Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (134)

Search Parameters:
Keywords = anion recognition

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 3188 KiB  
Article
Anion-Induced Self-Assembly of Bis(cyclopeptides) with Rigid Linkers
by Elisavet Kaitatzi, Linda Fritsche and Stefan Kubik
Chemistry 2025, 7(4), 129; https://doi.org/10.3390/chemistry7040129 - 13 Aug 2025
Viewed by 145
Abstract
The presence of sulfate anions induces the self-assembly of anion-binding bis(cyclopeptides) in which two cyclopeptide rings are connected via a rigid linker. In this way, 2:2 complexes are formed in which two anions are sandwiched between two bis(cyclopeptide) moieties. Mixed species can be [...] Read more.
The presence of sulfate anions induces the self-assembly of anion-binding bis(cyclopeptides) in which two cyclopeptide rings are connected via a rigid linker. In this way, 2:2 complexes are formed in which two anions are sandwiched between two bis(cyclopeptide) moieties. Mixed species can be formed if two bis(cyclopeptides) containing different linkers are present and the structural mismatch between the linkers can be compensated for in the self-assembled product. Sulfate complexation seems to proceed with positive cooperativity, leading primarily to the fully formed complexes. As a consequence, these bis(cyclopeptides) represent useful building blocks for the anion-mediated formation of self-assembled products with controllable structural complexity. Full article
(This article belongs to the Section Supramolecular Chemistry)
Show Figures

Graphical abstract

11 pages, 2222 KiB  
Case Report
Case Report: Spontaneous Pneumomediastinum and Pneumothorax Complicating Severe Ketoacidosis—An Unexpected Presentation
by Alexandru Cristian Cindrea, Adina Maria Marza, Alexandra Maria Borita, Antonia Armega-Anghelescu and Ovidiu Alexandru Mederle
Reports 2025, 8(2), 95; https://doi.org/10.3390/reports8020095 - 18 Jun 2025
Viewed by 538
Abstract
Background and Clinical Significance: Diabetic ketoacidosis (DKA) is a serious and potentially life-threatening condition, often triggered by infections or undiagnosed diabetes. Spontaneous pneumomediastinum (SPM) and pneumothorax are rare but recognized complications of DKA, possibly due to alveolar rupture from increased respiratory effort or [...] Read more.
Background and Clinical Significance: Diabetic ketoacidosis (DKA) is a serious and potentially life-threatening condition, often triggered by infections or undiagnosed diabetes. Spontaneous pneumomediastinum (SPM) and pneumothorax are rare but recognized complications of DKA, possibly due to alveolar rupture from increased respiratory effort or vomiting. Sometimes, acute pancreatitis (AP) may further complicate DKA, but the co-occurrence of these three conditions remains exceptionally rare. Case Presentation: We describe the case of a 60-year-old woman without a known history of diabetes who arrived at the emergency department with abdominal pain, fatigue, vomiting, and altered mental status. Initial laboratory findings showed metabolic acidosis, hyperglycemia, and elevated anion gap, consistent with DKA. Imaging revealed spontaneous pneumomediastinum and subsequently a left-sided pneumothorax, without evidence of trauma or esophageal rupture. Epigastric pain, along with elevated serum lipase and CT findings, also confirmed acute pancreatitis. Despite the complexity of her condition, the patient responded well to supportive treatment, including oxygen therapy, fluid resuscitation, insulin infusion, and antibiotics. She was discharged in good condition after 28 days, with a confirmed diagnosis of type 2 diabetes, without further complications. Conclusions: This case highlights an unusual combination of DKA complicated by spontaneous pneumomediastinum, pneumothorax and acute pancreatitis in a previously undiagnosed diabetic patient. Because prompt intervention can lead to favorable outcomes even in complex, multisystem cases, early recognition of atypical DKA complications is critical in order to avoid misdiagnosis. Full article
Show Figures

