Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (111)

Search Parameters:
Keywords = ankyrin repeat proteins

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2352 KB  
Article
The Negative Role of Ankyrin-Repeat and SOCS-Box Protein 9 in PAR1 Expression and the MAPK Signaling Pathway in Bovine Granulosa Cells
by Daniela Naranjo Gonzalez and Kalidou Ndiaye
Biology 2025, 14(10), 1344; https://doi.org/10.3390/biology14101344 - 1 Oct 2025
Viewed by 263
Abstract
Ankyrin-repeat and SOCS-box protein 9 (ASB9) is a member of the ASB family of proteins, which act as a substrate recognition component of E3 ubiquitin ligases and regulate various reproductive processes. ASB9 was previously identified as being induced in bovine granulosa cells (GCs) [...] Read more.
Ankyrin-repeat and SOCS-box protein 9 (ASB9) is a member of the ASB family of proteins, which act as a substrate recognition component of E3 ubiquitin ligases and regulate various reproductive processes. ASB9 was previously identified as being induced in bovine granulosa cells (GCs) by LH/hCG, and its binding partners, including protease-activated receptor 1 (PAR1), were reported. The aim of this study was to decipher ASB9’s mechanisms of action in GCs and determine whether ASB9 induction by LH/hCG is necessary for the regulation of PAR1 and the signaling pathways involved in GC function and activity. Cultured GCs were treated with different doses of FSH, LH, and thrombin. RT-qPCR analyses revealed that thrombin increased PAR1 expression, while FSH had no effect on PAR1. Treatment with LH significantly downregulated PAR1, even in the presence of thrombin, possibly via ASB9. The phosphorylation profile of MAPK3/1 in thrombin-treated GCs suggests PAR1-mediated control. ASB9 induction appeared to have a negative effect on the MAPK pathway, although thrombin treatment briefly (within an hour) blocked the negative effect of ASB9 on PAR1. Proliferation assays showed that ASB9 negatively regulated the GC number while increasing apoptosis. These data provide evidence of ASB9’s mode of action and its potent functional effects on PAR1 regulation, GC proliferation, and, potentially, the ovulatory process in bovine species. Full article
(This article belongs to the Section Biochemistry and Molecular Biology)
Show Figures

Figure 1

20 pages, 4315 KB  
Article
Genomic Analysis of Lumpy Skin Disease Virus from Western and Central Africa Suggests a Distinct Sub-Lineage Within the 1.2 LSDV Cluster
by John Fadele, Olusola Ogunsanya, Oluwatobi Adedokun, Akeemat Ayinla, Mbitkebeyo Pami, Ayotunde Sijuwola, Femi Saibu, Harouna Soumare, Urbain Fanou, Corrie Brown, Bonto Faburay, Christian Happi and Anise Happi
Pathogens 2025, 14(9), 922; https://doi.org/10.3390/pathogens14090922 - 12 Sep 2025
Viewed by 715
Abstract
Lumpy Skin Disease Virus (LSDV) is a transboundary pathogen that affects cattle, causing significant economic losses, particularly in Africa and Asia. While the virus was originally endemic to sub-Saharan Africa, it has rapidly spread to Europe, the Middle East, and Asia, necessitating comprehensive [...] Read more.
Lumpy Skin Disease Virus (LSDV) is a transboundary pathogen that affects cattle, causing significant economic losses, particularly in Africa and Asia. While the virus was originally endemic to sub-Saharan Africa, it has rapidly spread to Europe, the Middle East, and Asia, necessitating comprehensive genomic surveillance. Despite LSDV’s African origins, genomic data from West and Central Africa remain scarce, limiting insights into regional viral evolution and vaccine compatibility. In this study, molecular detection of LSDV was carried out on cattle samples from Nigeria, Cameroon, and Benin. However, comparative genomic analysis was performed using two near-complete LSDV genomes obtained from Cameroon. Phylogenetic evaluation revealed that LSDV strains from Nigeria and Cameroon cluster within the classical 1.2 lineage. Furthermore, the two sequences from this study cluster with the only publicly available sequence from West and Central Africa, supporting earlier findings of the presence of a West/Central African sub-lineage. Functional genomic analysis identified mutations in genes encoding ankyrin repeat Kelch-like proteins, and envelope proteins involved in immune evasion and viral virulence, raising concerns about vaccine effectiveness. Furthermore, the detection of LSDV in flesh flies (Sarcophaga spp.) underlines their potential role in virus transmission. These findings highlight the importance of genomic monitoring and targeted surveillance. Full article
(This article belongs to the Special Issue Emergence and Re-Emergence of Animal Viral Diseases)
Show Figures

