Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (147)

Search Parameters:
Keywords = anodic aluminum oxide surfaces

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 1647 KiB  
Article
Application of Iron Oxides in the Photocatalytic Degradation of Real Effluent from Aluminum Anodizing Industries
by Lara K. Ribeiro, Matheus G. Guardiano, Lucia H. Mascaro, Monica Calatayud and Amanda F. Gouveia
Appl. Sci. 2025, 15(15), 8594; https://doi.org/10.3390/app15158594 - 2 Aug 2025
Viewed by 178
Abstract
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides [...] Read more.
This study reports the synthesis and evaluation of iron molybdate (Fe2(MoO4)3) and iron tungstate (FeWO4) as photocatalysts for the degradation of a real industrial effluent from aluminum anodizing processes under visible light irradiation. The oxides were synthesized via a co-precipitation method in an aqueous medium, followed by microwave-assisted hydrothermal treatment. Structural and morphological characterizations were performed using X-ray diffraction, field-emission scanning electron microscopy, Raman spectroscopy, ultraviolet–visible (UV–vis), and photoluminescence (PL) spectroscopies. The effluent was characterized by means of ionic chromatography, total organic carbon (TOC) analysis, physicochemical parameters (pH and conductivity), and UV–vis spectroscopy. Both materials exhibited well-crystallized structures with distinct morphologies: Fe2(MoO4)3 presented well-defined exposed (001) and (110) surfaces, while FeWO4 showed a highly porous, fluffy texture with irregularly shaped particles. In addition to morphology, both materials exhibited narrow bandgaps—2.11 eV for Fe2(MoO4)3 and 2.03 eV for FeWO4. PL analysis revealed deep defects in Fe2(MoO4)3 and shallow defects in FeWO4, which can influence the generation and lifetime of reactive oxygen species. These combined structural, electronic, and morphological features significantly affected their photocatalytic performance. TOC measurements revealed degradation efficiencies of 32.2% for Fe2(MoO4)3 and 45.3% for FeWO4 after 120 min of irradiation. The results highlight the critical role of morphology, optical properties, and defect structures in governing photocatalytic activity and reinforce the potential of these simple iron-based oxides for real wastewater treatment applications. Full article
(This article belongs to the Special Issue Application of Nanomaterials in the Field of Photocatalysis)
Show Figures

Figure 1

14 pages, 5535 KiB  
Article
Studies on the Coating Formation and Structure Property for Plasma Electrolytic Oxidation of AZ31 Magnesium Alloy
by Yingting Ye, Lishi Wang, Xinbin Hu and Zhixiang Bu
Coatings 2025, 15(7), 846; https://doi.org/10.3390/coatings15070846 - 19 Jul 2025
Viewed by 332
Abstract
Plasma electrolytic oxidation (PEO) is an advanced electrochemical surface treatment technology. It can effectively improve the corrosion resistance of magnesium and its alloys. This paper aims to form protective PEO coatings on an AZ31 substrate with different electrolytes, while monitoring the micro-discharge evolution [...] Read more.
Plasma electrolytic oxidation (PEO) is an advanced electrochemical surface treatment technology. It can effectively improve the corrosion resistance of magnesium and its alloys. This paper aims to form protective PEO coatings on an AZ31 substrate with different electrolytes, while monitoring the micro-discharge evolution by noise intensity and morphology analysis. By setting the PEO parameters and monitoring process characteristics, such as current density, spark appearance, and noise intensity, it was deduced that the PEO process consists of the following three stages: anodic oxidation, spark discharge, and micro-arc discharge. The PEO oxide coating formed on the AZ31 alloy exhibits various irregular volcano-like structures. Oxygen species are uniformly distributed along the coating cross-section. Phosphorus species tend to be enriched inwards to the coating/magnesium substrate interface, while aluminum piles up towards the surface region. Surface roughness of the PEO coating formed in the silicate-based electrolyte was the lowest in an arithmetic average height (Sa) of 0.76 μm. Electrochemical analysis indicated that the corrosion current density of the PEO coating decreased by about two orders of magnitude compared to that of untreated blank AZ31 substrate, while, at the same time, the open-circuit potential shifted significantly to the positive direction. The corrosion current density of the 10 min/400 V coating was 1.415 × 10−6 A/cm2, approximately 17% lower than that of the 2 min/400 V coating (1.738 × 10−6 A/cm2). For a fixed 10 min treatment, the longer the PEO duration time, the lower the corrosion current density. Finally, the tested potentiodynamic polarization curve reveals the impact of different types of PEO electrolytes and different durations of PEO treatment on the corrosion resistance of the oxide coating surface. Full article
(This article belongs to the Section Plasma Coatings, Surfaces & Interfaces)
Show Figures