Figure 1

41 pages, 7178 KiB  
Review
A Review of the Molecular Aggregation of Small-Molecule Anion Sensors for Environmental Contaminates in Aqueous Media
by Mallory E. Thomas and Alistair J. Lees
Sustain. Chem. 2025, 6(2), 17; https://doi.org/10.3390/suschem6020017 - 14 Jun 2025
Viewed by 2614
Abstract
A primary challenge in the further development of anion sensors in real water samples of environmental concern is the need for highly water-soluble compounds that are able to detect low concentrations of analytes. Small-molecule sensors can mitigate solubility constraints and highly aromatic or [...] Read more.
A primary challenge in the further development of anion sensors in real water samples of environmental concern is the need for highly water-soluble compounds that are able to detect low concentrations of analytes. Small-molecule sensors can mitigate solubility constraints and highly aromatic or conjugated systems may provide a new way to recognize target analytes with high sensitivity and/or selectivity. Organic aggregates that have the ability to form large frameworks can exhibit aggregated-induced emissions to detect target analytes, and their coagulation can provide enhanced detection via colorimetric or fluorescent measurements. This review aims to draw attention to the emerging area of small-molecule organic chemosensors that utilize aggregation to detect environmentally detrimental anions in an aqueous solution. A number of mechanisms of interaction for anion recognition are recognized and discussed here, including electrostatic interactions, covalent bond formation, hydrophobic interactions, and even complexation. Full article
Show Figures

Figure 1

32 pages, 16345 KiB  
Article
Surface Ion-Imprinted Polypropylene Fibers for Selective and Rapid Adsorption of Borate Ions: Preparation, Characterization, and Performance Study
by Hui Jiang, Xinchi Zong, Zhengwei Luo, Wenhua Geng and Jianliang Zhu
Polymers 2025, 17(10), 1368; https://doi.org/10.3390/polym17101368 - 16 May 2025
Viewed by 347
Abstract
This study presents a novel ion-imprinted fiber material, I-(PP-g-GMA-NMDG), designed for the rapid and selective adsorption of borate ions. Leveraging low-temperature plasma graft polymerization, polypropylene (PP) melt-blown fibers were functionalized with glycidyl methacrylate (GMA) and N-methyl-D-glucamine (NMDG) to introduce tailored [...] Read more.
This study presents a novel ion-imprinted fiber material, I-(PP-g-GMA-NMDG), designed for the rapid and selective adsorption of borate ions. Leveraging low-temperature plasma graft polymerization, polypropylene (PP) melt-blown fibers were functionalized with glycidyl methacrylate (GMA) and N-methyl-D-glucamine (NMDG) to introduce tailored recognition sites. Systematic optimization of plasma parameters (100 W discharge power, O2 atmosphere) and liquid-phase grafting conditions (28.5% GMA, 85 °C, 2.5 h) achieved a grafting rate of 203.26%. The imprinted fibers exhibited exceptional adsorption performance, with a maximum capacity of 35.85 mg/g at pH 9, reaching 90% saturation within 60 min. Adsorption kinetics adhered to a pseudo-second-order model, while the Freundlich isotherm indicated multilayer adsorption. Competitive ion experiments demonstrated high selectivity for B(OH)4 over anions (SO42− and Cl) and cations (Na+, K+, Ca2+, and Mg2+), which was attributed to the precise spatial and charge complementarity of the imprinted cavities. Characterization via FT-IR, XRD, and SEM confirmed successful synthesis and structural stability. The material retained 78.1% adsorption efficiency after five regeneration cycles, showcasing its practicality for boron recovery from wastewater. This work advances boron-selective adsorption technology by combining plasma modification with ion imprinting, offering a sustainable solution for industrial and environmental applications. Full article
(This article belongs to the Section Polymer Chemistry)
Show Figures

