Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (6,581)

Search Parameters:
Keywords = angle control

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
13 pages, 1471 KiB  
Article
Effect of X-Ray Tube Angulations and Digital Sensor Alignments on Profile Angle Distortion of CAD-CAM Abutments: A Pilot Radiographic Study
by Chang-Hun Choi, Seungwon Back and Sunjai Kim
Bioengineering 2025, 12(7), 772; https://doi.org/10.3390/bioengineering12070772 (registering DOI) - 17 Jul 2025
Abstract
Purpose: This pilot study aimed to evaluate how deviations in X-ray tube head angulation and digital sensor alignment affect the radiographic measurement of the profile angle in CAD-CAM abutments. Materials and Methods: A mandibular model was used with five implant positions (central, buccal, [...] Read more.
Purpose: This pilot study aimed to evaluate how deviations in X-ray tube head angulation and digital sensor alignment affect the radiographic measurement of the profile angle in CAD-CAM abutments. Materials and Methods: A mandibular model was used with five implant positions (central, buccal, and lingual offsets). Custom CAD-CAM abutments were designed with identical bucco-lingual direction contours and varying mesio-distal asymmetry for the corresponding implant positions. Periapical radiographs were acquired under controlled conditions by systematically varying vertical tube angulation, horizontal tube angulation, and horizontal sensor rotation from 0° to 20° in 5° increments for each parameter. Profile angles, interthread distances, and proximal overlaps were measured and compared with baseline STL data. Results: Profile angle measurements were significantly affected by both X-ray tube and sensor deviations. Horizontal tube angulation produced the greatest profile angle distortion, particularly in buccally positioned implants. Vertical x-ray tube angulations beyond 15° led to progressive underestimation of profile angles, while horizontal tube head rotation introduced asymmetric mesial–distal variation. Sensor rotation also caused marked interthread elongation, in some cases exceeding 100%, despite vertical projection being maintained. Profile angle deviations greater than 5° occurred in multiple conditions. Conclusions: X-ray tube angulation and sensor alignment influence the reliability of profile angle measurements. Radiographs with > 10% interthread elongation or crown overlap may be inaccurate and warrant re-acquisition. Special attention is needed when imaging buccally positioned implants. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

16 pages, 2098 KiB  
Article
Experimental Testing of Amplified Inertia Response from Synchronous Machines Compared with Frequency Derivative-Based Synthetic Inertia
by Martin Fregelius, Vinicius M. de Albuquerque, Per Norrlund and Urban Lundin
Energies 2025, 18(14), 3776; https://doi.org/10.3390/en18143776 (registering DOI) - 16 Jul 2025
Abstract
A rather novel approach for delivery of inertia-like grid services through energy storage devices is described and validated by physical experiments and on-site measurements. In this approach, denoted “amplified inertia response”, an actual inertial response from a grid-connected synchronous machine is amplified. This [...] Read more.
A rather novel approach for delivery of inertia-like grid services through energy storage devices is described and validated by physical experiments and on-site measurements. In this approach, denoted “amplified inertia response”, an actual inertial response from a grid-connected synchronous machine is amplified. This inertia emulation approach is contrasted by what is called synthetic inertia, which uses a frequency-locked loop in order to extract the grid frequency. The synthetic inertia faces the usual input signal filtering challenges if the signal-to-noise ratio is low. The amplified inertia controller avoids the input filtering since it only amplifies the natural inertial response from a synchronous machine. However, rotor angle oscillations lead to filtering requirements of the amplified version as well, but on the output signal of the controller. Experimental comparisons are conducted both on the measurement output from the physical experiments in a microgrid and on analysis based on input from on-site measurements from a 55 MVA hydropower generator connected to the Nordic grid. In the specific cases compared, we observe that the amplified inertia version is the better method for smaller power systems, with large frequency fluctuations. On the other hand, the synthetic inertia method is the better in larger power systems as compared to the amplification of the inertial response from a real production unit. Full article
(This article belongs to the Section A1: Smart Grids and Microgrids)
Show Figures