Figure 1

14 pages, 3449 KiB  
Article
Superhydrophobic Coating on 6061 Aluminum Alloy Fabricated by Femtosecond Laser Etching and Anodic Oxidation
by Quanlv Liu and Yuxin Wang
Coatings 2025, 15(7), 816; https://doi.org/10.3390/coatings15070816 - 11 Jul 2025
Viewed by 464
Abstract
A superhydrophobic surface with hierarchical micro/nano-array structures was successfully fabricated on 6061 aluminum alloy through a combination of femtosecond laser etching and anodic oxidation. Femtosecond laser etching formed a regularly arranged microscale “pit-protrusion” array on the aluminum alloy surface. After modification with a [...] Read more.
A superhydrophobic surface with hierarchical micro/nano-array structures was successfully fabricated on 6061 aluminum alloy through a combination of femtosecond laser etching and anodic oxidation. Femtosecond laser etching formed a regularly arranged microscale “pit-protrusion” array on the aluminum alloy surface. After modification with a fluorosilane ethanol solution, the surface exhibited superhydrophobicity with a contact angle of 154°. Subsequently, the anodic oxidation process formed an anodic oxide film dominated by an array of aluminum oxide (Al2O3) nanopores at the submicron scale. Scanning electron microscopy (SEM) and X-ray diffraction (XRD) analyses revealed that the nanopore structures uniformly and continuously covered the laser-ablated layer. This hierarchical structure significantly increased the surface water contact angle to 162°. Wettability analysis showed that the prepared composite coating formed an air layer accounting for 91% of the surface area. Compared with the sample only treated by femtosecond laser etching, the presence of the Al2O3 nanopore structure significantly enhanced the mechanical durability, superhydrophobic durability, and corrosion resistance of the superhydrophobic surface. The proposed multi-step fabrication strategy offers an innovative method for creating multifunctional, durable superhydrophobic coatings and has important implications for their large-scale industrial use. Full article
(This article belongs to the Special Issue Superhydrophobic Coatings, 2nd Edition)
Show Figures

Figure 1

50 pages, 22023 KiB  
Review
Research Advancements of Wear-Resistant Coatings Fabricated on Aluminum and Its Alloys
by Bohao Jia, Ruoqi Ren, Hongliang Zhang, Tiannan Man, Xue Cui, Teng Liu, Tianzhang Zhao, Yurii Luhovskyi and Zhisheng Nong
Coatings 2025, 15(7), 750; https://doi.org/10.3390/coatings15070750 - 25 Jun 2025
Viewed by 568
Abstract
The low hardness and insufficient wear resistance of aluminum and its alloys restrict their broader application in various fields. The application of surface protective coatings can effectively enhance the hardness and wear resistance of aluminum and its alloys. This article provides a comprehensive [...] Read more.
The low hardness and insufficient wear resistance of aluminum and its alloys restrict their broader application in various fields. The application of surface protective coatings can effectively enhance the hardness and wear resistance of aluminum and its alloys. This article provides a comprehensive review of the recent research progress of wear-resistant coatings fabricated on aluminum and its alloys. The relevant achievements in the recent research works of preparing wear-resistant coatings by one-step methods (such as anodic oxidation, micro-arc oxidation, cold spraying, plasma spraying, and electrodeposition) and two-step methods (anodic oxidation and physical vapor deposition, micro-arc oxidation and sealing, magnetron sputtering, and plasma nitriding) are mainly introduced. The working principles of each coating preparation method, along with their impacts on the microstructure and tribological performance of the coatings, were systematically examined. Additionally, a comparative analysis was conducted to evaluate the advantages and disadvantages of each coating preparation method. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