Figure 1

15 pages, 894 KiB  
Review
Interplay Between ROS and Hormones in Plant Defense Against Pathogens
by Mostafa Haghpanah, Amin Namdari, Mostafa Koozehgar Kaleji, Azam Nikbakht-dehkordi, Ahmad Arzani and Fabrizio Araniti
Plants 2025, 14(9), 1297; https://doi.org/10.3390/plants14091297 - 25 Apr 2025
Cited by 3 | Viewed by 1620
Abstract
Reactive oxygen species (ROS) are toxic by-products of aerobic cellular metabolism. However, ROS conduct multiple functions, and specific ROS sources can have beneficial or detrimental effects on plant health. This review explores the complex dynamics of ROS in plant defense mechanisms, focusing on [...] Read more.
Reactive oxygen species (ROS) are toxic by-products of aerobic cellular metabolism. However, ROS conduct multiple functions, and specific ROS sources can have beneficial or detrimental effects on plant health. This review explores the complex dynamics of ROS in plant defense mechanisms, focusing on their involvement in basal resistance, hypersensitive response (HR), and systemic acquired resistance (SAR). ROS, including superoxide anion (O2−), singlet oxygen (1O2), hydroxyl radicals (OH), and hydrogen peroxide (H2O2), are generated through various enzymatic pathways. They may serve to inhibit pathogen growth while also activating defense-related gene expression as signaling molecules. Oxidative damage in cells is mainly attributed to excess ROS production. ROS produce metabolic intermediates that are involved in various signaling pathways. The oxidative burst triggered by pathogen recognition initiates hyper-resistance (HR), a localized programmed cell death restricting pathogen spread. Additionally, ROS facilitate the establishment of SAR by inducing systemic signaling networks that enhance resistance across the plant. The interplay between ROS and phytohormones such as jasmonic acid (JA), salicylic acid (SA), and ethylene (ET) further complicates this regulatory framework, underscoring the importance of ROS in orchestrating both local and systemic defense responses. Grasping these mechanisms is essential for creating strategies that enhance plant resilience to biotic stresses. Full article
(This article belongs to the Collection Feature Papers in Plant Physiology and Metabolism)
Show Figures

Figure 1

14 pages, 4247 KiB  
Article
Zn-Based Three-Dimensional Metal-Organic Framework for Selective Fluorescence Detection in Zwitterionic Ions
by Hongbin Liu, Yue Zhao, Biyi Huang, Hui Liu, Putao Zhang, Wen Gu and Tingli Ma
Int. J. Mol. Sci. 2025, 26(8), 3566; https://doi.org/10.3390/ijms26083566 - 10 Apr 2025
Viewed by 523
Abstract
Zinc-based MOFs exhibit significant advantages in ion detection due to their unique structure and chemical properties. They can efficiently and selectively recognize and detect specific ions, making them powerful analytical tools for applications in environmental monitoring, biomedical fields, and more. In this work, [...] Read more.
Zinc-based MOFs exhibit significant advantages in ion detection due to their unique structure and chemical properties. They can efficiently and selectively recognize and detect specific ions, making them powerful analytical tools for applications in environmental monitoring, biomedical fields, and more. In this work, we used a simple ligand to improve the coordination environment of Zn2+ ions and successfully synthesized a 3D coordination compound Zn(all-bdc)(Py) MOF through a straightforward hydrothermal method at low temperature. Additionally, we explored the potential of this MOF as a bifunctional ion fluorescence probe for both cationic and anionic recognition. The results showed that this 3D porous MOF exhibited excellent recognition ability for trivalent iron ions (Fe3+) and potassium permanganate (KMnO4) ions due to its highly porous structures and efficient ion recognition. When iron ions were added to 500 μL and potassium permanganate ions were added to 100 μL, the fluorescence of the compound was effectively quenched, and the detection limits for these two ions were 0.95 μM and 0.13 μM, respectively. The mixed-ion experiments also demonstrated that even in the presence of similar ions, this 3D MOF still maintained good selective recognition ability, specifically identifying Fe3+ and KMnO4 ions. This work provides a novel synthetic strategy for the design of MOFs capable of mixed-ion recognition and detection, expanding their application potential in ion sensing and analysis. Full article
Show Figures