Figure 1

22 pages, 5236 KiB  
Article
Research on Slope Stability Based on Bayesian Gaussian Mixture Model and Random Reduction Method
by Jingrong He, Tao Deng, Shouxing Peng, Xing Pang, Daochun Wan, Shaojun Zhang and Xiaoqiang Zhang
Appl. Sci. 2025, 15(14), 7926; https://doi.org/10.3390/app15147926 - 16 Jul 2025
Abstract
Slope stability analysis is conventionally performed using the strength reduction method with the proportional reduction in shear strength parameters. However, during actual slope failure processes, the attenuation characteristics of rock mass cohesion (c) and internal friction angle (φ) are [...] Read more.
Slope stability analysis is conventionally performed using the strength reduction method with the proportional reduction in shear strength parameters. However, during actual slope failure processes, the attenuation characteristics of rock mass cohesion (c) and internal friction angle (φ) are often inconsistent, and their reduction paths exhibit clear nonlinearity. Relying solely on proportional reduction paths to calculate safety factors may therefore lack scientific rigor and fail to reflect true slope behavior. To address this limitation, this study proposes a novel approach that considers the non-proportional reduction of c and φ, without dependence on predefined reduction paths. The method begins with an analysis of slope stability states based on energy dissipation theory. A Bayesian Gaussian Mixture Model (BGMM) is employed for intelligent interpretation of the dissipated energy data, and, combined with energy mutation theory, is used to identify instability states under various reduction parameter combinations. To compute the safety factor, the concept of a “reference slope” is introduced. This reference slope represents the state at which the slope reaches limit equilibrium under strength reduction. The safety factor is then defined as the ratio of the shear strength of the target analyzed slope to that of the reference slope, providing a physically meaningful and interpretable safety index. Compared with traditional proportional reduction methods, the proposed approach offers more accurate estimation of safety factors, demonstrates superior sensitivity in identifying critical slopes, and significantly improves the reliability and precision of slope stability assessments. These advantages contribute to enhanced safety management and risk control in slope engineering practice. Full article
(This article belongs to the Special Issue Slope Stability and Earth Retaining Structures—2nd Edition)
Show Figures

Figure 1

36 pages, 9024 KiB  
Article
Energy Optimal Trajectory Planning for the Morphing Solar-Powered Unmanned Aerial Vehicle Based on Hierarchical Reinforcement Learning
by Tichao Xu, Wenyue Meng and Jian Zhang
Drones 2025, 9(7), 498; https://doi.org/10.3390/drones9070498 - 15 Jul 2025
Viewed by 141
Abstract
Trajectory planning is crucial for solar aircraft endurance. The multi-wing morphing solar aircraft can enhance solar energy acquisition through wing deflection, which simultaneously incurs aerodynamic losses, complicating energy coupling and challenging existing planning methods in efficiency and long-term optimization. This study presents an [...] Read more.
Trajectory planning is crucial for solar aircraft endurance. The multi-wing morphing solar aircraft can enhance solar energy acquisition through wing deflection, which simultaneously incurs aerodynamic losses, complicating energy coupling and challenging existing planning methods in efficiency and long-term optimization. This study presents an energy-optimal trajectory planning method based on Hierarchical Reinforcement Learning for morphing solar-powered Unmanned Aerial Vehicles (UAVs), exemplified by a Λ-shaped aircraft. This method aims to train a hierarchical policy to autonomously track energy peaks. It features a top-level decision policy selecting appropriate bottom-level policies based on energy factors, which generate control commands such as thrust, attitude angles, and wing deflection angles. Shaped properly by reward functions and training conditions, the hierarchical policy can enable the UAV to adapt to changing flight conditions and achieve autonomous flight with energy maximization. Evaluated through 24 h simulation flights on the summer solstice, the results demonstrate that the hierarchical policy can appropriately switch its bottom-level policies during daytime and generate real-time control commands that satisfy optimal energy power requirements. Compared with the minimum energy consumption benchmark case, the proposed hierarchical policy achieved 0.98 h more of full-charge high-altitude cruise duration and 1.92% more remaining battery energy after 24 h, demonstrating superior energy optimization capabilities. In addition, the strong adaptability of the hierarchical policy to different quarterly dates was demonstrated through generalization ability testing. Full article
Show Figures