Figure 1

19 pages, 1985 KB  
Article
Targeting of Epithelial Cell Adhesion Molecule-Expressing Malignant Tumors Using an Albumin-Binding Domain-Fused Designed Ankyrin Repeat Protein: Effect of the Molecular Architecture
by Vladimir Tolmachev, Anzhelika Vorobyeva, Alia Hani Binti Rosly, Javad Garousi, Yongsheng Liu, Torbjörn Gräslund, Eleftherios Papalanis, Alexey Schulga, Elena Konovalova, Anna Orlova, Sergey M. Deyev and Maryam Oroujeni
Int. J. Mol. Sci. 2025, 26(11), 5236; https://doi.org/10.3390/ijms26115236 - 29 May 2025
Viewed by 1283
Abstract
Designed ankyrin repeat protein (DARPin) Ec1, a small scaffold protein (18 kDa), binds with high affinity the epithelial cell adhesion molecule (EpCAM) that is overexpressed in several carcinomas. To enhance the targeted delivery of cytotoxic drugs using Ec1, we investigated the potential of [...] Read more.
Designed ankyrin repeat protein (DARPin) Ec1, a small scaffold protein (18 kDa), binds with high affinity the epithelial cell adhesion molecule (EpCAM) that is overexpressed in several carcinomas. To enhance the targeted delivery of cytotoxic drugs using Ec1, we investigated the potential of fusing Ec1 with an albumin-binding domain (ABD) to improve its circulation time and decrease renal uptake. Two fusion proteins were created, Ec1-ABD, with the ABD at the C-terminus, and ABD-Ec1, with the ABD at the N-terminus. Both variants were labeled with 111In. ABD-fused variants bound specifically to EpCAM-expressing cells with picomolar affinity. Adding human albumin reduced the affinity. This effect was more pronounced for Ec1-ABD; however, the affinity remained in the subnanomolar range. The position of the ABD did not influence the internalization rate of both variants by human cancer cells. In mouse models with human cancer xenografts, both variants demonstrated over 10-fold lower renal uptake compared to the Ec1. Tumor uptake of the ABD-fused variants was higher than the uptake of Ec1. ABD-Ec1 provided two-fold higher tumor uptake, indicating fusion with an ABD as a promising way to modulate the targeting properties of an Ec1-based construct. However, the effect of fusion depends on the order of the domains. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

17 pages, 3975 KB  
Article
Orientia tsutsugamushi Modulates RIPK3 Cellular Levels but Does Not Inhibit Necroptosis
by Thomas E. Siff, Paige E. Allen, David L. Armistead, Jason R. Hunt, Steven J. Rolland, Hervé Agaisse and Jason A. Carlyon
Pathogens 2025, 14(5), 478; https://doi.org/10.3390/pathogens14050478 - 14 May 2025
Viewed by 1199
Abstract
Scrub typhus is an emerging chigger-borne disease caused by the obligate intracellular bacterium Orientia tsutsugamushi. Necroptosis is a form of programmed cell death (PCD) mediated by RIPK3 (serine/threonine kinase receptor interacting protein 3) and its downstream effector MLKL (mixed-lineage kinase domain-like). While [...] Read more.
Scrub typhus is an emerging chigger-borne disease caused by the obligate intracellular bacterium Orientia tsutsugamushi. Necroptosis is a form of programmed cell death (PCD) mediated by RIPK3 (serine/threonine kinase receptor interacting protein 3) and its downstream effector MLKL (mixed-lineage kinase domain-like). While O. tsutsugamushi modulates apoptosis, another form of PCD, its interplay with necroptosis is unknown. Much of Orientia pathobiology is linked to its ankyrin repeat (AR)-containing effectors (Anks). Two of these, Ank1 and Ank6, share similarities with the cowpox AR protein, vIRD (viral inducer of RIPK3 degradation) that prevents necroptosis. Here, we show that Ank1 and Ank6 reduce RIPK3 cellular levels although not as robustly as and mechanistically distinct from vIRD. Orientia infection lowers RIPK3 amounts and does not elicit necroptosis in endothelial cells. In HeLa cells ectopically expressing RIPK3, Orientia fails to inhibit RIPK3 and MLKL phosphorylation as well as cell death. MLKL colocalization with Orientia or Listeria monocytogenes, another intracytoplasmic pathogen, was not observed. Thus, O. tsutsugamushi reduces cellular levels of RIPK3 and does not elicit necroptosis but cannot inhibit this PCD pathway once it is induced. This study is a first step toward understanding how the relationship between Orientia and necroptosis contributes to scrub typhus pathogenesis. Full article
(This article belongs to the Special Issue Emerging Vector-Borne and Zoonotic Diseases—2nd Edition)
Show Figures

