Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (749)

Search Parameters:
Keywords = ant colony optimization

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 12094 KiB  
Article
Intelligent Active Suspension Control Method Based on Hierarchical Multi-Sensor Perception Fusion
by Chen Huang, Yang Liu, Xiaoqiang Sun and Yiqi Wang
Sensors 2025, 25(15), 4723; https://doi.org/10.3390/s25154723 (registering DOI) - 31 Jul 2025
Abstract
Sensor fusion in intelligent suspension systems constitutes a fundamental technology for optimizing vehicle dynamic stability, ride comfort, and occupant safety. By integrating data from multiple sensor modalities, this study proposes a hierarchical multi-sensor fusion framework for active suspension control, aiming to enhance control [...] Read more.
Sensor fusion in intelligent suspension systems constitutes a fundamental technology for optimizing vehicle dynamic stability, ride comfort, and occupant safety. By integrating data from multiple sensor modalities, this study proposes a hierarchical multi-sensor fusion framework for active suspension control, aiming to enhance control precision. Initially, a binocular vision system is employed for target detection, enabling the identification of lane curvature initiation points and speed bumps, with real-time distance measurements. Subsequently, the integration of Global Positioning System (GPS) and inertial measurement unit (IMU) data facilitates the extraction of road elevation profiles ahead of the vehicle. A BP-PID control strategy is implemented to formulate mode-switching rules for the active suspension under three distinct road conditions: flat road, curved road, and obstacle road. Additionally, an ant colony optimization algorithm is utilized to fine-tune four suspension parameters. Utilizing the hardware-in-the-loop (HIL) simulation platform, the observed reductions in vertical, pitch, and roll accelerations were 5.37%, 9.63%, and 11.58%, respectively, thereby substantiating the efficacy and robustness of this approach. Full article
Show Figures

Figure 1

24 pages, 3500 KiB  
Article
Optimized Collaborative Routing for UAVs and Ground Vehicles in Integrated Logistics Systems
by Hafiz Muhammad Rashid Nazir, Yanming Sun and Yongjun Hu
Drones 2025, 9(8), 538; https://doi.org/10.3390/drones9080538 (registering DOI) - 30 Jul 2025
Abstract
This study investigates the optimization of urban parcel delivery by integrating logistics vehicles and onboard drones within a static road network. A centralized delivery hub is responsible for coordinating both modes of transport to minimize total vehicle operation costs and customer waiting times. [...] Read more.
This study investigates the optimization of urban parcel delivery by integrating logistics vehicles and onboard drones within a static road network. A centralized delivery hub is responsible for coordinating both modes of transport to minimize total vehicle operation costs and customer waiting times. A simulation-based framework is developed to accurately model the delivery process. An enhanced Ant Colony Optimization (ACO) algorithm is proposed, incorporating a multi-objective formulation to improve route planning efficiency. Additionally, a scheduling algorithm is designed to synchronize the operations of multiple delivery bikes and drones, ensuring coordinated execution. The proposed integrated approach yields substantial improvements in both cost and service efficiency. Simulation results demonstrate a 16% reduction in vehicle operation costs and an 8% decrease in average customer waiting times relative to benchmark methods, indicating the practical applicability of the approach in urban logistics scenarios. Full article
Show Figures

Figure 1

25 pages, 3785 KiB  
Article
Evolutionary Algorithms for the Optimal Design of Robotic Cells: A Dual Approximation for Space and Time
by Raúl-Alberto Sánchez-Sosa and Ernesto Chavero-Navarrete
Appl. Sci. 2025, 15(15), 8455; https://doi.org/10.3390/app15158455 - 30 Jul 2025
Viewed by 13
Abstract
The optimization of robotic cells is a key challenge in the manufacturing industry due to the need to maximize efficiency in limited spaces and minimize operation times. Traditional cell design methods often face challenges due to the high complexity and dynamic nature of [...] Read more.
The optimization of robotic cells is a key challenge in the manufacturing industry due to the need to maximize efficiency in limited spaces and minimize operation times. Traditional cell design methods often face challenges due to the high complexity and dynamic nature of real-world applications. In response, this study presents a dual approach to optimize both spatial design and traversal time in robotic cells, using bioinspired evolutionary algorithms. Initially, a genetic algorithm is employed to optimize the layout of the cell elements, reducing space usage and avoiding interferences between workstations. Subsequently, an ant colony optimization algorithm is used to optimize the robots’ trajectories, minimizing cycle time. Through simulations and a digital model of the cell, key metrics such as total space reduction, operational time improvement, and productivity increase are evaluated. The results demonstrate that the combination of both approaches achieves significant improvements, enabling an average reduction of 21.19% in the occupied area and up to 20.15% in operational cycle time, consistently outperforming traditional methods. This approach has the potential to be applied in various industrial configurations, representing a relevant contribution in the integration of artificial intelligence techniques for the enhancement of robotic systems. Full article
Show Figures