Figure 1

20 pages, 3588 KiB  
Article
Design and Experimental Operation of a Swing-Arm Orchard Sprayer
by Zhongyi Yu, Mingtian Geng, Keyao Zhao, Xiangsen Meng, Hongtu Zhang and Xiongkui He
Agronomy 2025, 15(7), 1706; https://doi.org/10.3390/agronomy15071706 - 15 Jul 2025
Viewed by 135
Abstract
In recent years, the traditional orchard sprayer has had problems, such as waste of liquid agrochemicals, low target coverage, high manual dependence, and environmental pollution. In this study, an automatic swing-arm sprayer for orchards was developed based on the standardized pear orchard in [...] Read more.
In recent years, the traditional orchard sprayer has had problems, such as waste of liquid agrochemicals, low target coverage, high manual dependence, and environmental pollution. In this study, an automatic swing-arm sprayer for orchards was developed based on the standardized pear orchard in Pinggu, Beijing. Firstly, the structural principles of a crawler-type traveling system and swing-arm sprayer were simulated using finite element software design. The combination of a diffuse reflection photoelectric sensor and Arduino single-chip microcomputer was used to realize real-time detection and dynamic spray control in the pear canopy, and the sensor delay compensation algorithm was used to optimize target recognition accuracy and improve the utilization rate of liquid agrochemicals. Through the integration of innovative structural design and intelligent control technology, a vertical droplet distribution test was carried out, and the optimal working distance of the spray was determined to be 1 m; the nozzle angle for the upper layer was 45°, that for the lower layer was 15°, and the optimal speed of the swing-arm motor was 75 r/min. Finally, a particle size test and field test of the orchard sprayer were completed, and it was concluded that the swing-arm mode increased the pear tree canopy droplet coverage by 74%, the overall droplet density by 21.4%, and the deposition amount by 23% compared with the non-swing-arm mode, which verified the practicability and reliability of the swing-arm spray and achieved the goal of on-demand pesticide application in pear orchards. Full article
(This article belongs to the Special Issue Unmanned Farms in Smart Agriculture—2nd Edition)
Show Figures

Figure 1

24 pages, 4085 KiB  
Article
A Joint Optimization Method for Power and Array of Multi-Point Sources System
by Zhihao Cai, Shiqi Xing, Xinyuan Su, Junpeng Wang, Weize Meng and Ziwen Xiao
Remote Sens. 2025, 17(14), 2445; https://doi.org/10.3390/rs17142445 - 14 Jul 2025
Viewed by 130
Abstract
In a multi-point source system, increasing the jamming power can expand the distribution area of the equivalent radiation center, but significantly increases the system exposure risk. Therefore, in order to achieve an optimal balance between the two, this paper proposes a joint optimization [...] Read more.
In a multi-point source system, increasing the jamming power can expand the distribution area of the equivalent radiation center, but significantly increases the system exposure risk. Therefore, in order to achieve an optimal balance between the two, this paper proposes a joint optimization method for jamming power and an array of multi-point source systems. First, based on determining the spatial geometric relationship between the triplet antenna and the target, the distribution law of the equivalent radiation center of the triplet antenna under the condition of the target echo is derived. Second, by introducing the angle factor, the jamming power and equivalent radiation center distribution area are combined to construct the joint optimization model of jamming power and array in omnidirectional and non-omnidirectional situations. Third, based on the non-dominated sorting whale optimization algorithm (NSWOA), an adaptive inertia weight based on the cosine function and logistic chaotic map is introduced to obtain the optimal arrangement. The experimental results show that in the omnidirectional case, when the average jamming-to-signal ratio is 13.83 dB, the equilateral triangle array can achieve the goal of protecting the target while avoiding the exposure of the triplet antenna position. In the non-omnidirectional case, when the average jamming-to-signal ratio is 13.90 dB, the equilateral triangle array can achieve the optimal balance between the jamming power and the area of the distribution area of the equivalent radiation center, and control the distribution of the equivalent radiation center to strictly meet the preset angular domain constraints. Furthermore, the optimal JSR value was reduced by an average of 1.14 dB compared with that of the conventional selection scheme. Full article
Show Figures