Figure 1

18 pages, 70614 KB  
Article
Ankrd1 Promotes Lamellipodia Formation and Cell Motility via Interaction with Talin-1 in Clear Cell Renal Cell Carcinoma
by Yuki Takai, Sei Naito, Hiromi Ito, Shigemitsu Horie, Masaki Ushijima, Takafumi Narisawa, Mayu Yagi, Osamu Ichiyanagi and Norihiko Tsuchiya
Int. J. Mol. Sci. 2025, 26(9), 4232; https://doi.org/10.3390/ijms26094232 - 29 Apr 2025
Viewed by 993
Abstract
Ankyrin repeat domain 1 (Ankrd1), a transcriptional target of Yes-associated protein (YAP), is linked to cardiomyopathy. However, its role in cancer, particularly in clear cell renal cell carcinoma (ccRCC), remains vague. In this study, we examined the expression, regulation, and function of Ankrd1 [...] Read more.
Ankyrin repeat domain 1 (Ankrd1), a transcriptional target of Yes-associated protein (YAP), is linked to cardiomyopathy. However, its role in cancer, particularly in clear cell renal cell carcinoma (ccRCC), remains vague. In this study, we examined the expression, regulation, and function of Ankrd1 in ccRCC. High Ankrd1 expression was related to poor prognosis in patients with ccRCC in The Cancer Genome Atlas cohort. Ankrd1 expression was regulated by YAP in all ccRCC cell lines examined and also by ERK5 in a subset of ccRCC cell lines. Moreover, silencing of Ankrd1 in ccRCC cell lines resulted in decreased cell motility, whereas its overexpression increased the cell motility. Ankrd1 colocalized with F-actin in lamellipodia upon phorbol ester stimulation. Ankrd1 silencing resulted in alterations in the shape of RCC cells and caused a decrease in lamellipodia formation. Ankrd1 also colocalized with talin-1 in lamellipodia. Ankrd1 depletion repressed talin-1-mediated activation of the integrin pathway. Immunohistochemical examination of surgical specimens revealed high expression of Ankrd1 in metastatic RCC tissues compared with that in primary RCC tissues from the same patients. Collectively, these findings suggest that Ankrd1 plays a critical role in the motility of ccRCC cells through lamellipodia formation. Full article
(This article belongs to the Section Molecular Oncology)
Show Figures

Figure 1

25 pages, 14355 KB  
Article
The Interaction Between the asb5a and asb5b Subtypes Jointly Regulates the L-R Asymmetrical Development of the Heart in Zebrafish
by Wanbang Zhou, Wanwan Cai, Yongqing Li, Luoqing Gao, Xin Liu, Siyuan Liu, Junrong Lei, Jisheng Zhang, Yuequn Wang, Zhigang Jiang, Xiushan Wu, Xiongwei Fan, Fang Li, Lan Zheng and Wuzhou Yuan
Int. J. Mol. Sci. 2025, 26(6), 2765; https://doi.org/10.3390/ijms26062765 - 19 Mar 2025
Viewed by 809
Abstract
The asb5 gene, a member of the Asb protein subfamily characterized by six ankyrin repeat domains, is highly conserved and comprises two subtypes, asb5a and asb5b, in zebrafish. Our previous research has demonstrated that a deficiency of the asb5 gene significantly [...] Read more.
The asb5 gene, a member of the Asb protein subfamily characterized by six ankyrin repeat domains, is highly conserved and comprises two subtypes, asb5a and asb5b, in zebrafish. Our previous research has demonstrated that a deficiency of the asb5 gene significantly impairs early cardiac contractile function, highlighting its close relationship with heart development. Zebrafish asb5 expression was disrupted by both morpholino (MO) antisense oligomer-mediated knockdown and a CRISPR-Cas9 system. A high-throughput RNA-Seq analysis was used to analyze the possible molecular regulatory mechanism of asb5 gene deletion leading to left–right (L-R) asymmetry defects in the heart. Whole-mount in situ hybridization (WISH) was conducted to evaluate gene expression patterns of Nodal signaling components and the positions of heart organs. Heart looping was defective in zebrafish asb5 morphants. Rescue experiments in the asb5-deficiency group (inactivating both asb5a and asb5b) demonstrated that the injection of either asb5a-mRNA or asb5b-mRNA alone was insufficient to rectify the abnormal L-R asymmetry of the heart. In contrast, the simultaneous injection of both asb5a-mRNA and asb5b-mRNA successfully rescued the morphological phenotype. A high-throughput RNA-Seq analysis of embryos at 48 h post fertilization (hpf) revealed that numerous genes associated with L-R asymmetry exhibited expression imbalances in the asb5-deficiency group. WISH further confirmed that the expression of genes such as fli1a, acta1b, hand2, has2, prrx1a, notch1b, and foxa3 were upregulated, while the expression of mei2a and tal1 was downregulated. These results indicated that loss of the asb5 gene in zebrafish led to the disordered development of L-R asymmetry in the heart, resulting in an imbalance in the expression of genes associated with the regulation of L-R asymmetry. Subsequently, we examined the expression patterns of classical Nodal signaling pathway-related genes using WISH. The results showed that the midline barrier factor gene lefty1 was downregulated at early stages in the asb5-deficiency group, and the expression of spaw and lefty2, which are specific to the left lateral plate mesoderm (LPM), was disrupted. This study reveals that the two subtypes of the asb5 gene in zebrafish, asb5a and asb5b, interact and jointly regulate the establishment of early cardiac L-R asymmetry through the Nodal-spaw-lefty signaling pathway. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

