Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,051)

Search Parameters:
Keywords = anchoring efficiency

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
12 pages, 1810 KB  
Article
Polyethyleneimine-Assisted Fabrication of Poly(Lactic-Co-Glycolic Acid) Nanoparticles Loaded with Tamibarotene (Am80) for Meflin Expression Upregulation
by Tomoya Inose, Tadashi Iida, Hiroki Kawashima, Atsushi Enomoto, Maki Nakamura and Ayako Oyane
J. Funct. Biomater. 2025, 16(10), 368; https://doi.org/10.3390/jfb16100368 - 1 Oct 2025
Abstract
Tamibarotene (Am80) is a promising anti-tumor drug that induces the expression of Meflin (a glycosylphosphatidyl inositol-anchored protein) in cancer-associated fibroblasts, thereby improving the tumor microenvironment. However, Am80, which is approved only for oral administration owing to its poor water solubility, has the challenge [...] Read more.
Tamibarotene (Am80) is a promising anti-tumor drug that induces the expression of Meflin (a glycosylphosphatidyl inositol-anchored protein) in cancer-associated fibroblasts, thereby improving the tumor microenvironment. However, Am80, which is approved only for oral administration owing to its poor water solubility, has the challenge of poor tumor penetration. In this study, we developed poly(lactic-co-glycolic acid) nanoparticles loaded with Am80 (Am80–PLGA nanoparticles) as a potential intravenous drug for targeted Am80 delivery to the tumor site. The Am80–PLGA nanoparticles were fabricated using the single-emulsion method in the presence of cationic polyethyleneimine (PEI). The loading efficiency of Am80 in the nanoparticles was controlled by tuning the PEI concentration in the preparation mixture. Nanoparticles with the highest Am80-loading efficiency were dispersible and showed a hydrodynamic diameter of approximately 190 nm in phosphate-buffered saline for up to 2 weeks. The Am80 release from the nanoparticles started in a day and lasted for weeks. The nanoparticles upregulated Meflin expression in human fibroblasts (fHDF/TERT166 cells). These results suggest the potential of Am80–PLGA nanoparticles as a new intravenous anti-tumor drug that can improve the tumor microenvironment, thereby enhancing the efficacy of chemotherapy and immunotherapy. Full article
Show Figures

Figure 1

23 pages, 4248 KB  
Article
Experimental Verification of Anchor Tip Angles Suitable for Vibratory Penetration into Underwater Saturated Soft Soil
by Akira Ofuchi, Daisuke Fujiwara, Tomohiro Watanabe, Noriaki Mizukami, Yasuhiro Kuwahara, Koji Miyoshi and Kojiro Iizuka
Geotechnics 2025, 5(4), 68; https://doi.org/10.3390/geotechnics5040068 - 1 Oct 2025
Abstract
Currently, Japan’s fishing industry is facing a severe decline in its workforce. As a response, fishing mechanization using small underwater robots is promoted. These robots offer advantages due to their compact size, although their operating time is limited. A major source of this [...] Read more.
Currently, Japan’s fishing industry is facing a severe decline in its workforce. As a response, fishing mechanization using small underwater robots is promoted. These robots offer advantages due to their compact size, although their operating time is limited. A major source of this limited operating time is posture stabilization, which requires continuous thruster use and rapidly drains the battery. To reduce power consumption, anchoring the robot to the seabed with anchors is proposed. However, due to neutral buoyancy, the available thrust is limited, making penetration into the seabed difficult and reducing stability. To address this, we focus on composite-shaped anchors and vibration. The anchors combine a conical tip and a cylindrical shaft to achieve both penetrability and holding force. However, a trade-off exists between these functions depending on the tip angle; anchors with larger angles provide better holding capacity but lower penetrability. To overcome this limitation, vibration is applied to reduce soil resistance and facilitate anchor penetration. While vibration is known to aid penetration in saturated soft soils, the effect of tip angle under such conditions remains unclear. This study aims to clarify the optimal tip angle for achieving sufficient penetration and holding performance under vibratory conditions. Experiments in underwater saturated soft soil showed that vibration improves both penetration and holding. This effect was strong in anchors with tip angles optimized for holding force. These findings support the development of energy-efficient anchoring systems for autonomous underwater operations in soft seabed environments. Full article
(This article belongs to the Special Issue Recent Advances in Geotechnical Engineering (3rd Edition))
Show Figures