Figure 1

22 pages, 2182 KiB  
Article
Chiral Recognition Mechanism of Benzyltetrahydroisoquinoline Alkaloids: Cyclodextrin-Mediated Capillary Electrophoresis, Chiral HPLC, and NMR Spectroscopy Study
by Erzsébet Várnagy, Gergő Tóth, Sándor Hosztafi, Máté Dobó, Ida Fejős and Szabolcs Béni
Molecules 2025, 30(5), 1125; https://doi.org/10.3390/molecules30051125 - 28 Feb 2025
Cited by 1 | Viewed by 975
Abstract
The tetrahydroisoquinoline skeleton is a pharmacologically significant core structure containing chiral centers, making enantiomeric separation crucial due to the potentially distinct biological effects of each enantiomer. In this study, laudanosine (N-methyl-tetrahydropapaverine) and its three derivatives (6′-bromo-laudanosine, norlaudanosine, and N-propyl-norlaudanosine) were [...] Read more.
The tetrahydroisoquinoline skeleton is a pharmacologically significant core structure containing chiral centers, making enantiomeric separation crucial due to the potentially distinct biological effects of each enantiomer. In this study, laudanosine (N-methyl-tetrahydropapaverine) and its three derivatives (6′-bromo-laudanosine, norlaudanosine, and N-propyl-norlaudanosine) were synthesized and used as model compounds to investigate chiral recognition mechanisms. Screening over twenty cyclodextrins (CyDs) as chiral selectors in capillary electrophoresis (CE), we found anionic CyDs to be the most effective, with sulfated-γ-CyD (S-γ-CyD) achieving a maximum Rs of 10.5 for laudanosine. Notably, octakis-(6-deoxy-6-(2-carboxyethyl)-thio)-γ-CyD (sugammadex, SGX), heptakis-(2,3-O-diacetyl-6-O-sulfo)-β-CD (HDAS), heptakis-(2,3-O-dimethyl-6-O-sulfo)-β-CD (HDMS), and octakis-(2,3-O-dimethyl-6-O-sulfo)-γ-CD (ODMS) provided excellent enantioseparation for all four analytes. Following HPLC screening on CyD-based and polysaccharide-based chiral stationary phases, semi-preparative HPLC methods using amylose and cellulose-based columns were optimized to isolate enantiomers. The purity of the isolated enantiomers was evaluated by HPLC, and their configurations were confirmed via circular dichroism spectroscopy. The isolated enantiomers allowed us to explore enantiomer migration order reversals in CE and enantiomer elution order reversal in HPLC. Further 1H and 2D ROESY NMR experiments provided atomic-level insights into enantioselective complex formation, confirming enantiomer differentiation by SGX and elucidating the inclusion complex structure, where the ring C immersion into the CyD cavity is prevalent. Full article
Show Figures

Graphical abstract

14 pages, 1793 KiB  
Article
Thiosemicarbazone- and Thiourea-Functionalized Calix[4]arenes in cone and 1,3-alternate Conformations: Receptors for the Recognition of Ions
by Andrés Ochoa, Belén Hernández-Arancibia, José Herrera-Muñoz, Horacio Gómez-Machuca and Claudio Saitz
Chemosensors 2025, 13(2), 48; https://doi.org/10.3390/chemosensors13020048 - 3 Feb 2025
Viewed by 1025
Abstract
In this research we have synthesized and evaluated five calix[4]arene-based receptors functionalized with thiosemicarbazone or thiourea groups, incorporating pyridinyl naphthalene or triazolopyridine chromophores in 1,3-alternate, pinched cone and cone conformations. The ion recognition capabilities of these receptors were investigated using UV-visible [...] Read more.
In this research we have synthesized and evaluated five calix[4]arene-based receptors functionalized with thiosemicarbazone or thiourea groups, incorporating pyridinyl naphthalene or triazolopyridine chromophores in 1,3-alternate, pinched cone and cone conformations. The ion recognition capabilities of these receptors were investigated using UV-visible and fluorescence spectroscopy. Receptor (I), which adopts a pinched cone conformation with thiosemicarbazone groups, demonstrated bifunctional sensing abilities by detecting both cations and anions. Receptors (II) and (III) showed remarkable selectivity and sensitivity for Cu2+ ions. Receptors (IV) and (V), in cone and 1,3-alternate conformations, respectively, where functionalized with a triazolo[1,5-a]pyridine fluorophore and exhibited highly sensitive ON-OFF fluorescence sensing for Co2+, Cu2+ and Ni2+ ions, with significant fluorescence quenching upon binding and a low detection limit of 2.94 µg/L for the Co2+ ion in receptor (IV). Ion receptor (I) demonstrates a strong performance in broad-spectrum ion detection, whereas the structural conformations of receptors (IV) and (V) play a pivotal role in their remarkable selectivity and sensitivity for specific transition metals in fluorescence-based sensing. Full article
Show Figures