9 pages, 1835 KB  
Article
PTT-Mediated Inhibition of Cancer Proliferation and Tumor Progression by DARPin-Coated Gold Nanoparticles
by Galina M. Proshkina, Elena I. Shramova, Ekaterina V. Serova, Egor A. Myachev, Aziz B. Mirkasymov, Sergey M. Deyev and Alexander B. Kotlyar
J. Nanotheranostics 2025, 6(1), 2; https://doi.org/10.3390/jnt6010002 - 4 Jan 2025
Cited by 1 | Viewed by 1826
Abstract
Targeting HER2-positive cancer cells with precision therapies is a critical challenge in oncology. Here, we present a study on gold nanoparticles (AuNPs) conjugated with DARPin_9-29, a designed ankyrin repeat protein with high specificity and affinity for HER2 receptors. In this study, we investigate [...] Read more.
Targeting HER2-positive cancer cells with precision therapies is a critical challenge in oncology. Here, we present a study on gold nanoparticles (AuNPs) conjugated with DARPin_9-29, a designed ankyrin repeat protein with high specificity and affinity for HER2 receptors. In this study, we investigate the therapeutic potential of AuNP-DARPin_9-29 conjugates, which was synthesized and characterized by us earlier, for photothermal therapy (PTT). By combining AuNP-DARPin treatment with visible light illumination, we show selective inhibition of HER2-positive cancer cell proliferation and tumor progression in a murine model. The results highlight the effectiveness of AuNP-DARPin in disrupting cancer cell viability and reducing tumor growth, providing a cost-effective and targeted approach for combating HER2-positive cancers. Full article
Show Figures

Figure 1

16 pages, 14652 KB  
Article
Structural Basis of Activity of HER2-Targeting Construct Composed of DARPin G3 and Albumin-Binding Domains
by Anastasia G. Konshina, Eduard V. Bocharov, Elena V. Konovalova, Alexey A. Schulga, Vladimir Tolmachev, Sergey M. Deyev and Roman G. Efremov
Int. J. Mol. Sci. 2024, 25(21), 11370; https://doi.org/10.3390/ijms252111370 - 22 Oct 2024
Cited by 3 | Viewed by 1759
Abstract
Non-immunoglobulin-based scaffold proteins (SPs) represent one of the key therapeutic target-specific and high-affinity binders in modern medicine. Among their cellular targets are signaling receptors, in particular, receptor tyrosine kinases, whose dysfunction leads to the development of cancer and other serious diseases. Successful applications [...] Read more.
Non-immunoglobulin-based scaffold proteins (SPs) represent one of the key therapeutic target-specific and high-affinity binders in modern medicine. Among their cellular targets are signaling receptors, in particular, receptor tyrosine kinases, whose dysfunction leads to the development of cancer and other serious diseases. Successful applications of SPs have been reported for HER receptor type 2 (HER2), a member of the human epidermal growth factor receptor family that regulates cell growth and differentiation. To extend the blood residence of SPs and prevent their high accumulation in the kidneys, these proteins are often fused with serum albumin. Promising results for HER2-binding activity were obtained for SP G3 from the DARPins (Designed Ankyrin Repeat Proteins) family fused with an albumin-binding domain (ABD). Interestingly, the detected HER2–G3 binding strongly depended on the position of the G3 module in the sequence of the constructs. Further improvement of these constructs for biomedical applications requires deciphering the molecular mechanism responsible for this effect. Here, we investigate the structural and dynamic aspects of ABD–G3 and G3–ABD chimeras using NMR spectroscopy and molecular modeling. Based on biophysical data, we come to the conclusion that extensive inter-domain contacts form in both constructs, although their binding interfaces and complex stability are somewhat different. Also, it is shown that the domain linker plays an important role—it limits the accessibility of the detected protein–protein binding sites, depending on the order of the domains in the chimeric molecules. These results create a solid structural basis for the rational design of new effective SP constructs targeting the signaling receptors in cells. Full article
Show Figures