Figure 1

19 pages, 4493 KiB  
Article
Integrating Imaging and Genomics in Amelogenesis Imperfecta: A Novel Diagnostic Approach
by Tina Leban, Aleš Fidler, Katarina Trebušak Podkrajšek, Alenka Pavlič, Tine Tesovnik, Barbara Jenko Bizjan, Blaž Vrhovšek, Robert Šket and Jernej Kovač
Genes 2025, 16(7), 822; https://doi.org/10.3390/genes16070822 - 14 Jul 2025
Viewed by 135
Abstract
Background/Objectives: Amelogenesis imperfecta (AI) represents a heterogeneous group of inherited disorders affecting the quality and quantity of dental enamel, making clinical diagnosis challenging. This study aimed to identify genetic variants in Slovenian patients with non-syndromic AI and to evaluate enamel morphology using radiographic [...] Read more.
Background/Objectives: Amelogenesis imperfecta (AI) represents a heterogeneous group of inherited disorders affecting the quality and quantity of dental enamel, making clinical diagnosis challenging. This study aimed to identify genetic variants in Slovenian patients with non-syndromic AI and to evaluate enamel morphology using radiographic parameters. Methods: Whole exome sequencing (WES) was performed on 24 AI patients and their families. Panoramic radiographs (OPTs) were analyzed using Fiji ImageJ to assess crown dimensions, enamel angle (EA), dentine angle (DA), and enamel–dentine mineralization ratio (EDMR) in lower second molar buds, compared to matched controls (n = 24). Two observers independently assessed measurements, and non-parametric tests compared EA, DA, and EDMR in patients with and without disease-causing variants (DCVs). Statistical models, including bootstrap-validated random forest and logistic regression, assessed variable influences. Results: DCVs were identified in ENAM (40% of families), AMELX (15%), and MMP20 (10%), including four novel variants. AI patients showed significant enamel deviations with high reproducibility, particularly in hypomineralized and hypoplastic regions. DA and EDMR showed significant correlations with DCVs (p < 0.01). A bootstrap-validated random forest model yielded a 90% (84.0–98.0%) AUC-estimated predictive power. Conclusions: These findings highlight a novel and reproducible radiographic approach for detecting developmental enamel defects in AI and support its diagnostic potential. Full article
Show Figures

Figure 1

22 pages, 3768 KiB  
Article
MWB_Analyzer: An Automated Embedded System for Real-Time Quantitative Analysis of Morphine Withdrawal Behaviors in Rodents
by Moran Zhang, Qianqian Li, Shunhang Li, Binxian Sun, Zhuli Wu, Jinxuan Liu, Xingchao Geng and Fangyi Chen
Toxics 2025, 13(7), 586; https://doi.org/10.3390/toxics13070586 - 14 Jul 2025
Viewed by 201
Abstract
Background/Objectives: Substance use disorders, particularly opioid addiction, continue to pose a major global health and toxicological challenge. Morphine dependence represents a significant problem in both clinical practice and preclinical research, particularly in modeling the pharmacodynamics of withdrawal. Rodent models remain indispensable for investigating [...] Read more.
Background/Objectives: Substance use disorders, particularly opioid addiction, continue to pose a major global health and toxicological challenge. Morphine dependence represents a significant problem in both clinical practice and preclinical research, particularly in modeling the pharmacodynamics of withdrawal. Rodent models remain indispensable for investigating the neurotoxicological effects of chronic opioid exposure and withdrawal. However, conventional behavioral assessments rely on manual observation, limiting objectivity, reproducibility, and scalability—critical constraints in modern drug toxicity evaluation. This study introduces MWB_Analyzer, an automated and high-throughput system designed to quantitatively and objectively assess morphine withdrawal behaviors in rats. The goal is to enhance toxicological assessments of CNS-active substances through robust, scalable behavioral phenotyping. Methods: MWB_Analyzer integrates optimized multi-angle video capture, real-time signal processing, and machine learning-driven behavioral classification. An improved YOLO-based architecture was developed for the accurate detection and categorization of withdrawal-associated behaviors in video frames, while a parallel pipeline processed audio signals. The system incorporates behavior-specific duration thresholds to isolate pharmacologically and toxicologically relevant behavioral events. Experimental animals were assigned to high-dose, low-dose, and control groups. Withdrawal was induced and monitored under standardized toxicological protocols. Results: MWB_Analyzer achieved over 95% reduction in redundant frame processing, markedly improving computational efficiency. It demonstrated high classification accuracy: >94% for video-based behaviors (93% on edge devices) and >92% for audio-based events. The use of behavioral thresholds enabled sensitive differentiation between dosage groups, revealing clear dose–response relationships and supporting its application in neuropharmacological and neurotoxicological profiling. Conclusions: MWB_Analyzer offers a robust, reproducible, and objective platform for the automated evaluation of opioid withdrawal syndromes in rodent models. It enhances throughput, precision, and standardization in addiction research. Importantly, this tool supports toxicological investigations of CNS drug effects, preclinical pharmacokinetic and pharmacodynamic evaluations, drug safety profiling, and regulatory assessment of novel opioid and CNS-active therapeutics. Full article
(This article belongs to the Section Drugs Toxicity)
Show Figures