Figure 1

15 pages, 1772 KB  
Article
Towards a Porous Zinc Anode Design for Enhanced Durability in Alkaline Zinc–Air Batteries
by Sarmila Dutta, Yasin Emre Durmus, Eunmi Im, Hans Kungl, Hermann Tempel and Rüdiger-A. Eichel
Batteries 2025, 11(10), 359; https://doi.org/10.3390/batteries11100359 - 29 Sep 2025
Abstract
The commercialization of rechargeable alkaline zinc–air batteries has been constrained by critical challenges associated with the zinc electrode, including passivation, dendrite growth, and hydrogen evolution reaction. These issues severely limit the cycle life and pose a major barrier to large-scale industrial deployment. Integration [...] Read more.
The commercialization of rechargeable alkaline zinc–air batteries has been constrained by critical challenges associated with the zinc electrode, including passivation, dendrite growth, and hydrogen evolution reaction. These issues severely limit the cycle life and pose a major barrier to large-scale industrial deployment. Integration of porous anode structures and electrode additives—two widely investigated approaches for mitigating challenges related to zinc anode—shows significant promise. However, effectively combining these approaches remains challenging. This study introduces a method for fabricating zinc anodes that can combine the benefits of a porous structure and electrode additive. The polytetrafluoroethylene (PTFE) polymer binder used in fabricating the anode material resulted in a stable scaffold, providing the desired anode porosity of approximately 60% and effectively anchoring ZnO nanoparticles. The zinc anodes prepared using a nickel mesh current collector without any electrode additives demonstrated stable cycling performance, sustaining 350 cycles at a current density of 60 mA gZn−1 with a coulombic efficiency of approximately 95%. Incorporating 2 wt.% Bi2O3 as an electrode additive further enhanced the cycling performance, achieving 200 stable cycles with 100% coulombic efficiency under an increased current density of 120 mA gZn−1, signifying the effectiveness of the proposed fabrication strategy. Full article
Show Figures

Figure 1

20 pages, 31775 KB  
Review
Deep Learning Approaches for Automatic Livestock Detection in UAV Imagery: State-of-the-Art and Future Directions
by Muhammad Adam, Jianchao Song, Wei Yu and Qingqing Li
Future Internet 2025, 17(9), 431; https://doi.org/10.3390/fi17090431 - 21 Sep 2025
Viewed by 275
Abstract
Accurate livestock monitoring is critical for precision agriculture, supporting effective farm management, disease prevention, and sustainable resource allocation. Deep learning and remote sensing are recent technological advancements that have created auspicious opportunities for the development of livestock monitoring systems. This paper presents a [...] Read more.
Accurate livestock monitoring is critical for precision agriculture, supporting effective farm management, disease prevention, and sustainable resource allocation. Deep learning and remote sensing are recent technological advancements that have created auspicious opportunities for the development of livestock monitoring systems. This paper presents a comprehensive survey of deep learning approaches for automatic livestock detection in unmanned aerial vehicles (UAVs), highlighting key deep learning techniques, livestock detection challenges, and emerging trends. We analyze the innovations of popular deep learning models in the area of object detection, including You Look Only Once (YOLO) versions, Region-based Convolutional Neural Networks (RCNN), Anchor-based networks, and transformer models, to discuss their suitability for scalable and cost-efficient UAV-based livestock detection scenarios. To complement the survey, a case study is conducted on a custom UAV cattle dataset to benchmark representation detection models. Evaluation results demonstrate a trade-off between Precision, Recall, F1 score, IoU, mAP@50, mAP@50-95, inference speed, and model size. The case study results provide a clear understanding of selection and adapting deep learning models for UAV-based livestock monitoring and outline future directions for lightweight, domain-adapted frameworks in precision farming applications. Full article
Show Figures