21 pages, 4658 KiB  
Article
Potentiostatic Plasma Electrolytic Oxidation (PEO) of Aluminum Alloy AA6082: Effect of Electrical Input on Coating Microstructure and Corrosion Resistance
by Alberto Berardi, Matteo Gamba, Luca Paterlini, Federica Ceriani and Marco Ormellese
Coatings 2025, 15(6), 653; https://doi.org/10.3390/coatings15060653 - 29 May 2025
Viewed by 541
Abstract
Aluminum alloy AA6082 (Al-Si-Mg) is a lightweight alloy that requires thick barrier coatings to be protected from localized corrosion. Plasma Electrolytic Oxidation (PEO) coating is a common anodic surface treatment used for growing protective oxides; the main process variables of PEO are the [...] Read more.
Aluminum alloy AA6082 (Al-Si-Mg) is a lightweight alloy that requires thick barrier coatings to be protected from localized corrosion. Plasma Electrolytic Oxidation (PEO) coating is a common anodic surface treatment used for growing protective oxides; the main process variables of PEO are the composition of the electrolytic solution and the electrical input. This work focuses on the optimization of the electrical input by comparing different coatings produced by potentiostatic PEO at the effective potential of 350 V, applied by different combinations of voltage ramps with various slopes and maintenance times at the fixed potential. All processes lasted five minutes. The innovative character of this research work is the evaluation of the combined effect of the anodizing voltage and its different trends with time on the coating structure and morphology. The corrosion resistance of coated AA6082 is assessed in contact with chlorides, reproducing seawater. The resulting anodic coatings were compared in terms of structure, composition (thickness, XRD, SEM-EDS) and corrosion resistance (potentiodynamic polarization and electrochemical impedance spectroscopy), finding that longer maintenance at high anodizing potentials promotes localized high-energy plasma discharges, producing larger pores and thicker, but less protective coatings. Results show that the coating thickness increases with the maintenance time (maximum thickness value~17.6 μm). Shorter maintenance periods and longer voltage ramps lead to a lower surface porosity and enhanced corrosion performances of the oxide. The thinnest and least porous coating exhibits the best corrosion behavior (CR~1.1 μm/year). Full article
Show Figures

Figure 1

20 pages, 6287 KiB  
Article
Analysis of the Wear and Corrosion Resistance on Cu-Ni-Al Composites Reinforced with CeO2 Nanoparticles
by Carola Martínez, Bárbara Valverde, Aurora Del Valle-Rodríguez, Brennie Bustos-De La Fuente, Izabel Fernanda Machado and Francisco Briones
Materials 2025, 18(11), 2438; https://doi.org/10.3390/ma18112438 - 23 May 2025
Cited by 1 | Viewed by 487
Abstract
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by [...] Read more.
This study evaluates the wear and corrosion resistance of the Cu-50Ni-5Al alloy reinforced with CeO2 nanoparticles for potential use as anodes in molten carbonate fuel cells (MCFCs). Cu–50Ni–5Al alloys were synthesized, with and without the incorporation of 1% CeO2 nanoparticles, by the mechanical alloying method and spark plasma sintering (SPS). The samples were evaluated using a single scratch test with a cone-spherical diamond indenter under progressive normal loading conditions. A non-contact 3D surface profiler characterized the scratched surfaces to support the analysis. Progressive loading tests indicated a reduction of up to 50% in COF with 1% NPs, with specific values drop-ping from 0.48 in the unreinforced alloy to 0.25 in the CeO2-doped composite at 15 N of applied load. Furthermore, the introduction of CeO2 decreased scratch depths by 25%, indicating enhanced wear resistance. The electrochemical behavior of the samples was evaluated by electrochemical impedance spectroscopy (EIS) in a molten carbonate medium under a H2/N2 atmosphere at 550 °C for 120 h. Subsequently, the corrosion products were characterized using X-ray diffraction (XRD), scanning electron microscopy coupled with energy dispersive spectroscopy (SEM-EDS), and X-ray photoelectron spectroscopy (XPS). The results demonstrated that the CeO2-reinforced alloy exhibits superior electro-chemical stability in molten carbonate environments (Li2CO3-K2CO3) under an H2/N2 atmosphere at 550 °C for 120 h. A marked reduction in polarization resistance and a pronounced re-passivation effect were observed, suggesting enhanced anodic protection. This effect is attributed to the formation of aluminum and copper oxides in both compositions, together with the appearance of NiO as the predominant phase in the materials reinforced with nanoparticles in a hydrogen-reducing atmosphere. The addition of CeO2 nanoparticles significantly improves wear resistance and corrosion performance. Recognizing this effect is vital for creating strategies to enhance the material’s durability in challenging environments like MCFC. Full article
Show Figures