Graphical abstract

12 pages, 2053 KiB  
Article
Distalization with Clear Aligners: Accuracy, Impact of Mini-Screws, and Clinical Outcomes
by Teresa Pinho, Diana Melo, Sofia Ferreira and Maria Gonçalves
Dent. J. 2025, 13(7), 316; https://doi.org/10.3390/dj13070316 - 14 Jul 2025
Viewed by 139
Abstract
Background: Distalization is a fundamental orthodontic strategy for correcting Class II and Class III malocclusions, particularly in cases where specific dental or skeletal conditions favor its application. Recent technological advances have enabled complex dental movements to be performed using clear aligners, aided by [...] Read more.
Background: Distalization is a fundamental orthodontic strategy for correcting Class II and Class III malocclusions, particularly in cases where specific dental or skeletal conditions favor its application. Recent technological advances have enabled complex dental movements to be performed using clear aligners, aided by digital planning platforms such as ClinCheck®. Methods: This retrospective study aimed to evaluate the accuracy of ClinCheck® in predicting molar and canine distalization outcomes with the Invisalign® system and to identify clinical factors influencing treatment predictability. Thirty patients with complete permanent dentition and at least 2 mm of programmed distalization were selected. Planned movements were extracted from the Invisalign® Doctor Site and compared to achieved outcomes using Geomagic® Control X™ software. Occlusal improvements were assessed using the Peer Assessment Rating (PAR) indexResults: The results revealed significant discrepancies between the programmed and achieved distalization, with mean deviations greater than 1 mm in both arches. Skeletal anchorage with mini-screws significantly improved distalization outcomes in the maxillary arch; however, no significant effect was observed in the mandibular arch. Additionally, no significant associations were found between distalization outcomes and skeletal pattern (ANB angle) or facial biotype. Conclusions: Clear aligners are effective in achieving substantial occlusal improvements, particularly when combined with personalized digital planning and supplementary strategies such as skeletal anchorage. Mandibular cases demonstrated greater reductions in PAR scores, emphasizing the potential of aligners in complex distalization treatments. Full article
Show Figures