Figure 1

16 pages, 5624 KB  
Article
Low Threshold Voltage and Programmable Patterned Polymer-Dispersed Liquid Crystal Smart Windows
by Zhichao Ji, Zhenyuan Wang, Hongxu Jin, Xinying Cui, Meijun Liu, Tianzhen Chen, Lei Wang, Haibin Sun, Taoufik Soltani and Xinzheng Zhang
Polymers 2025, 17(18), 2531; https://doi.org/10.3390/polym17182531 - 19 Sep 2025
Viewed by 371
Abstract
Polymer-dispersed liquid crystal (PDLC) smart windows hold significant potential for energy-efficient buildings and vehicles, offering a promising pathway toward carbon neutrality. However, their widespread applications are hindered by critical limitations, including high driving voltages and the inability to achieve programmable patterning or multi-region [...] Read more.
Polymer-dispersed liquid crystal (PDLC) smart windows hold significant potential for energy-efficient buildings and vehicles, offering a promising pathway toward carbon neutrality. However, their widespread applications are hindered by critical limitations, including high driving voltages and the inability to achieve programmable patterning or multi-region addressable control. To address these challenges, we propose a pre-orientation strategy via low-voltage electric field (5 V, 1 kHz), which optimizes liquid crystal molecular alignment during the phase separation process. Vertically aligned liquid crystal molecules in the polymer network with enlarged pore structures reduce anchoring energy barriers for LC molecular reorientation, causing a 61.2% reduction in threshold voltage (Vth) from 20.6 V to 8.0 V. Crucially, a programmable patterned PDLC film is successfully fabricated by utilizing cost-effective photomasks. Due to the different Vth of the corresponding regions, the patterned PDLC film exhibits stepwise control modes of light transmission: patterned scattering state, patterned transparent state and total transparent state, driven by incremental voltages. Our method can achieve not only energy-efficient tunable patterns for esthetic designs (e.g., logos or images) but also a scalable platform for multi-level optical modulation, which will advance PDLC technology toward low-voltage adaptive smart windows and open avenues for intelligent architectures and broadening their application scenarios. Full article
(This article belongs to the Special Issue Advances in Luminescent Polymers)
Show Figures

Graphical abstract

14 pages, 2458 KB  
Article
Dual Enhancement of Optoelectronic and Mechanical Performance in Perovskite Solar Cells Enabled by Nanoplate-Structured FTO Interfaces
by Ruichen Tian, Aldrin D. Calderon, Quanrong Fang and Xiaoyu Liu
Nanomaterials 2025, 15(18), 1430; https://doi.org/10.3390/nano15181430 - 18 Sep 2025
Viewed by 230
Abstract
Perovskite solar cells (PSCs) rarely report, on a single-device platform, concurrent gains in optoelectronic efficiency and buried-interface mechanical robustness—two prerequisites for flexible and roll-to-roll (R2R) integration. We engineered a nanoplate-structured fluorine-doped tin oxide (NP-FTO) front electrode that couples light management with three-dimensional interfacial [...] Read more.
Perovskite solar cells (PSCs) rarely report, on a single-device platform, concurrent gains in optoelectronic efficiency and buried-interface mechanical robustness—two prerequisites for flexible and roll-to-roll (R2R) integration. We engineered a nanoplate-structured fluorine-doped tin oxide (NP-FTO) front electrode that couples light management with three-dimensional interfacial anchoring, and we quantified both photovoltaic (PV) and nanomechanical metrics on the same device stack. Relative to planar FTO, the NP-FTO PSCs achieved PCE of up to 25.65%, with simultaneous improvements in Voc (to 1.196 V), Jsc (up to 26.35 mA cm−2), and FF (to 82.65%). Nanoindentation revealed a ~28% increase in reduced modulus and >70% higher hardness, accompanied by a ~32% reduction in maximum indentation depth, indicating enhanced load-bearing capacity consistent with the observed FF gains. The low-temperature, solution-compatible NP-FTO interface is amenable to R2R manufacturing and flexible substrates, offering a unified route to bridge high PCE with reinforced interfacial mechanics toward integration-ready perovskite modules. Full article
Show Figures