Figure 1

12 pages, 2085 KiB  
Article
Investigation of Dielectric and Sensing Behavior of Anodic Aluminum Oxide Filled by Carbyne-Enriched Nanomaterial
by Mariya Aleksandrova, Tsvetozar Tsanev and Dilyana N. Gospodinova
Crystals 2025, 15(4), 314; https://doi.org/10.3390/cryst15040314 - 27 Mar 2025
Viewed by 392
Abstract
Anodic aluminum oxide (AAO) is a promising material for sensor applications due to its unique nanoporous structure and high surface area. This study investigates enhancing AAO’s sensing capabilities by incorporating carbyne-enriched nanomaterials. This research aimed to create a novel surface acoustic wave (SAW) [...] Read more.
Anodic aluminum oxide (AAO) is a promising material for sensor applications due to its unique nanoporous structure and high surface area. This study investigates enhancing AAO’s sensing capabilities by incorporating carbyne-enriched nanomaterials. This research aimed to create a novel surface acoustic wave (SAW) sensor with improved performance characteristics. AAO films were fabricated using a two-step anodization process, followed by carbyne-enriched coating deposition via ion-assisted pulse-plasma deposition. The dielectric properties of the resulting composite material were characterized using impedance spectroscopy, while the sensing performance was evaluated by exposing the sensor to various ethanol concentrations. The results showed a significant increase in capacitance and dielectric permittivity for the carbyne-filled AAO compared to pristine AAO, along with a 5-fold improvement in sensitivity to ethanol vapor. The increased sensitivity is attributed to the synergistic combination of the AAO’s high surface area and the carbyne’s unique electrical properties. This work demonstrates the successful fabrication and characterization of a novel high-sensitivity gas sensor, highlighting the potential of carbyne-enriched AAO for advanced sensor applications. Full article
(This article belongs to the Special Issue Optical and Electrical Properties of Nano- and Microcrystals)
Show Figures

Figure 1

12 pages, 2794 KiB  
Article
Electrochemical Characterization of Aluminum Alloy AlSi10Mg(Fe) for Its Potential Application as End Plate Material in Fuel Cells
by Darshita Pranlal Chhaniyara, Marcel Mandel and Lutz Krüger
Metals 2025, 15(3), 332; https://doi.org/10.3390/met15030332 - 19 Mar 2025
Viewed by 585
Abstract
End plates are important multi-functional components of the fuel cells. They provide structural support and are responsible for channeling the reactant gases, by-product water, and fuel cell coolant in and out of the fuel cell stack. Among various materials used for end plates, [...] Read more.
End plates are important multi-functional components of the fuel cells. They provide structural support and are responsible for channeling the reactant gases, by-product water, and fuel cell coolant in and out of the fuel cell stack. Among various materials used for end plates, aluminum alloy is used due to its high strength and low density. But its corrosion resistance depends on the environment. The operating fuel cell conditions may cause the fuel cell coolant to become more acidic or basic in nature and thus can lead to corrosion of end plates. In this work, a common die-cast aluminum alloy, AlSi10Mg(Fe), is used for end plates, and its corrosion behavior in direct contact with the fuel cell coolant is analyzed. The electrochemical characterization of uncoated and anodized aluminum alloy was achieved using electrochemical impedance spectroscopy, potentiodynamic and potentiostatic polarization tests at room temperature and at the operating temperature of the fuel cell at 80 °C. It was found that for the uncoated aluminum alloy, the corrosion sensitivity is slightly increased when the temperature increases. In comparison, the anodized aluminum alloy reveals a decrease in corrosion sensitivity after 100 h of potentiostatic control, indicating an ongoing passivation of the surface due to the formation of aluminum oxides/hydroxides and aluminum alcohol corrosion products. Full article
(This article belongs to the Special Issue Manufacture, Properties and Applications of Light Alloys)
Show Figures