Figure 1

42 pages, 5471 KiB  
Article
Optimising Cyclist Road-Safety Scenarios Through Angle-of-View Analysis Using Buffer and GIS Mapping Techniques
by Zahra Yaghoobloo, Giuseppina Pappalardo and Michele Mangiameli
Infrastructures 2025, 10(7), 184; https://doi.org/10.3390/infrastructures10070184 - 11 Jul 2025
Viewed by 136
Abstract
In the present era, achieving sustainability requires the development of planning strategies to develop a safer urban infrastructure. This study examines the realistic aspects of cyclist safety by analysing cyclists’ fields of view, using Geographic Information Systems (GIS) and spatial data analysis. The [...] Read more.
In the present era, achieving sustainability requires the development of planning strategies to develop a safer urban infrastructure. This study examines the realistic aspects of cyclist safety by analysing cyclists’ fields of view, using Geographic Information Systems (GIS) and spatial data analysis. The research introduces novel geoprocessing tools-based GIS techniques that mathematically simulate cyclists’ angles of view and the distances to nearby environmental features. It provides precise insights into some potential hazards and infrastructure challenges encountered while cycling. This research focuses on managing and analysing the data collected, utilising OpenStreetMap (OSM) as vector-based supporting data. It integrates cyclists’ behavioural data with the urban environmental features encountered, such as intersections, road design, and traffic controls. The analysis is categorised into specific classes to evaluate the impacts of these aspects of the environment on cyclists’ behaviours. The current investigation highlights the importance of integrating the objective environmental elements surrounding the route with subjective perceptions and then determining the influence of these environmental elements on cyclists’ behaviours. Unlike previous studies that ignore cyclists’ visual perspectives in the context of real-world data, this work integrates objective GIS data with cyclists’ field of view-based modelling to identify high-risk areas and highlight the need for enhanced safety measures. The proposed approach equips urban planners and designers with data-informed strategies for creating safer cycling infrastructure, fostering sustainable mobility, and mitigating urban congestion. Full article
Show Figures

Figure 1

15 pages, 684 KiB  
Article
Differences in Kinematic and Muscle Activity Between ACL Injury Risk and Healthy Players in Female Football: Influence of Change of Direction Amplitude in a Cross-Sectional Case–Control Study
by Loreto Ferrández-Laliena, Lucía Vicente-Pina, Rocío Sánchez-Rodríguez, Graham J Chapman, Jose Heredia-Jimenez, César Hidalgo-García, José Miguel Tricás-Moreno and María Orosia Lucha-López
Medicina 2025, 61(7), 1259; https://doi.org/10.3390/medicina61071259 - 11 Jul 2025
Viewed by 108
Abstract
Background and Objectives: Anterior cruciate ligament (ACL) injury rates remain high and have a significant impact on female football players. This study aims to evaluate knee kinematics and lower limb muscle activity in players at risk of ACL injury compared to healthy [...] Read more.
Background and Objectives: Anterior cruciate ligament (ACL) injury rates remain high and have a significant impact on female football players. This study aims to evaluate knee kinematics and lower limb muscle activity in players at risk of ACL injury compared to healthy players through three side-cutting tests. It also investigates how the amplitude of a change in direction influences stabilization parameters. Materials and Methods: A cross-sectional case–control study was conducted with 16 second division female futsal players (23.93 ± 5.16 years), divided into injured (n = 8) and healthy groups (n = 8). Injured players had a history of non-contact knee injury involving valgus collapse, without undergoing surgical intervention. Three change of direction tests, namely the Change of Direction and Acceleration Test (CODAT), Go Back (GOB) test, and Turn (TURN) test, were used for evaluation. The peak and range of knee joint angles and angular velocities across three planes, along with the average rectified and peak envelope EMG signals of the Biceps Femoris (BF), Semitendinosus (ST), Vastus Medialis (VM), and Lateral Gastrocnemius (LG), were recorded during the preparation and load phases. Group differences were analyzed using two-factor mixed-model ANOVA with pairwise comparisons. Statistical significance was set at p < 0.05. Results: Injured players demonstrated lower external tibial rotation angular velocity and a greater range of motion in tibial external rotation compared to healthy players. Additionally, the injured group showed significantly higher average rectified muscle activity in VM and LG both increased by 4% during the load phase. The CODAT and TURN tests elicited higher BF and VM muscle activity, compared to the GOB test. The TURN test also showed greater extension angular velocity in the sagittal plane. Conclusions: The results revealed differences in knee kinematics and muscle activity between players at risk of ACL injury and healthy players, influenced by the amplitude of directional changes. Players altered transverse plane mechanics and increased VM and LG activation during LOAD may reflect a dysfunctional motor pattern, while the greater sagittal plane angular velocity and VM and BF activation from the CODAT and the TURN test highlight their higher potential to replicate ACL injury mechanisms compared to the GOB test. Full article
(This article belongs to the Section Sports Medicine and Sports Traumatology)
Show Figures

