Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (285)

Search Parameters:
Keywords = analysis of wear dynamic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1015 KiB  
Article
Integrating Dimensional Analysis and Machine Learning for Predictive Maintenance of Francis Turbines in Sediment-Laden Flow
by Álvaro Ospina, Ever Herrera Ríos, Jaime Jaramillo, Camilo A. Franco, Esteban A. Taborda and Farid B. Cortes
Energies 2025, 18(15), 4023; https://doi.org/10.3390/en18154023 - 29 Jul 2025
Viewed by 223
Abstract
The efficiency decline of Francis turbines, a key component of hydroelectric power generation, presents a multifaceted challenge influenced by interconnected factors such as water quality, incidence angle, erosion, and runner wear. This paper is structured into two main sections to address these issues. [...] Read more.
The efficiency decline of Francis turbines, a key component of hydroelectric power generation, presents a multifaceted challenge influenced by interconnected factors such as water quality, incidence angle, erosion, and runner wear. This paper is structured into two main sections to address these issues. The first section applies the Buckingham π theorem to establish a dimensional analysis (DA) framework, providing insights into the relationships among the operational variables and their impact on turbine wear and efficiency loss. Dimensional analysis offers a theoretical basis for understanding the relationships among operational variables and efficiency within the scope of this study. This understanding, in turn, informs the selection and interpretation of features for machine learning (ML) models aimed at the predictive maintenance of the target variable and important features for the next stage. The second section analyzes an extensive dataset collected from a Francis turbine in Colombia, a country that is heavily reliant on hydroelectric power. The dataset consisted of 60,501 samples recorded over 15 days, offering a robust basis for assessing turbine behavior under real-world operating conditions. An exploratory data analysis (EDA) was conducted by integrating linear regression and a time-series analysis to investigate efficiency dynamics. Key variables, including power output, water flow rate, and operational time, were extracted and analyzed to identify patterns and correlations affecting turbine performance. This study seeks to develop a comprehensive understanding of the factors driving Francis turbine efficiency loss and to propose strategies for mitigating wear-induced performance degradation. The synergy lies in DA’s ability to reduce dimensionality and identify meaningful features, which enhances the ML models’ interpretability, while ML leverages these features to model non-linear and time-dependent patterns that DA alone cannot address. This integrated approach results in a linear regression model with a performance (R2-Test = 0.994) and a time series using ARIMA with a performance (R2-Test = 0.999) that allows for the identification of better generalization, demonstrating the power of combining physical principles with advanced data analysis. The preliminary findings provide valuable insights into the dynamic interplay of operational parameters, contributing to the optimization of turbine operation, efficiency enhancement, and lifespan extension. Ultimately, this study supports the sustainability and economic viability of hydroelectric power generation by advancing tools for predictive maintenance and performance optimization. Full article
Show Figures

Figure 1

24 pages, 74760 KiB  
Article
The Application of Mobile Devices for Measuring Accelerations in Rail Vehicles: Methodology and Field Research Outcomes in Tramway Transport
by Michał Urbaniak, Jakub Myrcik, Martyna Juda and Jan Mandrysz
Sensors 2025, 25(15), 4635; https://doi.org/10.3390/s25154635 - 26 Jul 2025
Viewed by 363
Abstract
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems [...] Read more.
Unbalanced accelerations occurring during tram travel have a significant impact on passenger comfort and safety, as well as on the rate of wear and tear on infrastructure and rolling stock. Ideally, these dynamic forces should be monitored continuously in real-time; however, traditional systems require high-precision accelerometers and proprietary software—investments often beyond the reach of municipally funded tram operators. To this end, as part of the research project “Accelerometer Measurements in Rail Passenger Transport Vehicles”, pilot measurement campaigns were conducted in Poland on tram lines in Gdańsk, Toruń, Bydgoszcz, and Olsztyn. Off-the-shelf smartphones equipped with MEMS accelerometers and GPS modules, running the Physics Toolbox Sensor Suite Pro app, were used. Although the research employs widely known methods, this paper addresses part of the gap in affordable real-time monitoring by demonstrating that, in the future, equipment equipped solely with consumer-grade MEMS accelerometers can deliver sufficiently accurate data in applications where high precision is not critical. This paper presents an analysis of a subset of results from the Gdańsk tram network. Lateral (x) and vertical (z) accelerations were recorded at three fixed points inside two tram models (Pesa 128NG Jazz Duo and Düwag N8C), while longitudinal accelerations were deliberately omitted at this stage due to their strong dependence on driver behavior. Raw data were exported as CSV files, processed and analyzed in R version 4.2.2, and then mapped spatially using ArcGIS cartograms. Vehicle speed was calculated both via the haversine formula—accounting for Earth’s curvature—and via a Cartesian approximation. Over the ~7 km route, both methods yielded virtually identical results, validating the simpler approach for short distances. Acceleration histograms approximated Gaussian distributions, with most values between 0.05 and 0.15 m/s2, and extreme values approaching 1 m/s2. The results demonstrate that low-cost mobile devices, after future calibration against certified accelerometers, can provide sufficiently rich data for ride-comfort assessment and show promise for cost-effective condition monitoring of both track and rolling stock. Future work will focus on optimizing the app’s data collection pipeline, refining standard-based analysis algorithms, and validating smartphone measurements against benchmark sensors. Full article
(This article belongs to the Collection Sensors and Actuators for Intelligent Vehicles)
Show Figures