Figure 1

19 pages, 1056 KB  
Article
An Integrated Delphi-AHP Study on the Systematic Improvement of Sea Anchors for Fishing Operations
by Namgu Kim, Youngjae Yu, Yoo-Won Lee and Kyung-Jin Ryu
J. Mar. Sci. Eng. 2025, 13(9), 1796; https://doi.org/10.3390/jmse13091796 - 17 Sep 2025
Viewed by 281
Abstract
Sea anchors for fishing operations are essential equipment to enhance catch efficiency and ensure operational stability at sea. However, previous studies have mainly focused on theoretical modeling or experiments under restricted conditions, which have not sufficiently reflected the complex operating environments and practical [...] Read more.
Sea anchors for fishing operations are essential equipment to enhance catch efficiency and ensure operational stability at sea. However, previous studies have mainly focused on theoretical modeling or experiments under restricted conditions, which have not sufficiently reflected the complex operating environments and practical needs of real-world fisheries. To address this gap, this study derived key factors to improve the design and operation of sea anchors and quantitatively analyze the relative importance and rank of these factors. An expert panel was formed from 25 participants, including jigging vessel captains, recreational fishing boat captains, sea anchor manufacturers, and research institute workers. Using a three-round Delphi process followed by Analytic Hierarchy Process (AHP) analysis, we distilled an initial list of 52 improvement suggestions into 15 prioritized items, quantitatively ranked by relative importance based on expert consensus. The highest-ranked factor was ‘Enhancement of fabric drying performance’, followed by ‘Application of low-cost, high-efficiency materials’, ‘Improvement of recovery’, ‘Enhancement of UV resistance’, and ‘Product quality certification’. The highest-weighted metric was ‘Improvement of usability’, followed by ‘Enhanced durability’ and ‘Improvement of functionality’. The consistency ratio (CR) of the pairwise-comparison matrix was 0.0014 (AHP acceptability criterion: CR ≤ 0.1), confirming the reliability and consistency of the analysis. By reflecting real-world priorities through a robust and systematic analytical process, this study offers a foundation for evidence-based improvements in sea anchor design and operation, overcoming the limitations of earlier approaches rooted in subjective judgment or trial-and-error experience. Full article
(This article belongs to the Special Issue Marine Fishing Gear and Aquacultural Engineering)
Show Figures

Figure 1

16 pages, 1287 KB  
Article
Thymidine-Inosine Dimer Building Block for Reversible Modification of Synthetic Oligonucleotides
by Natalia A. Kolganova, Irina V. Varizhuk, Andrey A. Stomakhin, Marat M. Khisamov, Pavel N. Solyev, Sergei A. Surzhikov and Edward N. Timofeev
Molecules 2025, 30(18), 3769; https://doi.org/10.3390/molecules30183769 - 17 Sep 2025
Viewed by 268
Abstract
Modification of synthetic oligonucleotides and DNA is widely used in many applications in the life sciences. However, in most cases, modified DNA cannot be restored to its native state. Here, we report the preparation of a thymidine-inosine dimer building block (TID) for oligonucleotide [...] Read more.
Modification of synthetic oligonucleotides and DNA is widely used in many applications in the life sciences. However, in most cases, modified DNA cannot be restored to its native state. Here, we report the preparation of a thymidine-inosine dimer building block (TID) for oligonucleotide synthesis. The TID modification supports the functionalization of synthetic oligonucleotides, which can later be removed to restore the DNA strand to its native state. The TID unit allows for a wide spectrum of postsynthetic modifications of oligonucleotides through click chemistry, including conjugation with fluorescent tags and small molecules, preparation of branched oligonucleotide scaffolds, and anchoring to a solid support. Due to the modification of the thymine base, the TID unit reduces the stability of the DNA duplex. We found that the negative effect of internal TID modification on duplex stability does not exceed the same for a single base mismatch. As long as the TID modification is present in the DNA strand, it disrupts its natural functionality. The “caging” effect of TID in the template strand with respect to DNA polymerase was demonstrated in primer extension experiments. Traceless removal of the temporary functional group occurs through oxidative cleavage of the inosine subunit, resulting in the formation of a native DNA strand with the thymine base left at the cleavage site. An anthracene-modified dodecamer oligonucleotide and a branched oligonucleotide scaffold were used to study the cleavage of the reporter group or the oligonucleotide side strand, respectively. It was shown that aqueous tetramethylguanidine efficiently cleaves the oxidized inosine subunit of TID at 37 °C, forming the native DNA strand. Full article
(This article belongs to the Special Issue Chemistry of Nucleosides and Nucleotides and Their Analogues)
Show Figures