Figure 1

21 pages, 1592 KiB  
Article
Shear Strength of Rock Discontinuities with Emphasis on the Basic Friction Angle Based on a Compiled Database
by Mahdi Zoorabadi and José Muralha
Geotechnics 2025, 5(3), 48; https://doi.org/10.3390/geotechnics5030048 - 11 Jul 2025
Viewed by 299
Abstract
The shear strength of rock discontinuities is a critical parameter in rock engineering projects for assessing the safety conditions of rock slopes or concrete dam foundations. It is primarily controlled by the frictional contribution of rock texture (basic friction angle), the roughness of [...] Read more.
The shear strength of rock discontinuities is a critical parameter in rock engineering projects for assessing the safety conditions of rock slopes or concrete dam foundations. It is primarily controlled by the frictional contribution of rock texture (basic friction angle), the roughness of discontinuities, and the applied normal stress. While proper testing is essential for accurately quantifying shear strength, engineering geologists and engineers often rely on published historical databases during early design stages or when test results show significant variability. This paper serves two main objectives. First, it intends to provide a comprehensive overview of the basic friction angle concept from early years until its emergence in the Barton criterion, along with insights into distinctions and misunderstandings between basic and residual friction angles. The other, given the influence of the basic friction angle for the entire rock joint shear strength, the manuscript offers an extended database of basic friction angle values. Full article
Show Figures

Figure 1

12 pages, 1070 KiB  
Article
Reproducibility of Breech Progression Angle: Standardization of Transperineal Measurements and Development of Image-Based Checklist for Quality Control
by Ana M. Fidalgo, Adriana Aquise, Francisca S. Molina, Aly Youssef, Otilia González-Vanegas, Elena Brunelli, Ilaria Cataneo, Maria Segata, Marcos J. Cuerva, Valeria Rolle and Maria M. Gil
Diagnostics 2025, 15(14), 1757; https://doi.org/10.3390/diagnostics15141757 - 11 Jul 2025
Viewed by 206
Abstract
Objectives: To evaluate the reproducibility of measurements of breech progression angle (BPA) by transperineal ultrasound (US) before and after its standardization by applying an image-based checklist. Methods: Eighteen 3-dimensional (3D) volumes of transperineal US from women at 36–40 weeks of gestation with a [...] Read more.
Objectives: To evaluate the reproducibility of measurements of breech progression angle (BPA) by transperineal ultrasound (US) before and after its standardization by applying an image-based checklist. Methods: Eighteen 3-dimensional (3D) volumes of transperineal US from women at 36–40 weeks of gestation with a singleton fetus in breech presentation were provided to eight operators from four maternity units in Spain and Italy. All operators measured the BPA using 3D US volume processing software, and interobserver reproducibility was evaluated using the intraclass correlation coefficient (ICC). Following an online live review of all measurements by the operators, and the identification of sources of disagreement, an image-based scoring system for BPA measurement was collaboratively developed. The checklist included the following: (1) acquisition in the midsagittal plane, avoiding the posterior shadow of the pubic ramus; (2) visualization of the complete “almond-shaped” pubic symphysis; (3) drawing a first line along the longitudinal axis of the symphysis, dividing it equally; (4) extending this line to the inferior edge of the bone; and (5) drawing a second line tangentially from the lower edge of the symphysis to the lowest recognizable fetal part. The BPA measurements were then repeated using this checklist, and reproducibility was reassessed. Results: Eighteen volumes were analyzed by the eight operators, achieving a moderate reproducibility (ICC: 0.70, 95% confidence interval (CI): 0.48 to 0.86). A score was developed to include a series of landmarks for the appropriate assessment of BPA. Subsequently, the same eighteen volumes were reassessed using the new score, resulting in improved reproducibility (ICC: 0.81, 95% CI: 0.66 to 0.92). Conclusions: The measurement of BPA is feasible and reproducible when using a standardized image-based score. Full article
(This article belongs to the Special Issue Advances in Gynecological and Pediatric Imaging)
Show Figures