Graphical abstract

25 pages, 12162 KiB  
Review
Role of Passivation and Facet Dissolution on Pit Initiation and Growth During Electrochemical Etching in High-Purity Aluminum Foils with Trace Elements: A Review
by Nobuo Osawa
Corros. Mater. Degrad. 2025, 6(1), 10; https://doi.org/10.3390/cmd6010010 - 21 Feb 2025
Viewed by 1483
Abstract
Etching methods of aluminum foils used in electrolytic capacitors are selected based on the operating voltages, with DC and AC etching typically used for the anode foils of high- and low-voltage capacitors, respectively. The initial pits continue to grow and eventually form tunnels [...] Read more.
Etching methods of aluminum foils used in electrolytic capacitors are selected based on the operating voltages, with DC and AC etching typically used for the anode foils of high- and low-voltage capacitors, respectively. The initial pits continue to grow and eventually form tunnels or cubic pits by DC or AC etching, respectively. This paper describes the pit formation and growth process, focusing on the involvement of passive film inside the pit and facet dissolution. In particular, it is found that high-purity aluminum foil containing Ti promotes the formation of passive film (etch film) inside pits during the cathodic half cycle of AC etching, and Cu promotes facet dissolution. These behaviors significantly affect the surface area expansion by electrolytic etching. In addition, the effects of crystal orientation, surface defects associated with oxide film crystallization, and a trace element, Pb, as factors affecting the pit initiation sites will be discussed. Full article
Show Figures

Figure 1

18 pages, 6925 KiB  
Article
Improvement of Polymer/Metal Adhesion Using Anodizing Treatment and 3D Printing Process
by Seung Wan Ryu, Dong Hyun Kim, Wonhwa Lee, Jin-Yong Hong, Young-Pyo Jeon and Jea Uk Lee
Polymers 2025, 17(3), 299; https://doi.org/10.3390/polym17030299 - 23 Jan 2025
Cited by 1 | Viewed by 1414
Abstract
Joining materials with different physicochemical properties presents significant challenges. This study investigates the one-step anodization of aluminum in a mixed phosphoric acid and hydrogen peroxide solution, followed by the direct injection molding of polymer resin to enhance joint properties. The anodizing treatment is [...] Read more.
Joining materials with different physicochemical properties presents significant challenges. This study investigates the one-step anodization of aluminum in a mixed phosphoric acid and hydrogen peroxide solution, followed by the direct injection molding of polymer resin to enhance joint properties. The anodizing treatment is performed at constant electrical current with phosphoric acid solutions of various concentrations. Phosphoric acid anodizing enables the formation of 3D channeling pore structure with micropits and uniform nanopores on the aluminum surface. Hydrogen peroxide acts as an oxidizing agent and promotes the dissolution reaction, thereby increasing the size of the nanopores. Larger pores facilitated the penetration of polymer resin into the aluminum oxide layer during injection molding, resulting in bonding strengths up to 40.34 MPa. This improvement is substantial when compared to the bonding strengths achieved through conventional injection molding processes. These results highlight that the increase in nanopore size due to hydrogen peroxide addition played a critical role in enhancing the bonding strength, as it facilitated better penetration and interlocking of the polymer resin within the anodized aluminum layer. Furthermore, a three-dimensional (3D) printing process was able to join polymer resins to the anodized aluminum surface, where the larger nanopores with the addition of the hydrogen peroxide is more beneficial to the bonding strengths than the direct injection molding is. This alternative approach addresses the environmental issues associated with the use of Cr(VI)-based anodizing solutions and the lightweight composites with applicability to various industries that could be produced using this method. Full article
(This article belongs to the Special Issue 3D Printing of Polymer Composites, 2nd Edition)
Show Figures

Graphical abstract

17 pages, 6986 KiB  
Article
Plasma Treatment of Metal Surfaces for Enhanced Bonding Strength of Metal–Polymer Hybrid Structures
by Dong Hyun Kim, Han Su Kim, Yunki Jung, Jin-Yong Hong, Young-Pyo Jeon and Jea Uk Lee
Polymers 2025, 17(2), 165; https://doi.org/10.3390/polym17020165 - 10 Jan 2025
Cited by 3 | Viewed by 1808
Abstract
The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve [...] Read more.
The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding. Plasma treatment further augments the surface properties by increasing the concentration of functional groups, thus allowing better polymer infiltration during the 3D printing process. Comprehensive analyses, including X-ray photoelectron spectroscopy, energy dispersive X-ray spectroscopy, and contact angle measurements confirm the substantial enhancement in the bonding strength achieved through this method. Additionally, cross-sectional analysis via focused ion-beam etching provides a detailed view of polymer integration into the treated layers. The findings suggest significant potential for these surface modification strategies to advance the development of lightweight, robust composites suitable for use in sectors such as automotive, aerospace, and consumer electronics. Full article
Show Figures