Figure 1

20 pages, 55265 KB  
Article
Learning Precise Mask Representation for Siamese Visual Tracking
by Peng Yang, Fen Hu, Qinghui Wang and Lei Dou
Sensors 2025, 25(18), 5743; https://doi.org/10.3390/s25185743 - 15 Sep 2025
Viewed by 387
Abstract
Siamese network trackers are a prominent paradigm in visual object tracking due to efficient similarity learning. However, most Siamese trackers are restricted to the bounding box tracking format, which often fails to accurately describe the appearance of non-rigid targets with complex deformations. Additionally, [...] Read more.
Siamese network trackers are a prominent paradigm in visual object tracking due to efficient similarity learning. However, most Siamese trackers are restricted to the bounding box tracking format, which often fails to accurately describe the appearance of non-rigid targets with complex deformations. Additionally, since the bounding box frequently includes excessive background pixels, trackers are sensitive to similar distractors. To address these issues, we propose a novel segmentation-assisted model that learns binary mask representations of targets. This model is generic and can be seamlessly integrated into various Siamese frameworks, enabling pixel-wise segmentation tracking instead of the suboptimal bounding box tracking. Specifically, our model features two core components: (i) a multi-stage precise mask representation module composed of cascaded U-Net decoders, designed to predict segmentation masks of targets, and (ii) a saliency localization head based on the Euclidean model, which extracts spatial position constraints to boost the decoder’s discriminative capability. Extensive experiments on five tracking benchmarks demonstrate that our method effectively improves the performance of both anchor-based and anchor-free Siamese trackers. Notably, on GOT-10k, our method increases the AO scores of the baseline trackers SiamRPN++ (anchor-based) and SiamBAN (anchor-free) by 5.2% and 7.5%, respectively while maintaining speeds exceeding 60 FPS. Full article
(This article belongs to the Special Issue Deep Learning Technology and Image Sensing: 2nd Edition)
Show Figures

Figure 1

13 pages, 1078 KB  
Article
Surface Display of Human GM-CSF in Methylotrophic Yeasts
by Olena Dmytruk, Nataliya Finiuk, Rostyslav Stoika, Andriy Sibirny and Kostyantyn Dmytruk
Appl. Microbiol. 2025, 5(3), 98; https://doi.org/10.3390/applmicrobiol5030098 - 15 Sep 2025
Viewed by 196
Abstract
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important therapeutic cytokine. Methylotrophic yeasts such as Komagataella phaffii and Ogataea parapolymorpha are attractive hosts for recombinant protein production. In this study, these yeasts were engineered to produce GM-CSF in both secreted and cell-surface-anchored forms. Secreted [...] Read more.
Human granulocyte-macrophage colony-stimulating factor (GM-CSF) is an important therapeutic cytokine. Methylotrophic yeasts such as Komagataella phaffii and Ogataea parapolymorpha are attractive hosts for recombinant protein production. In this study, these yeasts were engineered to produce GM-CSF in both secreted and cell-surface-anchored forms. Secreted GM-CSF accumulated to tens of milligrams per liter in culture supernatants following induction. Fluorescent antibody labeling confirmed that yeast strains expressing surface-displayed GM-CSF exhibited markedly increased fluorescence compared to parental strains. The highest signal was observed in K. phaffii and further validated by immunofluorescence microscopy. Functional assays demonstrated that K. phaffii cells displaying GM-CSF stimulated TF-1 cell proliferation 1.41-fold compared to control yeast lacking GM-CSF. These results confirm both the successful surface display and preserved biological activity of the cytokine. This work demonstrates the feasibility of engineering K. phaffii to present active human GM-CSF on the cell surface. Surface display was efficient and yielded biologically functional cytokine, as shown by fluorescence-based quantification and TF-1 proliferation assays. The study highlights yeast surface display as a promising platform for delivering therapeutic cytokines without requiring purification steps. Full article
Show Figures

Figure 1

22 pages, 8527 KB  
Article
MCEM: Multi-Cue Fusion with Clutter Invariant Learning for Real-Time SAR Ship Detection
by Haowei Chen, Manman He, Zhen Yang and Lixin Gan
Sensors 2025, 25(18), 5736; https://doi.org/10.3390/s25185736 - 14 Sep 2025
Viewed by 416
Abstract
Small-vessel detection in Synthetic Aperture Radar (SAR) imagery constitutes a critical capability for maritime surveillance systems. However, prevailing methodologies such as sea-clutter statistical models and deep learning-based detectors face three fundamental limitations: weak target scattering signatures, complex sea clutter interference, and computational inefficiency. [...] Read more.
Small-vessel detection in Synthetic Aperture Radar (SAR) imagery constitutes a critical capability for maritime surveillance systems. However, prevailing methodologies such as sea-clutter statistical models and deep learning-based detectors face three fundamental limitations: weak target scattering signatures, complex sea clutter interference, and computational inefficiency. These challenges create inherent trade-offs between noise suppression and feature preservation while hindering high-resolution representation learning. To address these constraints, we propose the Multi-cue Efficient Maritime detector (MCEM), an anchor-free framework integrating three synergistic components: a Feature Extraction Module (FEM) with scale-adaptive convolutions for enhanced signature representation; a Feature Fusion Module (F2M) decoupling target-background ambiguities; and a Detection Head Module (DHM) optimizing accuracy-efficiency balance. Comprehensive evaluations demonstrate MCEM’s state-of-the-art performance: achieving 45.1% APS on HRSID (+2.3pp over YOLOv8) and 77.7% APL on SSDD (+13.9pp over same baseline), the world’s most challenging high-clutter SAR datasets. The framework enables robust maritime surveillance in complex oceanic conditions, particularly excelling in small target detection amidst high clutter. Full article
(This article belongs to the Section Sensing and Imaging)
Show Figures