Figure 1

18 pages, 12097 KiB  
Article
Adaptive Outdoor Cleaning Robot with Real-Time Terrain Perception and Fuzzy Control
by Raul Fernando Garcia Azcarate, Akhil Jayadeep, Aung Kyaw Zin, James Wei Shung Lee, M. A. Viraj J. Muthugala and Mohan Rajesh Elara
Mathematics 2025, 13(14), 2245; https://doi.org/10.3390/math13142245 - 10 Jul 2025
Viewed by 269
Abstract
Outdoor cleaning robots must operate reliably across diverse and unstructured surfaces, yet many existing systems lack the adaptability to handle terrain variability. This paper proposes a terrain-aware cleaning framework that dynamically adjusts robot behavior based on real-time surface classification and slope estimation. A [...] Read more.
Outdoor cleaning robots must operate reliably across diverse and unstructured surfaces, yet many existing systems lack the adaptability to handle terrain variability. This paper proposes a terrain-aware cleaning framework that dynamically adjusts robot behavior based on real-time surface classification and slope estimation. A 128-channel LiDAR sensor captures signal intensity images, which are processed by a ResNet-18 convolutional neural network to classify floor types as wood, smooth, or rough. Simultaneously, pitch angles from an onboard IMU detect terrain inclination. These inputs are transformed into fuzzy sets and evaluated using a Mamdani-type fuzzy inference system. The controller adjusts brush height, brush speed, and robot velocity through 81 rules derived from 48 structured cleaning experiments across varying terrain and slopes. Validation was conducted in low-light (night-time) conditions, leveraging LiDAR’s lighting-invariant capabilities. Field trials confirm that the robot responds effectively to environmental conditions, such as reducing speed on slopes or increasing brush pressure on rough surfaces. The integration of deep learning and fuzzy control enables safe, energy-efficient, and adaptive cleaning in complex outdoor environments. This work demonstrates the feasibility and real-world applicability for combining perception and inference-based control in terrain-adaptive robotic systems. Full article
(This article belongs to the Special Issue Research and Applications of Neural Networks and Fuzzy Logic)
Show Figures

Figure 1

23 pages, 3747 KiB  
Article
Design Optimization and Performance Evaluation of an Automated Pelleted Feed Trough for Sheep Feeding Management
by Xinyu Gao, Chuanzhong Xuan, Jianxin Zhao, Yanhua Ma, Tao Zhang and Suhui Liu
Agriculture 2025, 15(14), 1487; https://doi.org/10.3390/agriculture15141487 - 10 Jul 2025
Viewed by 205
Abstract
The automatic feeding device is crucial in grassland livestock farming, enhancing feeding efficiency, ensuring regular and accurate feed delivery, minimizing waste, and reducing costs. The shape and size of pellet feed render it particularly suitable for the delivery mechanism of automated feeding troughs. [...] Read more.
The automatic feeding device is crucial in grassland livestock farming, enhancing feeding efficiency, ensuring regular and accurate feed delivery, minimizing waste, and reducing costs. The shape and size of pellet feed render it particularly suitable for the delivery mechanism of automated feeding troughs. The uniformity of pellet flow is a critical factor in the study of automatic feeding troughs, and optimizing the movement characteristics of the pellets contributes to enhanced operational efficiency of the equipment. However, existing research often lacks a systematic analysis of the pellet size characteristics (such as diameter and length) and flow behavior differences in pellet feed, which limits the practical application of feed troughs. This study optimized the angle of repose and structural parameters of the feeding trough using Matlab simulations and discrete element modeling. It explored how the stock bin slope and baffle opening height influence pellet feed flow characteristics. A programmable logic controller (PLC) and human–machine interface (HMI) were used for precise timing and quantitative feeding, validating the design’s practicality. The results indicated that the Matlab method could calibrate the Johnson–Kendall–Roberts (JKR) model’s surface energy. The optimal slope was found to be 63°, with optimal baffle heights of 28 mm for fine and medium pellets and 30 mm for coarse pellets. The experimental metrics showed relative errors of 3.5%, 2.8%, and 4.2% (for average feed rate) and 8.2%, 7.3%, and 1.2% (for flow time). The automatic feeding trough showed a feeding error of 0.3% with PLC-HMI. This study’s optimization of the automatic feeding trough offers a strong foundation and guidance for efficient, accurate pellet feed distribution. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

Back to TopTop