Figure 1

41 pages, 13240 KiB  
Review
Beyond Cations: Expanding the Horizons of Ferrocene-Based Electrochemical Sensors for Neutral and Anionic Molecules
by Angel A. J. Torriero, Alma M. Torriero, Kiara T. Miller and Ashwin K. V. Mruthunjaya
Inorganics 2025, 13(1), 3; https://doi.org/10.3390/inorganics13010003 - 26 Dec 2024
Cited by 1 | Viewed by 1302
Abstract
Ferrocene (Fc) has long been celebrated for its remarkable redox properties and structural versatility, making it a cornerstone of electrochemical sensor development. While extensive research has focused on cation detection using Fc-based systems, the equally critical recognition of neutral and anionic molecules remains [...] Read more.
Ferrocene (Fc) has long been celebrated for its remarkable redox properties and structural versatility, making it a cornerstone of electrochemical sensor development. While extensive research has focused on cation detection using Fc-based systems, the equally critical recognition of neutral and anionic molecules remains underexplored despite their significance in biological, environmental, and industrial contexts. This review addresses this gap by exploring the latest advancements in Fc-based electrochemical sensors designed to overcome the unique challenges posed by these species—including diverse geometries, high hydration enthalpies, and the absence of formal charge. Molecular architectures such as amide-functionalised receptors, urea derivatives, Lewis acid-containing receptors, triazolium, and carboxylic acid-containing systems are examined, highlighting how these sensors achieve high selectivity and sensitivity. Furthermore, the influence of solvent environments on sensor performance is discussed, providing a critical analysis of how different receptor functionalities and solvents affect sensor behaviour. Emphasising the advantages of redox-based detection, this review aims to inspire further innovation in developing Fc-based technologies for detecting neutral and anionic species. Full article
(This article belongs to the Special Issue Research on Ferrocene and Ferrocene-Containing Compounds)
11 pages, 1137 KiB  
Review
The Perils of Methanol Exposure: Insights into Toxicity and Clinical Management
by Mohammed Alrashed, Norah S. Aldeghaither, Shatha Y. Almutairi, Meshari Almutairi, Abdulrhman Alghamdi, Tariq Alqahtani, Ghada H. Almojathel, Nada A. Alnassar, Sultan M. Alghadeer, Abdulmajeed Alshehri, Mohammed Alnuhait and Omar A. Almohammed
Toxics 2024, 12(12), 924; https://doi.org/10.3390/toxics12120924 - 20 Dec 2024
Cited by 2 | Viewed by 5365
Abstract
Methanol is a widely used industrial and household alcohol that poses significant health risks upon exposure. Despite its extensive use, methanol poisoning remains a critical public health concern globally, often resulting from accidental or intentional ingestion and outbreaks linked to contaminated beverages. Methanol [...] Read more.
Methanol is a widely used industrial and household alcohol that poses significant health risks upon exposure. Despite its extensive use, methanol poisoning remains a critical public health concern globally, often resulting from accidental or intentional ingestion and outbreaks linked to contaminated beverages. Methanol toxicity stems from its metabolic conversion to formaldehyde and formic acid, leading to severe metabolic acidosis and multiorgan damage, including profound CNS effects and visual impairments. Epidemiological data underscore the widespread impact of methanol poisoning, with alarming case fatality rates reported in various countries. Comprehensive prevention and effective management strategies are urgently needed to address the significant morbidity and mortality associated with methanol poisoning. The clinical manifestations of methanol toxicity vary between adult and pediatric populations and between acute and chronic exposure. Adults typically present with gastrointestinal and neurological symptoms, whereas pediatric patients often exhibit more severe outcomes due to differences in metabolism and body weight. The diagnosis of methanol poisoning involves a combination of clinical evaluation, laboratory testing, and advanced diagnostic techniques. The identification of metabolic acidosis, elevated anion and osmolal gaps, and confirmation through methanol and formate levels are critical for accurate diagnosis. Timely intervention is crucial, and the management of methanol poisoning includes securing the airway, breathing, and circulation; addressing metabolic acidosis with sodium bicarbonate; administering antidotes such as fomepizole or ethanol; and administering hemodialysis, which plays a pivotal role in eliminating methanol and its toxic metabolites, especially in severe cases. The complexity of methanol poisoning necessitates a comprehensive approach encompassing early recognition, prompt intervention, and coordinated care among healthcare providers. Increased awareness, effective prevention strategies, and timely treatment protocols are essential to mitigate severe health consequences and improve patient survival and recovery. Full article
(This article belongs to the Special Issue Drug Metabolism and Toxicological Mechanisms)
Show Figures