Figure 1

23 pages, 2150 KB  
Article
Trajectory-Regularized Localization in Asynchronous Acoustic Networks via Enhanced PSO Optimization
by Jingyi Zhou, Qiushi Zhao, Zihan Feng, Kunyu Wu, Lei Zhang and Hao Qin
Sensors 2025, 25(18), 5722; https://doi.org/10.3390/s25185722 - 13 Sep 2025
Viewed by 402
Abstract
Indoor localization of fast-moving targets under asynchronous acoustic sensing is severely constrained by non-line-of-sight (NLOS) propagation and sparse anchor deployments. To overcome these limitations, we propose a trajectory reconstruction-based framework that simultaneously exploits time-of-arrival (ToA) and frequency-of-arrival (FoA) measurements. By embedding temporal continuity [...] Read more.
Indoor localization of fast-moving targets under asynchronous acoustic sensing is severely constrained by non-line-of-sight (NLOS) propagation and sparse anchor deployments. To overcome these limitations, we propose a trajectory reconstruction-based framework that simultaneously exploits time-of-arrival (ToA) and frequency-of-arrival (FoA) measurements. By embedding temporal continuity and motion dynamics into the localization model, we cast the problem as a constrained nonlinear least squares optimization over the entire trajectory rather than isolated snapshots. To efficiently solve this high-dimensional problem, we design an enhanced particle swarm optimization (PSO) algorithm featuring adaptive phase switching and noise-resilient updates. Simulation results under varying noise conditions show that our method achieves superior accuracy and robustness compared to conventional least squares estimators, especially for high-speed trajectories. Real-world experiments using a passive acoustic testbed further validate the effectiveness of the proposed framework, with over 90% of localization errors confined within 3 m. The method is model-driven, training-free, and scalable to asynchronous and anchor-sparse environments. Full article
(This article belongs to the Section Navigation and Positioning)
Show Figures

Figure 1

26 pages, 6430 KB  
Article
Enhanced Lithology Recognition in Coal Mining: A Data-Driven Approach with DBO-BiLSTM and Wavelet Denoising
by Jian Cui, Ziwei Ding, Chaofan Zhang, Jiang Liu and Wenxing Zhang
Appl. Sci. 2025, 15(18), 9978; https://doi.org/10.3390/app15189978 - 12 Sep 2025
Viewed by 252
Abstract
This study investigates the relationship between anchor cable drilling parameters and roadway roof strata properties. The goal is to enable rapid and accurate rock type identification. Field-measured drilling data were processed using data cleaning and wavelet transform noise reduction. Four recognition models were [...] Read more.
This study investigates the relationship between anchor cable drilling parameters and roadway roof strata properties. The goal is to enable rapid and accurate rock type identification. Field-measured drilling data were processed using data cleaning and wavelet transform noise reduction. Four recognition models were developed and compared: LSTM (Long Short-Term Memory), BiLSTM (Bidirectional Long Short-Term Memory), DBO-LSTM (Dung Beetle Optimizer), and DBO-BiLSTM. The results demonstrate a strong correlation between vibration, pressure signals and rock strength, enabling the effective differentiation of rock types. All models performed exceptionally for coal seams with distinct features, achieving 100% accuracy, precision, recall, and F1 scores. Model performance improved with increased complexity for strata with subtle differences, such as sandstone and mudstone. The DBO-BiLSTM model outperformed others, showing significant improvements in accuracy, recall, and F1 score compared to LSTM, BiLSTM, and DBO-LSTM models. Specifically, accuracy improved by up to 9%, recall by 12.48%, and F1 score by 13.06%. These findings highlight the DBO-BiLSTM model’s superior recognition capability for roof strata drilling signals. This method provides a robust technical foundation for lithology identification in Measurement While Drilling (MWD) systems. It supports more precise and efficient roadway design in complex geological conditions. Full article
Show Figures