Figure 1

17 pages, 10275 KiB  
Article
Tribological Properties of 7A04 Aluminum Alloy Enhanced by Ceramic Coating
by Xiaobo Meng, Wei Zhang, Shizhong Wei, Kunming Pan, Xiaodong Wang, Tao Jiang, Xiran Wang, Changji Wang, Chong Chen, Feng Mao, Ziping Qiao, Jun Xue and Cheng Zhang
Lubricants 2024, 12(11), 384; https://doi.org/10.3390/lubricants12110384 - 7 Nov 2024
Cited by 1 | Viewed by 1237
Abstract
The 7A04 Al alloy is a commonly used lightweight metal material; however, its low wear resistance limits its application. In this study, the wear resistance of this alloy was improved by preparing micro-arc oxidation (MAO) coatings, MAO/MoS2 composite coatings, and hard-anodized (HA) [...] Read more.
The 7A04 Al alloy is a commonly used lightweight metal material; however, its low wear resistance limits its application. In this study, the wear resistance of this alloy was improved by preparing micro-arc oxidation (MAO) coatings, MAO/MoS2 composite coatings, and hard-anodized (HA) coatings on its surface. The friction and wear behaviors of these three coatings with diamond-like coated (DLC) rings under oil lubrication conditions were investigated using a ring–block friction tester. The wear rates of the coatings on the block surfaces were determined using laser confocal microscopy, and the wear trajectories of the coatings were examined using scanning electron microscopy. The results indicated that, among the three coatings, the MAO/MoS2 coating had the lowest coefficient of friction of 0.059, whereas the HA coating had the lowest wear rate of 1.47 × 10−6 mm/Nm. The MAO/MoS2 coatings exhibited excellent antifriction properties compared to the other coatings, whereas the HA coatings exhibited excellent anti-wear properties. The porous structure of the MAO coatings stored lubricant and replenished the lubrication film under oil lubrication. Meanwhile, the introduced MoS2 enhanced the densification of the coating and functioned as a solid lubricant. The HA coating exhibited good wear resistance owing to the dense structure of the amorphous-phase aluminum oxide. The mechanisms of abrasive and adhesive wear of the coatings under oil lubrication conditions and the optimization of the tribological properties by the solid–liquid synergistic lubrication effect were investigated. This study provides an effective method for the surface modification of Al alloys with potential applications in the aerospace and automotive industries. Full article
(This article belongs to the Special Issue Wear-Resistant Coatings and Film Materials)
Show Figures

Figure 1

12 pages, 4178 KiB  
Article
Fabrication of Three-Dimensional Dendritic Ag Nanostructures: A SERS Substrate for Non-Invasive Detection
by Chia-Ling Sung, Tzung-Ta Kao and Yu-Cheng Lin
Nanomaterials 2024, 14(19), 1562; https://doi.org/10.3390/nano14191562 - 27 Sep 2024
Viewed by 1351
Abstract
This paper discusses the fabrication of three-dimensional dendritic Ag nanostructures, showcasing pronounced Localized Surface Plasmon Resonance (LSPR) effects. These nanostructures, employed in surface-enhanced Raman scattering (SERS), function as sensors for lactic acid in artificial sweat. The dendritic structures of the silver nanoparticles (AgNPs) [...] Read more.
This paper discusses the fabrication of three-dimensional dendritic Ag nanostructures, showcasing pronounced Localized Surface Plasmon Resonance (LSPR) effects. These nanostructures, employed in surface-enhanced Raman scattering (SERS), function as sensors for lactic acid in artificial sweat. The dendritic structures of the silver nanoparticles (AgNPs) create an effective SERS substrate, with additional hotspots at branch junctures enhancing LSPR. We achieve differential LSPR effects by varying the distribution and spacing of branches and the overall morphology. Adjustments to electrodeposition parameters, such as current and plating solution protective agents on an anodized aluminum oxide (AAO) base, allow for precise control over LSPR intensities. By pre-depositing AgNPs, the electron transmission paths during electrodeposition are modified, which leads to optimized dendritic morphology and enhanced LSPR effects. Parameter optimization produces elongated rods with main and secondary branches, covered with uniformly sized, densely packed, non-overlapping spherical AgNPs. This configuration enhances the LSPR effect by generating additional hotspots beyond the branch tips. Fine-tuning the electrodeposition parameters improved the AgNPs’ morphology, achieving uniform particle distribution and optimal spacing. Compared to non-SERS substrates, our structure amplified the Raman signal for lactic acid detection by five orders of magnitude. This method can effectively tailor SERS substrates for specific analytes and laser-based detection. Full article
(This article belongs to the Special Issue Nanomaterial-Based SERS Sensing and Detection Technology)
Show Figures