Graphical abstract

18 pages, 3029 KiB  
Article
New Ant Colony Optimization Algorithms for Variants of Multidimensional Assignments in d-Partite Graphs
by Krzysztof Schiff
Appl. Sci. 2025, 15(15), 8251; https://doi.org/10.3390/app15158251 - 24 Jul 2025
Viewed by 203
Abstract
This article presents ant algorithms for single- and multi-criteria industrial optimization problems. A common factor in these algorithms is the determination of the set with the maximum number of cliques, which represent the solution to multidimensional assignment problems in d-partite graphs. In the [...] Read more.
This article presents ant algorithms for single- and multi-criteria industrial optimization problems. A common factor in these algorithms is the determination of the set with the maximum number of cliques, which represent the solution to multidimensional assignment problems in d-partite graphs. In the case of weighted incomplete graphs, the goal is to determine the set with the maximum number of cliques and the maximum sum of the weights of their edges. In the case of unweighted incomplete graphs, the goal is to determine the set with the maximum number of maximum cliques. In the case of complete weighted graphs, the goal is to determine all maximum cliques with the minimal sum of their edge weights. These optimization problems are solved using the various ant algorithms proposed in this paper. The proposed algorithms differ not only in terms of the objective function, but also in terms of desirability functions, as previously established, and they achieved a smaller sum of weights for cliques in the case of weighted complete graphs than previous ant algorithms presented in the literature. The same applies to unweighted incomplete graphs. The presented algorithms resulted in a greater number of maximal cliques than previous ant algorithms presented in the literature. This study is the first to propose the presented ant algorithms in the case of weighted incomplete graphs. Full article
(This article belongs to the Section Computing and Artificial Intelligence)
Show Figures

Figure 1

23 pages, 3689 KiB  
Article
An Innovative Medical Image Analyzer Incorporating Fuzzy Approaches to Support Medical Decision-Making
by Cristina Ticala, Camelia M. Pintea, Mihaela Chira and Oliviu Matei
Med. Sci. 2025, 13(3), 97; https://doi.org/10.3390/medsci13030097 - 24 Jul 2025
Viewed by 291
Abstract
Background/Objectives: This paper presents a medical image analysis application designed to facilitate advanced edge detection and fuzzy processing techniques within an intuitive, modular graphical user interface. Methods: Key functionalities include classical edge detection, Ant Colony Optimization (ACO)-based edge extraction, and fuzzy edge generation, [...] Read more.
Background/Objectives: This paper presents a medical image analysis application designed to facilitate advanced edge detection and fuzzy processing techniques within an intuitive, modular graphical user interface. Methods: Key functionalities include classical edge detection, Ant Colony Optimization (ACO)-based edge extraction, and fuzzy edge generation, which offer improved boundary representation in images where uncertainty and soft transitions are prevalent. Results: One of the main novelties in contrast to the initial innovative Medical Image Analyzer, iMIA, is the fact that the system includes fuzzy C-means clustering to support tissue classification and unsupervised segmentation based on pixel intensity distribution. The application also features an interactive zooming and panning module with the option to overlay edge detection results. As another novelty, fuzzy performance metrics were added, including fuzzy false negatives, fuzzy false positives, fuzzy true positives, and the fuzzy index, offering a more comprehensive and uncertainty-aware evaluation of edge detection accuracy. Conclusions: The application executable file is provided at no cost for the purposes of evaluation and testing. Full article
Show Figures