Figure 1

27 pages, 26151 KB  
Article
EfficientRDet: An EfficientDet-Based Framework for Precise Ship Detection in Remote Sensing Imagery
by Weikang Zuo and Shenghui Fang
Remote Sens. 2025, 17(18), 3160; https://doi.org/10.3390/rs17183160 - 11 Sep 2025
Viewed by 330
Abstract
Detecting arbitrarily oriented ships in remote sensing images remains challenging due to diverse orientations, complex backgrounds, and scale variations, leading to a struggle in balancing detector accuracy with efficiency. We propose EfficientRDet, an enhanced rotated-ship detection algorithm built upon the EfficientDet framework. EfficientRDet [...] Read more.
Detecting arbitrarily oriented ships in remote sensing images remains challenging due to diverse orientations, complex backgrounds, and scale variations, leading to a struggle in balancing detector accuracy with efficiency. We propose EfficientRDet, an enhanced rotated-ship detection algorithm built upon the EfficientDet framework. EfficientRDet adapts to rotated objects via an angle prediction branch and then significantly boosts accuracy with a novel pseudo-two-stage paradigm comprising a Rotated-Bounding-Box Refinement Branch (RRB) and a Class-Score Refinement Branch (CRB). Further precision is gained through an optimized Enhanced BiFPN (E-BiFPN), an Attention Head, and Distribution Focal (DF) angle representation. Extensive experiments on the HRSC2016 (optical) and RSDD-SAR datasets show that EfficientRDet consistently outperforms state-of-the-art methods, achieving 97.60% AP50 on HRSC2016 and 93.58% AP50 on RSDD-SAR. Comprehensive ablation studies confirm the effectiveness of all proposed mechanisms. EfficientRDet thus offers a promising and practical solution for precise, efficient ship detection across diverse remote sensing imagery. Full article
Show Figures

Figure 1

20 pages, 4917 KB  
Article
Innovative Seismic Strengthening of Reinforced Concrete Frames with U-Shaped Precast Concrete Wall Panels: Experimental Performance Assessment
by Sookyoung Ha
Buildings 2025, 15(18), 3273; https://doi.org/10.3390/buildings15183273 - 10 Sep 2025
Viewed by 209
Abstract
Many existing reinforced concrete (RC) frames with brick infill walls are vulnerable to earthquake damage, particularly when the walls contain window openings that reduce the lateral resistance. This study aims to examine the seismic performance of RC frames strengthened with U-shaped precast concrete [...] Read more.
Many existing reinforced concrete (RC) frames with brick infill walls are vulnerable to earthquake damage, particularly when the walls contain window openings that reduce the lateral resistance. This study aims to examine the seismic performance of RC frames strengthened with U-shaped precast concrete (PC) wall panels. In the proposed method, the window-containing brick infill walls within the RC frames are replaced with factory-fabricated U-shaped PC wall panels, thereby converting the infill into a strong and rigid structural element while preserving the openings. The panels are anchored to the RC frame using post-installed anchors inserted through predrilled holes, allowing for rapid and secure installation with minimal on-site work. To validate the method, five full-scale, one-bay, one-story RC frames were constructed and tested under reversed cyclic lateral loading. Three frames were strengthened with U-shaped PC wall panels of varying thicknesses and large openings. Displacement-controlled cycles following ACI 374.1-05 (R7.0) were applied, with three cycles at each drift ratio stage, and no axial load was applied to the columns. Compared with the reference specimen with a U-shaped brick wall, the strengthened frames exhibited up to 3.29 times higher lateral strength, 4.39 times higher initial stiffness, and 4.33 times greater energy dissipation capacity. These findings demonstrate that the proposed strengthening technique significantly enhances seismic resistance while maintaining the architectural openings, offering a practical and efficient solution for upgrading low-rise RC buildings. Full article
(This article belongs to the Section Building Structures)
Show Figures

Figure 1

Back to TopTop