Figure 1

18 pages, 12467 KiB  
Article
Aluminum Foil Surface Etching and Anodization Processes for Polymer 3D-Printing Applications
by Yunki Jung, Han Su Kim, Young-Pyo Jeon, Jin-Yong Hong and Jea Uk Lee
Coatings 2024, 14(9), 1205; https://doi.org/10.3390/coatings14091205 - 19 Sep 2024
Viewed by 2826
Abstract
Extrusion-based polymer three-dimensional (3D) printing, specifically fused deposition modeling (FDM), has been garnering increasing interest from industry, as well as from the research and academic communities, due to its low cost, high speed, and process simplicity. However, bed adhesion failure remains an obstacle [...] Read more.
Extrusion-based polymer three-dimensional (3D) printing, specifically fused deposition modeling (FDM), has been garnering increasing interest from industry, as well as from the research and academic communities, due to its low cost, high speed, and process simplicity. However, bed adhesion failure remains an obstacle to diversifying the materials and expanding the industrial applications of the FDM 3D-printing process. Therefore, this study focused on an investigation of the surface treatment methods for aluminum (Al) foil and their applications to 3D printer beds to enhance the bed adhesion of a 3D-printed polymer filament. Two methods of etching with sodium hydroxide and anodization with phosphoric acid were individually used for the surface treatment of the Al foil beds and then compared with an untreated foil. The etching process removed the oxide layer from the Al foil and increased its surface roughness, while the anodizing process enhanced the amount of hydroxide functional groups and contributed to the formation of nano-holes. As a result, the surface-anodized aluminum foil exhibited a higher affinity and bonding strength with the 3D-printed polymers compared with the etched and pristine foils. Through the increase in the success rate in 3D printing with various polymers, it became evident that utilizing surface-treated Al foil as a 3D printer bed presents an economical solution to addressing bed adhesion failure. Full article
(This article belongs to the Special Issue Corrosion/Wear Mechanisms and Protective Methods)
Show Figures

Figure 1

15 pages, 5343 KiB  
Article
Effect of the Atmosphere on the Properties of Aluminum Anodizing
by Gabriela Baltierra-Costeira, Jesús Emilio Camporredondo-Saucedo, Marco Arturo García-Rentería, Lázaro Abdiel Falcón-Franco, Laura Guadalupe Castruita-Ávila and Adrián Moisés García-Lara
Coatings 2024, 14(9), 1166; https://doi.org/10.3390/coatings14091166 - 10 Sep 2024
Viewed by 1375
Abstract
This study aims to quantify the effect of process parameters on the anodizing of Al6061 aluminum. To achieve this, studies on layer thickness, the porosity of the anodized surface, electrochemical techniques, X-ray diffraction, grain size estimation, and statistical analysis were conducted for three [...] Read more.
This study aims to quantify the effect of process parameters on the anodizing of Al6061 aluminum. To achieve this, studies on layer thickness, the porosity of the anodized surface, electrochemical techniques, X-ray diffraction, grain size estimation, and statistical analysis were conducted for three different atmospheres (without air, air, and oxygen). Parameter levels were established as follows: temperature (30 °C, 45 °C, and 60 °C), time (20 min, 40 min, and 60 min), electrolyte concentration (0.5 M), voltage (9 V), and current intensity (0.600 A). A 33 experimental design (three factors, three levels) was proposed, and mathematical models were obtained using general factorial design. The experimental design was used to determine the three most important variables in the optimal condition. A total of 27 tests were conducted using sulfuric acid electrolytic solutions, of which 12 samples were selected by the factorial design method, which simultaneously evaluates the effects of factors and their interactions in a single experiment. Measurement of porosity and oxide layer thickness was performed using scanning electron microscopy. The purity of the anodic layer formed was characterized using X-ray diffraction techniques with a vertical goniometer X-ray diffractometer. The electrochemical behavior is presented through potentiodynamic polarization curves for the anodic layer. A general factorial design and an analysis of variance (ANOVA) were conducted to establish the significant factors for layer thickness, grain size, and reaction rate. Finally, the best results and their parameters for each response are presented. Full article
Show Figures

Figure 1

Back to TopTop