Figure 1

18 pages, 937 KiB  
Article
A Learning-Enhanced Metaheuristic Algorithm for Multi-Zone Orienteering Problem with Time Windows
by Hongwu Li, Yongqi Luo, Yanru Chen and Yangsheng Jiang
Mathematics 2025, 13(15), 2357; https://doi.org/10.3390/math13152357 - 23 Jul 2025
Viewed by 147
Abstract
Inspired by real-world logistics scenarios, in this paper, we introduce a new variant of the Orienteering Problem known as the Multi-zone Orienteering Problem with Time Windows (MzOPTW). In the MzOPTW, customers are situated in distinct zones, each with multiple entrances and exits. Each [...] Read more.
Inspired by real-world logistics scenarios, in this paper, we introduce a new variant of the Orienteering Problem known as the Multi-zone Orienteering Problem with Time Windows (MzOPTW). In the MzOPTW, customers are situated in distinct zones, each with multiple entrances and exits. Each customer has specific time window requirements; access to them will generate certain profits. This problem is to simultaneously determine which zones and customers to visit, select the zonal entrances and exits, and generate the routes for visiting each zone and its customers, all while maximizing total profits within a limited time frame. To tackle the MzOPTW, this paper develops an integer programming model. There are significant computational challenges in the strong interdependencies among zone selection, customer selection within zones, entrance and exit selection for each zone, the sequence of visits to zones and customers, and arrival and stay times. To address these challenges, this paper proposes a learning-enhanced metaheuristic algorithm called the Hybrid Ant Colony Optimization (HACO) algorithm, which incorporates Pointer Network learning. The HACO algorithm combines the global search capabilities of a population-based algorithm with the parallel decision-making abilities of the Pointer Network learning model. Additionally, a method to optimize zonal stay time limits is proposed to further enhance the solution. Experimental results demonstrate that the HACO algorithm outperforms comparative algorithms, achieving better solutions in 73% of the instances within the same time frame. Furthermore, the proposed optimization method for zonal stay time limits results in improvements in 78% of instances. Full article
(This article belongs to the Section E: Applied Mathematics)
Show Figures

Figure 1

30 pages, 2371 KiB  
Article
Optimization of Joint Distribution Routes for Automotive Parts Considering Multi-Manufacturer Collaboration
by Lingsan Dong, Jian Wang and Xiaowei Hu
Sustainability 2025, 17(14), 6615; https://doi.org/10.3390/su17146615 - 19 Jul 2025
Viewed by 426
Abstract
The swift expansion of China’s automotive manufacturing industry has spurred a constant rise in the demand for automotive parts production and distribution, making the optimization of distribution routes in complex environments a crucial research topic. Efficiently optimizing these routes not only boosts production [...] Read more.
The swift expansion of China’s automotive manufacturing industry has spurred a constant rise in the demand for automotive parts production and distribution, making the optimization of distribution routes in complex environments a crucial research topic. Efficiently optimizing these routes not only boosts production efficiency and cuts costs for automotive manufacturers but also enhances supply chain management and advances sustainable development. This study focuses on the optimization of automotive parts distribution routes under a multi-manufacturer collaboration framework. An optimization model is proposed to minimize the total operational costs within a joint distribution system, incorporating an improved Ant Colony Optimization (ACO) algorithm to formulate an effective solution approach. The model considers complex factors such as dynamic demand, time-window constraints, and periodic distribution. A PIVNS algorithm integrating a virtual distribution center with an enhanced variable neighborhood search is designed to efficiently address the problem. The efficacy of the proposed model and algorithm is substantiated through extensive experiments grounded in real-world case studies. The results confirm the high computational efficiency of the proposed approach in solving large-scale problems, which significantly reduces distribution costs while improving overall supply chain performance. Specifically, the PIVNS algorithm achieves an average travel distance of 2020.85 km, an average runtime of 112.25 s, a total transportation cost of CNY 12,497.99, and a loading rate of 86.775%. These findings collectively highlight the advantages of the proposed method in enhancing efficiency, reducing costs, and optimizing resource utilization. Overall, this study provides valuable insights for logistics optimization in automotive manufacturing and offers a significant reference for future research and practical applications in the field. Full article
Show Figures