Figure 1

16 pages, 4211 KiB  
Article
An Optimized Liquid Chromatography–Mass Spectrometry Method for Ganglioside Analysis in Cell Lines
by Akeem Sanni, Andrew I. Bennett, Yifan Huang, Isabella Gidi, Moyinoluwa Adeniyi, Judith Nwaiwu, Min H. Kang, Michelle E. Keyel, ChongFeng Gao, C. Patrick Reynolds, Brian Haab and Yehia Mechref
Cells 2024, 13(19), 1640; https://doi.org/10.3390/cells13191640 - 2 Oct 2024
Viewed by 3287
Abstract
Gangliosides are glycosphingolipids composed of a sialylated glycan head group and a ceramide backbone. These anionic lipids form lipid rafts and play crucial roles in regulating various proteins involved in signal transduction, adhesion, and cell–cell recognition. Neuroblastoma, a pediatric cancer of the sympathetic [...] Read more.
Gangliosides are glycosphingolipids composed of a sialylated glycan head group and a ceramide backbone. These anionic lipids form lipid rafts and play crucial roles in regulating various proteins involved in signal transduction, adhesion, and cell–cell recognition. Neuroblastoma, a pediatric cancer of the sympathetic nervous system, is treated with intensive chemotherapy, radiation, and an antibody targeting the GD2 ganglioside. Gangliosides are critical in neuroblastoma development and serve as therapeutic targets, making it essential to establish a reliable, rapid, and cost-effective method for profiling gangliosides, particularly one capable of isomeric separation of intact species. In this study, liquid chromatography–mass spectrometry (LC-MS) was optimized using standard gangliosides, followed by the optimization of sphingolipid extraction methods from cell lines by comparing Folch and absolute methanol extraction techniques. Percent recovery and the number of identified sphingolipids were used to evaluate the analytical merits of these methods. A standard gangliosides calibration curve demonstrated excellent linearity (R2 = 0.9961–0.9975). The ZIC-HILIC column provided the best separation of ganglioside GD1 isomers with a 25 min runtime. GD1a elutes before GD1b on the ZIC-HILIC column. Absolute methanol yielded better percent recovery (96 ± 7) and identified 121 different sphingolipids, the highest number between the two extraction methods. The optimized method was applied to profile gangliosides in neuroblastoma (COG-N-683), pancreatic cancer (PSN1), breast cancer (MDA-MB-231BR), and brain tumor (CRL-1620) cell lines. The ganglioside profile of the neuroblastoma cell line COG-N-683 showed an inverse relationship between GD1 and GD2. Ceramide, Hex1Cer, GM1, and GM3 were highly abundant in CRL-1620, PSN1, and MDA-MB-231BR, respectively. These results suggest that our method provides a sensitive, reliable, and high-throughput workflow for ganglioside profiling across different cell types. Full article
Show Figures