Graphical abstract

19 pages, 4708 KB  
Article
ANKK1 Is a Wnt/PCP Scaffold Protein for Neural F-ACTIN Assembly
by Laura Domínguez-Berzosa, Lara Cantarero, María Rodríguez-Sanz, Gemma Tort, Elena Garrido, Johanna Troya-Balseca, María Sáez, Xóchitl Helga Castro-Martínez, Sara Fernandez-Lizarbe, Edurne Urquizu, Enrique Calvo, Juan Antonio López, Tomás Palomo, Francesc Palau and Janet Hoenicka
Int. J. Mol. Sci. 2024, 25(19), 10705; https://doi.org/10.3390/ijms251910705 - 4 Oct 2024
Cited by 1 | Viewed by 2219
Abstract
The TaqIA polymorphism is a marker of both the Ankyrin Repeat and Kinase Domain containing I gene (ANKK1) encoding a RIP-kinase, and the DRD2 gene for the dopamine receptor D2. Despite a large number of studies of TaqIA in [...] Read more.
The TaqIA polymorphism is a marker of both the Ankyrin Repeat and Kinase Domain containing I gene (ANKK1) encoding a RIP-kinase, and the DRD2 gene for the dopamine receptor D2. Despite a large number of studies of TaqIA in addictions and other psychiatric disorders, there is difficulty in interpreting this genetic phenomenon due to the lack of knowledge about ANKK1 function. In SH-SY5Y neuroblastoma models, we show that ANKK1 interacts with the synapse protein FERM ARH/RhoGEF and Pleckstrin Domain 1 (FARP1), which is a guanine nucleotide exchange factor (GEF) of the RhoGTPases RAC1 and RhoA. ANKK1–FARP1 colocalized in F-ACTIN-rich structures for neuronal maturation and migration, and both proteins activate the Wnt/PCP pathway. ANKK1, but not FARP1, promotes neuritogenesis, and both proteins are involved in neuritic spine outgrowth. Notably, the knockdown of ANKK1 or FARP1 affects RhoGTPases expression and neural differentiation. Additionally, ANKK1 binds WGEF, another GEF of Wnt/PCP, regulating its interaction with RhoA. During neuronal differentiation, ANKK1–WGEF interaction is downregulated, while ANKK1–FARP1 interaction is increased, suggesting that ANKK1 recruits Wnt/PCP components for bidirectional control of F-ACTIN assembly. Our results suggest a brain structural basis in TaqIA-associated phenotypes. Full article
(This article belongs to the Special Issue Molecular Advances in Mental Health and Disorders)
Show Figures

Figure 1

13 pages, 845 KB  
Review
The Roles of Obesity and ASB4 in Preeclampsia Pathogenesis
by Yuye Wang, Rebecca Ssengonzi, W. H. Davin Townley-Tilson, Yukako Kayashima, Nobuyo Maeda-Smithies and Feng Li
Int. J. Mol. Sci. 2024, 25(16), 9017; https://doi.org/10.3390/ijms25169017 - 20 Aug 2024
Cited by 1 | Viewed by 3139
Abstract
Preeclampsia is a complex pregnancy-related hypertensive disorder which poses significant risks for both maternal and fetal health. Preeclampsia affects 5–8% of pregnancies in the United States, causing a significant public health and economic burden. Despite extensive research, the etiology and pathogenesis of preeclampsia [...] Read more.
Preeclampsia is a complex pregnancy-related hypertensive disorder which poses significant risks for both maternal and fetal health. Preeclampsia affects 5–8% of pregnancies in the United States, causing a significant public health and economic burden. Despite extensive research, the etiology and pathogenesis of preeclampsia remain elusive, but have been correlated with maternal conditions such as obesity. In recent decades, the incidence of preeclampsia increased along with the prevalence of obesity among women of reproductive age. Maternal obesity has been shown to negatively affect pregnancy in almost all aspects. However, the precise mechanisms by which obesity influences preeclampsia are unclear. Ankyrin repeat and SOCS Box Containing protein 4 (ASB4) is an E3 ubiquitin ligase that can promote the degradation of a wide range of target proteins. ASB4-null mice display a full spectrum of preeclampsia-like phenotypes during pregnancy including hypertension, proteinuria, and decreased litter size. Furthermore, maternal obesity induced by a high-fat diet aggravates preeclampsia-like phenotypes in pregnant mice lacking ASB4. Variants in the ASB4 gene have been associated with obesity in humans, and a functional connection between the ASB4 gene and obesity has been established in mice. This review discusses the connections between preeclampsia, obesity, and ASB4. Full article
(This article belongs to the Special Issue Cellular and Molecular Targets of Preeclampsia)
Show Figures