Figure 1

26 pages, 8154 KiB  
Article
Investigation into the Efficient Cooperative Planning Approach for Dual-Arm Picking Sequences of Dwarf, High-Density Safflowers
by Zhenguo Zhang, Peng Xu, Binbin Xie, Yunze Wang, Ruimeng Shi, Junye Li, Wenjie Cao, Wenqiang Chu and Chao Zeng
Sensors 2025, 25(14), 4459; https://doi.org/10.3390/s25144459 - 17 Jul 2025
Viewed by 198
Abstract
Path planning for picking safflowers is a key component in ensuring the efficient operation of robotic safflower-picking systems. However, existing single-arm picking devices have become a bottleneck due to their limited operating range, and a breakthrough in multi-arm cooperative picking is urgently needed. [...] Read more.
Path planning for picking safflowers is a key component in ensuring the efficient operation of robotic safflower-picking systems. However, existing single-arm picking devices have become a bottleneck due to their limited operating range, and a breakthrough in multi-arm cooperative picking is urgently needed. To address the issue of inadequate adaptability in current path planning strategies for dual-arm systems, this paper proposes a novel path planning method for dual-arm picking (LTSACO). The technique centers on a dynamic-weight heuristic strategy and achieves optimization through the following steps: first, the K-means clustering algorithm divides the target area; second, the heuristic mechanism of the Ant Colony Optimization (ACO) algorithm is improved by dynamically adjusting the weight factor of the state transition probability, thereby enhancing the diversity of path selection; third, a 2-OPT local search strategy eliminates path crossings through neighborhood search; finally, a cubic Bézier curve heuristically smooths and optimizes the picking trajectory, ensuring the continuity of the trajectory’s curvature. Experimental results show that the length of the parallelogram trajectory, after smoothing with the Bézier curve, is reduced by 20.52% compared to the gantry trajectory. In terms of average picking time, the LTSACO algorithm reduces the time by 2.00%, 2.60%, and 5.60% compared to DCACO, IACO, and the traditional ACO algorithm, respectively. In conclusion, the LTSACO algorithm demonstrates high efficiency and strong robustness, providing an effective optimization solution for multi-arm cooperative picking and significantly contributing to the advancement of multi-arm robotic picking systems. Full article
Show Figures

Figure 1

39 pages, 4071 KiB  
Article
Research on Optimum Design of Waste Recycling Network for Agricultural Production
by Huabin Wu, Jing Zhang, Yanshu Ji, Yuelong Su and Shumiao Shu
Systems 2025, 13(7), 570; https://doi.org/10.3390/systems13070570 - 11 Jul 2025
Viewed by 247
Abstract
Agricultural production waste (APW) is characterized by pollution, increasing volume, spatial dispersion, and temporal and spatial variability in its generation. The improper handling of APW poses a growing risk to the environment and public health. This paper focuses on the planning of APW [...] Read more.
Agricultural production waste (APW) is characterized by pollution, increasing volume, spatial dispersion, and temporal and spatial variability in its generation. The improper handling of APW poses a growing risk to the environment and public health. This paper focuses on the planning of APW recycling networks, primarily analyzing the selection of temporary storage sites and treatment facilities, as well as vehicle scheduling and route optimization. First, to minimize the required number of temporary storage sites, a set coverage model was established, and an immune algorithm was used to derive preliminary site selection results. Subsequently, the analytic hierarchy process and fuzzy comprehensive evaluation method were employed to refine and determine the optimal site selection results for recycling treatment facilities. Second, based on the characteristics of APW, with the minimization of recycling transportation costs as the optimization objective, an ant colony algorithm was used to establish a corresponding vehicle scheduling route optimization model, yielding the optimal solution for recycling vehicle scheduling and transportation route optimization. This study not only improved the recycling efficiency of APW but also effectively reduced the recycling costs of APW. Full article
Show Figures

Figure 1

29 pages, 2500 KiB  
Article
PHEV Routing with Hybrid Energy and Partial Charging: Solved via Dantzig–Wolfe Decomposition
by Zhenhua Chen, Qiong Chen, Cheng Xue and Yiying Chao
Mathematics 2025, 13(14), 2239; https://doi.org/10.3390/math13142239 - 10 Jul 2025
Viewed by 258
Abstract
This study addresses the Plug-in Hybrid Electric Vehicle Routing Problem (PHEVRP), an extension of the classical VRP that incorporates energy mode switching and partial charging strategies. We propose a novel routing model that integrates three energy modes—fuel-only, electric-only, and hybrid—along with partial recharging [...] Read more.
This study addresses the Plug-in Hybrid Electric Vehicle Routing Problem (PHEVRP), an extension of the classical VRP that incorporates energy mode switching and partial charging strategies. We propose a novel routing model that integrates three energy modes—fuel-only, electric-only, and hybrid—along with partial recharging decisions to enhance energy flexibility and reduce operational costs. To overcome the computational challenges of large-scale instances, a Dantzig–Wolfe decomposition algorithm is designed to efficiently reduce the solution space via column generation. Experimental results demonstrate that the hybrid-mode with partial charging strategy consistently outperforms full-charging and single-mode approaches, especially in clustered customer scenarios. To further evaluate algorithmic performance, an Ant Colony Optimization (ACO) heuristic is introduced for comparison. While the full model fails to solve instances with more than 30 customers, the DW algorithm achieves high-quality solutions with optimality gaps typically below 3%. Compared to ACO, DW consistently provides better solution quality and is faster in most cases, though its computation time may vary due to pricing complexity. Full article
Show Figures