Figure 1

19 pages, 16701 KiB  
Article
Magnetically Separable Chiral Poly(ionic liquid) Microcapsules Prepared Using Oil-in-Oil Emulsions
by Reema Siam, Abeer Ali and Raed Abu-Reziq
Polymers 2024, 16(19), 2728; https://doi.org/10.3390/polym16192728 - 26 Sep 2024
Viewed by 1060
Abstract
This article presents a method for producing chiral ionic liquid-based polyurea microcapsules that can be magnetically separated. The method involves entrapping hydrophilic magnetic nanoparticles within chiral polyurea microspheres. The synthetic process for creating these magnetic polyurea particles involves oil-in-oil (o/o) nano-emulsification of an [...] Read more.
This article presents a method for producing chiral ionic liquid-based polyurea microcapsules that can be magnetically separated. The method involves entrapping hydrophilic magnetic nanoparticles within chiral polyurea microspheres. The synthetic process for creating these magnetic polyurea particles involves oil-in-oil (o/o) nano-emulsification of an ionic liquid-modified magnetite nanoparticle (MNPs-IL) and an ionic liquid-based diamine monomer, which comprises a chiral bis(mandelato)borate anion, in a nonpolar organic solvent, toluene, and contains a suitable surfactant. This is followed by an interfacial polycondensation reaction between the isocyanate monomer, polymethylenepolyphenyl isocyanate (PAPI 27), and the chiral diamine monomer, which generates chiral polyurea microcapsules containing magnetic nanoparticles within their cores. The microcapsules generated from the process are then utilized to selectively adsorb either the R or S enantiomer of tryptophan (Trp) from a racemic mixture that is dissolved in water, in order to evaluate their chiral recognition capabilities. During the experiments, the magnetically separable chiral poly(ionic liquid) microcapsules, which incorporated either the R or S isomer of chiral bis(mandelato)borate, exhibited exceptional enantioselective adsorption performance. Thus, the chiral polymeric microcapsules embedded with the R-isomer of the bis(mandelato)borate anion demonstrated significant selectivity for adsorbing L-Trp, yielding a mixture with 70% enantiomeric excess after 96 h. In contrast, microcapsules containing the S-isomer of the bis(mandelato)borate anion preferentially adsorbed D-Trp, achieving an enantiomeric excess of 73% after 48 h. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

45 pages, 12125 KiB  
Article
Self-Coagulation Theory and Related Comet- and Semi-Circle-Shaped Structures in Electronegative and Gaseous Discharging Plasmas in the Laboratory
by Yu Tian and Shuxia Zhao
Appl. Sci. 2024, 14(17), 8041; https://doi.org/10.3390/app14178041 - 8 Sep 2024
Viewed by 1344
Abstract
In this work, the two-dimensional fluid models for two types of inductively coupled plasma, Ar/O2 and Ar/SF6, are numerically solved by the finite element method. Four interesting phenomena revealed by the simulations are reported: (1) comet-shaped and semi-circle-shaped structures in [...] Read more.
In this work, the two-dimensional fluid models for two types of inductively coupled plasma, Ar/O2 and Ar/SF6, are numerically solved by the finite element method. Four interesting phenomena revealed by the simulations are reported: (1) comet-shaped and semi-circle-shaped structures in Ar/O2 and Ar/SF6 plasmas, respectively; (2) blue sheaths that surround the two structures; (3) the collapse and dispersion of semi-circle-shaped structures of certain Ar/SF6 plasma cations and anions when they are observed separately; and (4) the rebuilding of coagulated structures by minor cations in the Ar/SF6 plasma at the discharge center. From the simulation detail, it was found that the cooperation of free diffusion and negative chemical sources creates the coagulated structure of anions, and the self-coagulation theory is therefore built. The advective and ambipolar types of self-coagulation are put forth to explain the co-existence of blue sheath and internal neutral plasma, among which the advective type of self-coagulation extends the Bohm’s sheath theory of cations to anions, and the ambipolar type of self-coagulation originates from the idea of the ambipolar diffusion process, and it updates the recognition of people about the plasma collective interaction. During the ambipolar self-coagulation, each type of Ar/SF6 plasma cations and anions is self-coagulated, and the coagulated plasma species are then modeled as mass-point type (or point-charge type, more precisely). When the charge amounts of two point-charge models of plasma species with the same charge type are equal, the expelling effect caused by the Coulomb’s force of them leads to the collapse or dispersal of heavily coagulated species. The simulation shows that the lighter the species is, the easier it self-coagulates and the more difficult its coagulation is broken, which implies the inertia effect of density quantity. Moreover, the collapse of cation coagulation creates the spatially dispersed charge cloud that is not shielded into the Debye’s length, which indicates the anti-collective behavior of electronegative plasmas when they are self-coagulated. The rebuilt coagulated structure of minor Ar/SF6 plasma species at the discharge center and the weak coagulation of electrons in the periphery of the main coagulated structure that is under the coil are caused by the monopolar and spontaneous (non-advective) type of self-coagulation. The analysis predicts an intensity order of physically driven coagulation force, chemical self-coagulation force, and ambipolar self-coagulation force. The popular coagulated structure of the electronegative ICP sources is urgently needed to validate the experiment. Full article
(This article belongs to the Special Issue Plasma Physics: Theory, Methods and Applications)
Show Figures