Figure 1

12 pages, 1806 KB  
Article
Phase I Clinical Evaluation of Designed Ankyrin Repeat Protein [99mTc]Tc(CO)3-(HE)3-Ec1 for Visualization of EpCAM-Expressing Lung Cancer
by Roman Zelchan, Vladimir Chernov, Anna Medvedeva, Anastasia Rybina, Olga Bragina, Elizaveta Mishina, Mariia Larkina, Ruslan Varvashenya, Anastasia Fominykh, Alexey Schulga, Elena Konovalova, Anzhelika Vorobyeva, Anna Orlova, Liubov Tashireva, Sergey M. Deyev and Vladimir Tolmachev
Cancers 2024, 16(16), 2815; https://doi.org/10.3390/cancers16162815 - 10 Aug 2024
Cited by 7 | Viewed by 1738
Abstract
A high level of EpCAM overexpression in lung cancer makes this protein a promising target for targeted therapy. Radionuclide visualization of EpCAM expression would facilitate the selection of patients potentially benefiting from such treatment. Single-photon computed tomography (SPECT) using 99mTc-labeled engineered scaffold [...] Read more.
A high level of EpCAM overexpression in lung cancer makes this protein a promising target for targeted therapy. Radionuclide visualization of EpCAM expression would facilitate the selection of patients potentially benefiting from such treatment. Single-photon computed tomography (SPECT) using 99mTc-labeled engineered scaffold protein DARPin Ec1 has shown its effectiveness in imaging tumors with overexpression of EpCAM in preclinical studies, providing high contrast just a few hours after injection. This first-in-human study aimed to evaluate the safety and distribution of [99mTc]Tc(CO)3-(HE)3-Ec1 in patients with primary lung cancer. Twelve lung cancer patients were injected with 300.7 ± 103.2 MBq of [99mTc]Tc(CO)3-(HE)3-Ec1. Whole-body planar imaging (at 2, 4, 6 and 24 h after injection) and SPECT/CT of the lung (at 2, 4, and 6 h) were performed. The patients’ vital signs and possible side effects were monitored up to 7 days after injection. The patients tolerated the injection of [99mTc]Tc(CO)3-(HE)3-Ec1 well, and their somatic condition remained normal during the entire follow-up period. There were no abnormalities in blood and urine tests after injection of [99mTc]Tc(CO)3-(HE)3-Ec1. The highest absorbed doses were in the kidneys, liver, pancreas, thyroid, gallbladder wall, and adrenals. There was also a relatively high accumulation of [99mTc]Tc(CO)3-(HE)3-Ec1 in the small and large intestines, pancreas and thyroid. According to the SPECT/CT, accumulation of [99mTc]Tc(CO)3-(HE)3-Ec1 in the lung tumor was found in all patients included in the study. Intensive accumulation of [99mTc]Tc(CO)3-(HE)3-Ec1 was also noted in regional metastases. [99mTc]Tc(CO)3-(HE)3-Ec1 can potentially be considered a diagnostic tracer for imaging EpCAM expression in lung cancer patients and other tumors with overexpression of EpCAM. Full article
(This article belongs to the Section Cancer Therapy)
Show Figures