Figure 1

32 pages, 1107 KiB  
Review
Advanced Planning Systems in Production Planning Control: An Ethical and Sustainable Perspective in Fashion Sector
by Martina De Giovanni, Mariangela Lazoi, Romeo Bandinelli and Virginia Fani
Appl. Sci. 2025, 15(13), 7589; https://doi.org/10.3390/app15137589 - 7 Jul 2025
Viewed by 435
Abstract
In the shift toward sustainable and resource-efficient manufacturing, Artificial Intelligence (AI) is playing a transformative role in overcoming the limitations of traditional production scheduling methods. This study, based on a Systematic Literature Review (SLR), explores how AI techniques enhance Advanced Planning and Scheduling [...] Read more.
In the shift toward sustainable and resource-efficient manufacturing, Artificial Intelligence (AI) is playing a transformative role in overcoming the limitations of traditional production scheduling methods. This study, based on a Systematic Literature Review (SLR), explores how AI techniques enhance Advanced Planning and Scheduling (APS) systems, particularly under finite-capacity constraints. Traditional scheduling models often overlook real-time resource limitations, leading to inefficiencies in complex and dynamic production environments. AI, with its capabilities in data fusion, pattern recognition, and adaptive learning, enables the development of intelligent, flexible scheduling solutions. The integration of metaheuristic algorithms—especially Ant Colony Optimization (ACO) and hybrid models like GA-ACO—further improves optimization performance by offering high-quality, near-optimal solutions without requiring extensive structural modeling. These AI-powered APS systems enhance scheduling accuracy, reduce lead times, improve resource utilization, and enable the proactive identification of production bottlenecks. Especially relevant in high-variability sectors like fashion, these approaches support Industry 5.0 goals by enabling agile, sustainable, and human-centered manufacturing systems. The findings have been highlighted in a structured framework for AI-based APS systems supported by metaheuristics that compares the Industry 4.0 and Industry 5.0 perspectives. The study offers valuable implications for both academia and industry: academics can gain a synthesized understanding of emerging trends, while practitioners are provided with actionable insights for deploying intelligent planning systems that align with sustainability goals and operational efficiency in modern supply chains. Full article
Show Figures

Figure 1

31 pages, 17361 KiB  
Article
Path Planning Design and Experiment for a Recirculating Aquaculture AGV Based on Hybrid NRBO-ACO with Dueling DQN
by Zhengjiang Guo, Yingkai Xia, Jiajun Liu, Jian Gao, Peng Wan and Kan Xu
Drones 2025, 9(7), 476; https://doi.org/10.3390/drones9070476 - 5 Jul 2025
Viewed by 247
Abstract
This study introduces an advanced automated guided vehicle (AGV) specifically designed for application in recirculating aquaculture systems (RASs). The proposed AGV seamlessly integrates automated feeding, real-time monitoring, and an intelligent path-planning system to enhance operational efficiency. To achieve optimal and adaptive navigation, a [...] Read more.
This study introduces an advanced automated guided vehicle (AGV) specifically designed for application in recirculating aquaculture systems (RASs). The proposed AGV seamlessly integrates automated feeding, real-time monitoring, and an intelligent path-planning system to enhance operational efficiency. To achieve optimal and adaptive navigation, a hybrid algorithm is developed, incorporating Newton–Raphson-based optimisation (NRBO) alongside ant colony optimisation (ACO). Additionally, dueling deep Q-networks (dueling DQNs) dynamically optimise critical parameters, thereby improving the algorithm’s adaptability to the complexities of RAS environments. Both simulation-based and real-world experiments substantiate the system’s effectiveness, demonstrating superior convergence speed, path quality, and overall operational efficiency compared to traditional methods. The findings of this study highlight the potential of AGV to enhance precision and sustainability in recirculating aquaculture management. Full article
Show Figures