Figure 1

14 pages, 3776 KiB  
Article
Multi-Hydrogen Bonding on Quaternized-Oligourea Receptor Facilitated Its Interaction with Bacterial Cell Membranes and DNA for Broad-Spectrum Bacteria Killing
by Xiaojin Yan, Fan Yang, Guanghao Lv, Yuping Qiu, Xiaoying Jia, Qirong Hu, Jia Zhang, Jing Yang, Xiangyuan Ouyang, Lingyan Gao and Chuandong Jia
Molecules 2024, 29(16), 3937; https://doi.org/10.3390/molecules29163937 - 21 Aug 2024
Cited by 1 | Viewed by 1292
Abstract
Herein, we report a new strategy for the design of antibiotic agents based on the electrostatic interaction and hydrogen bonding, highlighting the significance of hydrogen bonding and the increased recognition sites in facilitating the interaction with bacterial cell membranes and DNA. A series [...] Read more.
Herein, we report a new strategy for the design of antibiotic agents based on the electrostatic interaction and hydrogen bonding, highlighting the significance of hydrogen bonding and the increased recognition sites in facilitating the interaction with bacterial cell membranes and DNA. A series of quaternary ammonium functionalized urea-based anion receptors were studied. While the monodentate mono-urea M1, bisurea M2, and trisurea M3 failed to break through the cell membrane barrier and thus could not kill bacteria, the extended bidentate dimers D1D3 presented gradually increased membrane penetrating capabilities, DNA conformation perturbation abilities, and broad-spectrum antibacterial activities against E. coli, P. aeruginosa, S. aureus, E. faecalis, and S. epidermidis. Full article
(This article belongs to the Special Issue Host–Guest Inclusion Complexes and Their Miscellaneous Applications)
Show Figures

Graphical abstract

12 pages, 2473 KiB  
Article
Unlocking the Use of LiCl as an Inexpensive Salt for Lithium-Ion Batteries with a Novel Anion Receptor
by Manabu Hirasawa, Akihiro Orita, Tsubasa Mimuro and Shin-ichi Kondo
Materials 2024, 17(13), 3244; https://doi.org/10.3390/ma17133244 - 2 Jul 2024
Cited by 3 | Viewed by 2537
Abstract
Lithium chloride (LiCl) is an inexpensive and environmentally friendly salt abundant in the ocean. However, the insolubility of LiCl in conventional electrolyte solvents prevents the practical use of LiCl for lithium-ion batteries. Here, we report a novel method to increase the solubility of [...] Read more.
Lithium chloride (LiCl) is an inexpensive and environmentally friendly salt abundant in the ocean. However, the insolubility of LiCl in conventional electrolyte solvents prevents the practical use of LiCl for lithium-ion batteries. Here, we report a novel method to increase the solubility of LiCl in a conventional electrolyte. The solubility of LiCl in ethylene carbonate (EC)/dimethyl carbonate (DMC) (1/1, v/v) is about quadrupled by adding a small amount of anion receptor with two urea moieties as recognition sites connecting with an ether chain. Anion receptor is an organic molecule that can associate with anions. Our anion receptor is able to associate with chloride anion. The ionic conductivity of LiCl in EC/DMC increased from 0.023 mS cm−1 (without an anion receptor) to 0.075 mS cm−1 (with a 0.05 M anion receptor). The electrolyte in the presence of a 0.05 M receptor exhibits higher ionic conductivity, rate capability, and cyclability than the electrolyte without the receptor. Full article
(This article belongs to the Section Energy Materials)
Show Figures

Figure 1

Back to TopTop