Figure 1

13 pages, 837 KB  
Review
Exploring Candidate Gene Studies and Alexithymia: A Systematic Review
by Yazmín Hernández-Díaz, Alma Delia Genis-Mendoza, Thelma Beatriz González-Castro, Ana Fresán, Carlos Alfonso Tovilla-Zárate, María Lilia López-Narváez, Isela Esther Juárez-Rojop and Humberto Nicolini
Genes 2024, 15(8), 1025; https://doi.org/10.3390/genes15081025 - 4 Aug 2024
Viewed by 2967
Abstract
Background: Alexithymia is a trait involving difficulties in processing emotions. Genetic association studies have investigated candidate genes involved in alexithymia’s pathogenesis. Therefore, the aim of the present study was to perform a systematic review of the genetic background associated with alexithymia. Methods: A [...] Read more.
Background: Alexithymia is a trait involving difficulties in processing emotions. Genetic association studies have investigated candidate genes involved in alexithymia’s pathogenesis. Therefore, the aim of the present study was to perform a systematic review of the genetic background associated with alexithymia. Methods: A systematic review of genetic studies of people with alexithymia was conducted. Electronic databases including PubMed, Scopus, and Web of Science were searched for the study purpose. We used the words “Alexithymia”, “gene”, “genetics”, “variants”, and “biomarkers”. The present systematic review was performed following the Preferred Reporting Items for Systematic reviews and Meta-Analyses statement. We found only candidate gene studies. A total of seventeen studies met the eligibility criteria, which comprised 22,361 individuals. The candidate genes associated with alexithymia were the serotoninergic pathway genes solute carrier family 6 member 4 (SLC6A4), serotonin 1A receptor (HTR1A), and serotonin 1A receptor (HTR2A); the neurotransmitter metabolism genes dopamine receptor D2 (DRD2), ankyrin repeat and kinase domain containing 1 (ANKK1), catechol-o-methyltransferase (COMT), brain-derived neurotrophic factor (BDNF), and oxytocin receptor (OXTR); and other pathway genes, vitamin D-binding protein (VDBP), tumor protein P53 regulated apoptosis inducing protein 1 (TP53AIP1), Rho GTPase Activating Protein 32 (ARHGAP32), and transmembrane protein 88B (TMEM88B). Conclusion: The results of this study showed that only case–control gene studies have been performed in alexithymia. On the basis of our findings, the majority of alexithymia genes and polymorphisms in this study belong to the serotoninergic pathway and neurotransmitter metabolism genes. These data suggest a role of serotoninergic neurotransmission in alexithymia. Nevertheless, more and future research is required to learn about the role of these genes in alexithymia. Full article
(This article belongs to the Special Issue Genetics and Genomics of Psychiatric Disorders)
Show Figures

Figure 1

18 pages, 1749 KB  
Review
The TRPA1 Ion Channel Mediates Oxidative Stress-Related Migraine Pathogenesis
by Michal Fila, Lukasz Przyslo, Marcin Derwich, Piotr Sobczuk, Elzbieta Pawlowska and Janusz Blasiak
Molecules 2024, 29(14), 3385; https://doi.org/10.3390/molecules29143385 - 18 Jul 2024
Cited by 8 | Viewed by 3607
Abstract
Although the introduction of drugs targeting calcitonin gene-related peptide (CGRP) revolutionized migraine treatment, still a substantial proportion of migraine patients do not respond satisfactorily to such a treatment, and new therapeutic targets are needed. Therefore, molecular studies on migraine pathogenesis are justified. Oxidative [...] Read more.
Although the introduction of drugs targeting calcitonin gene-related peptide (CGRP) revolutionized migraine treatment, still a substantial proportion of migraine patients do not respond satisfactorily to such a treatment, and new therapeutic targets are needed. Therefore, molecular studies on migraine pathogenesis are justified. Oxidative stress is implicated in migraine pathogenesis, as many migraine triggers are related to the production of reactive oxygen and nitrogen species (RONS). Migraine has been proposed as a superior mechanism of the brain to face oxidative stress resulting from energetic imbalance. However, the precise mechanism behind the link between migraine and oxidative stress is not known. Nociceptive primary afferent nerve fiber endings express ion channel receptors that change harmful stimuli into electric pain signals. Transient receptor potential cation channel subfamily A member 1 (TRPA1) is an ion channel that can be activated by oxidative stress products and stimulate the release of CGRP from nerve endings. It is a transmembrane protein with ankyrin repeats and conserved cysteines in its N-terminus embedded in the cytosol. TRPA1 may be a central element of the signaling pathway from oxidative stress and NO production to CGRP release, which may play a critical role in headache induction. In this narrative review, we present information on the role of oxidative stress in migraine pathogenesis and provide arguments that TRPA1 may be “a missing link” between oxidative stress and migraine and therefore a druggable target in this disease. Full article
(This article belongs to the Section Chemical Biology)
Show Figures

