarray antenna for Ku-band applications is presented. The proposed reflectarray antenna is suitable for applications such as fixed satellite service (FSS), broadcasting satellite service (BSS), earth exploration satellite service (EESS), remote sensing, and environmental monitoring. The developed single element of the proposed reflectarray antenna is made up of a horizontal strip, discrete vertical strips of varying sizes, and circular structures. The reflectarray antenna has 441 elements arranged on a square aperture made of Rogers 5880 substrate, measuring 21 cm × 21 cm. The maximum gain obtained is 26.31 dBi, with a bandwidth of 15.4% of 1 dB gain. The achieved aperture efficiency is 44.4%. The obtained cross-polarizations are less than −21.46 dB for the E-plane and −25.27 dB for the H-plane. The side lobe level is found below −15.06 dB in the E plane and −15.7 dB in the H plane. The side lobe level is minimal at 13.5 GHz, measuring less than −18.2 dB and −18.5 dB in the E and H planes, respectively. The reflectarray antenna designed has a fractional bandwidth of 40%. Hence, the developed antenna is suitable for wide Ku-band applications. Full article
Show Figures

Figure 1

25 pages, 13341 KiB  
Article
Static-Aperture Synthesis Method in Remote Sensing and Non-Destructive Testing Applications
by Olha Inkarbaieva, Denys Kolesnikov, Danyil Kovalchuk, Volodymyr Pavlikov, Volodymyr Ponomaryov, Beatriz Garcia-Salgado, Valerii Volosyuk and Semen Zhyla
Mathematics 2025, 13(3), 502; https://doi.org/10.3390/math13030502 - 3 Feb 2025
Viewed by 1002
Abstract
The study is dedicated to the statistical optimization of radar imaging of surfaces with the synthetic aperture radar (SAR) technique, assuming a static surface area and applying the ability to move a sensor along a nonlinear trajectory via developing a new method and [...] Read more.
The study is dedicated to the statistical optimization of radar imaging of surfaces with the synthetic aperture radar (SAR) technique, assuming a static surface area and applying the ability to move a sensor along a nonlinear trajectory via developing a new method and validating its operability for remote sensing and non-destructive testing. The developed models address the sensing geometry for signals reflected from a surface along with the observation signal–noise equation, including correlation properties. Moreover, the optimal procedures for coherent radar imaging of surfaces with the static SAR technology are synthesized according to the maximum likelihood estimation (MLE). The features of the synthesized algorithm are the decoherence of the received oscillations, the matched filtering of the received signals, and the possibility of using continuous signal coherence. Furthermore, the developed optimal and quasi-optimal algorithms derived from the proposed MLE have been investigated. The novel framework for radio imaging has demonstrated good overall operability and efficiency during simulation modeling (using the MATLAB environment) for real sensing scenes. The developed algorithms of spatio–temporal signal processing in systems with a synthesized antenna with nonlinear carrier trajectories open a promising direction for creating new methods of high-precision radio imaging from UAVs and helicopters. Full article
Show Figures

Figure 1

13 pages, 2529 KiB  
Article
A Filter-Free, Image-Reject, Sub-Harmonic Downconverted RoF Link Without Fiber-Dispersion-Induced Power Fading
by Yuanyuan Li, Qiong Zhao and Wu Zhang
Photonics 2024, 11(12), 1191; https://doi.org/10.3390/photonics11121191 - 19 Dec 2024
Viewed by 881
Abstract
A filter-free, image-reject, sub-harmonic downconverted RoF link is proposed based on a dual-polarization quadrature phase-shift keying (DP–QPSK) modulator. At the remote antenna unit, the receiving radio frequency signal is applied to the upper QPSK modulator to achieve carrier-suppressed single-sideband (CS–SSB) modulation. The local [...] Read more.
A filter-free, image-reject, sub-harmonic downconverted RoF link is proposed based on a dual-polarization quadrature phase-shift keying (DP–QPSK) modulator. At the remote antenna unit, the receiving radio frequency signal is applied to the upper QPSK modulator to achieve carrier-suppressed single-sideband (CS–SSB) modulation. The local oscillator (LO) is applied to the lower QPSK modulator, achieving sub-harmonic single-sideband (SH–SSB) modulation. The I/Q mixing is realized by exploiting a two-channel photonic microwave phase shifter, which mainly consists of a modulator, two polarization controllers, and two polarizers. The image interference signal can be rejected when combing the I and Q IF signals through a 90° electrical hybrid. Because the scheme is simple and filter-free, it has a good image-reject capability over a large frequency tunable range. Moreover, due to the special SH-SSB modulation, the modulated signals are immune to the chromatic dispersion-introduced power fading effect. Last, the sub-harmonic downconverter can decrease the frequency requirement of the LO signal. Experimental results show that an image rejection ratio (IRR) greater than 50 dB can be achieved when transmitted through a 25 km single-mode fiber (SMF). Simultaneously, under different RF signals and IF signals, the IRR has no periodic power fading, only small fluctuations. Image rejection capability of the scheme for the 50-MBaud 16-QAM wideband vector signal is also verified and the demodulation of the desired IF signal with a good EVM of less than 5% is realized. Full article
(This article belongs to the Special Issue New Perspectives in Microwave Photonics)
Show Figures

Figure 1

14 pages, 6132 KiB  
Article
Design of Two Compact Wideband Monopoles Through Loading with Linear Approximated Lumped Components
by Jiansen Ma, Weiping Cao and Xinhua Yu
Micromachines 2024, 15(12), 1477; https://doi.org/10.3390/mi15121477 - 7 Dec 2024
Viewed by 1117
Abstract
In this paper, two ultra-wideband monopoles in a colinear structure are presented for application in remote terrestrial communication systems. The antennas consist of a loaded monopole with a hat and an elevated loaded monopole located in the upper position. All lumped loads are [...] Read more.
In this paper, two ultra-wideband monopoles in a colinear structure are presented for application in remote terrestrial communication systems. The antennas consist of a loaded monopole with a hat and an elevated loaded monopole located in the upper position. All lumped loads are modeled as linear frequency-dependent components to approximate the practical component property for achieving ultra-wideband characteristics, since the constant value property of a component is only present in a relatively narrow band. The antennas are simulated by the method of moments (MoM) with asymptotic waveform evaluation (AWE) to speed up frequency sweep across a wide bandwidth. For proper simulation with the AWE process, the parallel RLC load with linear frequency-dependent components is modeled in a corresponding impedance function. With the optimized load parameters, one antenna covers 30–750 MHz with a VSWR < 3.5 and the other one covers 800 MHz–3000 MHz with a VSWR < 2.5, which are promising results for terrestrial omnidirectional applications. Full article
(This article belongs to the Special Issue RF MEMS and Microsystems)
Show Figures

Figure 1

Back to TopTop