Figure 1

20 pages, 2980 KiB  
Article
Application of the Ant Colony Optimization Metaheuristic in Transport Engineering: A Case Study on Vehicle Routing and Highway Service Stations
by Luiz Vicente Figueira de Mello Filho, Felipe Pastori Lopes de Sousa, Gustavo de Godoi, William Machado Emiliano, Felippe Benavente Canteras, Vitor Eduardo Molina Júnior, João Roberto Bertini Junior and Yuri Alexandre Meyer
Modelling 2025, 6(3), 62; https://doi.org/10.3390/modelling6030062 - 3 Jul 2025
Viewed by 336
Abstract
Efficient logistics and transport infrastructure are critical in contemporary urban and interurban scenarios due to their impact on economic development, environmental sustainability, and quality of life. This study explores the use of the Ant Colony Optimization (ACO) metaheuristic applied to the Vehicle Routing [...] Read more.
Efficient logistics and transport infrastructure are critical in contemporary urban and interurban scenarios due to their impact on economic development, environmental sustainability, and quality of life. This study explores the use of the Ant Colony Optimization (ACO) metaheuristic applied to the Vehicle Routing Problem (VRP) and the strategic positioning of service stations along major highways. Through a systematic mapping of the literature and practical application to a real-world scenario—specifically, a case study on the Bandeirantes Highway (SP348), connecting Limeira to São Paulo, Brazil—the effectiveness of ACO is demonstrated in addressing complex logistical challenges, including capacity constraints, route optimization, and resource allocation. The proposed method integrates graph theory principles, entropy concepts from information theory, and economic analyses into a unified computational model implemented using Python (version 3.12), showcasing its accessibility for educational and practical business contexts. The results highlight significant improvements in operational efficiency, cost reductions, and optimized service station placement, emphasizing the algorithm’s robustness and versatility. Ultimately, this research provides valuable insights for policymakers, engineers, and logistics managers seeking sustainable and cost-effective solutions in transport infrastructure planning and management. Full article
Show Figures

Figure 1

17 pages, 765 KiB  
Article
Route Optimization for Active Sonar in Underwater Surveillance
by Mehmet Gokhan Metin, Mumtaz Karatas and Serol Bulkan
Sensors 2025, 25(13), 4139; https://doi.org/10.3390/s25134139 - 2 Jul 2025
Viewed by 348
Abstract
Multistatic sonar networks (MSNs) have emerged as a powerful approach for enhancing underwater surveillance capabilities. Different from monostatic sonar systems which use collocated sources and receivers, MSNs consist of spatially distributed and independent sources and receivers. In this work, we address the problem [...] Read more.
Multistatic sonar networks (MSNs) have emerged as a powerful approach for enhancing underwater surveillance capabilities. Different from monostatic sonar systems which use collocated sources and receivers, MSNs consist of spatially distributed and independent sources and receivers. In this work, we address the problem of determining the optimal route for a mobile multistatic active sonar source to maximize area coverage, assuming all receiver locations are known in advance. For this purpose, we first develop a Mixed Integer Linear Program (MILP) formulation that determines the route for a single source within a field discretized using a hexagonal grid structure. Next, we propose an Ant Colony Optimization (ACO) heuristic to efficiently solve large problem instances. We perform a series of numerical experiments and compare the performance of the exact MILP solution with that of the proposed ACO heuristic. Full article
(This article belongs to the Section Physical Sensors)
Show Figures

Figure 1

23 pages, 1781 KiB  
Article
The Sustainable Allocation of Earth-Rock via Division and Cooperation Ant Colony Optimization Combined with the Firefly Algorithm
by Linna Li, Junyi Lu, Han Gao and Dan Li
Symmetry 2025, 17(7), 1029; https://doi.org/10.3390/sym17071029 - 30 Jun 2025
Viewed by 236
Abstract
Optimized earth-rock allocation is key in the construction of large-scale navigation channel projects. This paper analyzes the characteristics of a large-scale navigation channel project and establishes an earth-rock allocation system in phases and categories without a transit field. Based on the physical characteristics [...] Read more.
Optimized earth-rock allocation is key in the construction of large-scale navigation channel projects. This paper analyzes the characteristics of a large-scale navigation channel project and establishes an earth-rock allocation system in phases and categories without a transit field. Based on the physical characteristics of the earthwork and stonework used to design a differentiated transport strategy, a synergistic optimization model is built with economic and ecological benefits. As a solution, this paper proposes a sustainable earth-rock allocation optimization method that integrates the improved ant colony algorithm and firefly algorithm, and establishes a two-stage hybrid optimization framework. The application of the Pinglu Canal Project shows that ant colony optimization via division and cooperation combined with the firefly algorithm reduces the transportation cost by 0.128% compared with traditional ant colony optimization; improves the stability by 57.46% (standard deviation) and 59.09% (coefficient of variation) compared with ant colony optimization through division and cooperation; and effectively solves the problems of precocious convergence and local optimization of large-scale earth-rock allocation. It is used to successfully construct an earth-rock allocation model that takes into account the efficiency of the project and the protection of the ecological system in a dynamic environment. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

Back to TopTop