Figure 1

13 pages, 2625 KB  
Article
GmANKTM21 Positively Regulates Drought Tolerance and Enhanced Stomatal Response through the MAPK Signaling Pathway in Soybean
by Yue Zhao, Sinan Wang, Xiaofei Ma, Yu He, Jingwen Zhou, Shuang Jiao, Jianing Xun, Xiaoyu Kong, Xiaoxia Wu and Xi Bai
Int. J. Mol. Sci. 2024, 25(13), 6972; https://doi.org/10.3390/ijms25136972 - 26 Jun 2024
Cited by 4 | Viewed by 2819
Abstract
Drought stress is one of the significant abiotic stresses that limit soybean (Glycine max [L.] Merr.) growth and production. Ankyrin repeat (ANK) proteins, being highly conserved, occupy a pivotal role in diverse biological processes. ANK genes were classified into nine subfamilies according [...] Read more.
Drought stress is one of the significant abiotic stresses that limit soybean (Glycine max [L.] Merr.) growth and production. Ankyrin repeat (ANK) proteins, being highly conserved, occupy a pivotal role in diverse biological processes. ANK genes were classified into nine subfamilies according to conserved domains in the soybean genome. However, the function of ANK-TM subfamily proteins (Ankyrin repeat proteins with a transmembrane domain) in the abiotic-stress response to soybean remains poorly understood. In this study, we first demonstrated the subcellular localization of GmANKTM21 in the cell membrane and nucleus. Drought stress-induced mRNA levels of GmANKTM21, which encodes proteins belonging to the ANK-TM subfamily, Transgenic 35S:GmANKTM21 soybean improved drought tolerance at the germination and seedling stages, with higher stomatal closure in soybean, lower water loss, lower malondialdehyde (MDA) content, and less reactive oxygen species (ROS) production compared with the wild-type soybean (Dongnong50). RNA-sequencing (RNA-seq) and RT-qPCR analysis of differentially expressed transcripts in overexpression of GmANKTM21 further identified potential downstream genes, including GmSPK2, GmSPK4, and GmCYP707A1, which showed higher expression in transgenic soybean, than those in wild-type soybean and KEGG enrichment analysis showed that MAPK signaling pathways were mostly enriched in GmANKTM21 overexpressing soybean plants under drought stress conditions. Therefore, we demonstrate that GmANKTM21 plays an important role in tolerance to drought stress in soybeans. Full article
(This article belongs to the Special Issue Crop Stress Biology and Molecular Breeding: 4th Edition)
Show Figures

Figure 1

12 pages, 1890 KB  
Review
Roles Played by DOCK11, a Guanine Nucleotide Exchange Factor, in HBV Entry and Persistence in Hepatocytes
by Ying-Yi Li, Kazuhisa Murai, Junyan Lyu and Masao Honda
Viruses 2024, 16(5), 745; https://doi.org/10.3390/v16050745 - 8 May 2024
Cited by 3 | Viewed by 2726
Abstract
HBV infection is challenging to cure due to the persistence of viral covalently closed circular viral DNA (cccDNA). The dedicator of cytokinesis 11 (DOCK11) is recognized as a guanine nucleotide exchange factor (GEF) for CDC42 that has been reported to be required for [...] Read more.
HBV infection is challenging to cure due to the persistence of viral covalently closed circular viral DNA (cccDNA). The dedicator of cytokinesis 11 (DOCK11) is recognized as a guanine nucleotide exchange factor (GEF) for CDC42 that has been reported to be required for HBV persistence. DOCK11 is expressed in both the cytoplasm and nucleus of human hepatocytes and is functionally associated with retrograde trafficking proteins Arf-GAP with GTPase domain, ankyrin repeat, and pleckstrin homology domain-containing protein 2 (AGAP2), and ADP-ribosylation factor 1 (ARF1), together with the HBV capsid, in the trans-Golgi network (TGN). This opens an alternative retrograde trafficking route for HBV from early endosomes (EEs) to the TGN and then to the endoplasmic reticulum (ER), thereby avoiding lysosomal degradation. DOCK11 also facilitates the association of cccDNA with H3K4me3 and RNA Pol II for activating cccDNA transcription. In addition, DOCK11 plays a crucial role in the host DNA repair system, being essential for cccDNA synthesis. This function can be inhibited by 10M-D42AN, a novel DOCK11-binding peptide, leading to the suppression of HBV replication both in vitro and in vivo. Treatment with a combination of 10M-D42AN and entecavir may represent a promising therapeutic strategy for patients with chronic hepatitis B (CHB). Consequently, DOCK11 may be seen as a potential candidate molecule in the development of molecularly targeted drugs against CHB. Full article
(This article belongs to the Special Issue Unraveling the Pathogenesis of Persistent Virus Infection)
Show Figures

Figure 1

Back to TopTop