Figure 1

16 pages, 2523 KiB  
Article
Application of Machine Learning Algorithms for Predicting the Dynamic Stiffness of Rail Pads Based on Static Stiffness and Operating Conditions
by Isaac Rivas, Jose A. Sainz-Aja, Diego Ferreño, Víctor Calzada, Isidro Carrascal, Jose Casado and Soraya Diego
Appl. Sci. 2025, 15(15), 8310; https://doi.org/10.3390/app15158310 - 25 Jul 2025
Viewed by 180
Abstract
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material [...] Read more.
The vertical stiffness of railway tracks is crucial for ensuring safe and efficient rail transport. Rail-pad dynamic stiffness is a key component influencing track performance. Determining the dynamic stiffness of rail pads poses a challenge because it depends not only on the material and geometry of the rail pad but also on the testing conditions, due to the non-linear material response. To address this issue, a methodology is proposed in this paper to estimate dynamic stiffness using static stiffness measurements. This approach enables the prediction of dynamic stiffness for different situations from a single laboratory test. This study further examines whether this correlation remains valid for different types of rail pads, even when their mechanical behavior has been degraded by temperature, wear, or chemical agents. Experiments were conducted under varying temperatures and on rail pads that underwent mechanical and chemical degradation. The analysis assesses the validity of the static-to-dynamic stiffness correlation under degraded conditions and investigates the influence of each testing condition on the ability to estimate dynamic stiffness from static stiffness and operational parameters. The findings provide insights into the reliability of this predictive model and highlight the impact of degradation mechanisms on the dynamic behavior of rail pads. This research enhances the understanding of rail pad performance and offers a practical approach for evaluating dynamic stiffness. By considering all of the variables used in the analysis, the approach achieves R2 values of up to 0.99, which carries significant implications for track design and maintenance. Full article
Show Figures

Figure 1

20 pages, 7139 KiB  
Article
Synergistic Effects of CuO and ZnO Nanoadditives on Friction and Wear in Automotive Base Oil
by Ádám István Szabó and Rafiul Hasan
Appl. Sci. 2025, 15(15), 8258; https://doi.org/10.3390/app15158258 - 24 Jul 2025
Viewed by 332
Abstract
Efficient lubrication lowers friction, wear, and energy losses in automotive drivetrain components. Advanced lubricants are key to sustainable transportation performance, durability, and efficiency. This study analyzes the tribological performance of Group III base oil with CuO and ZnO nanoadditive mixtures. These additives enhance [...] Read more.
Efficient lubrication lowers friction, wear, and energy losses in automotive drivetrain components. Advanced lubricants are key to sustainable transportation performance, durability, and efficiency. This study analyzes the tribological performance of Group III base oil with CuO and ZnO nanoadditive mixtures. These additives enhance the performance of Group III base oils, making them highly relevant for automotive lubricant applications. An Optimol SRV5 tribometer performed ball-on-disk sliding contact tests with 100Cr6 steel specimens subjected to a 50 N force and a temperature of 100 °C. The test settings are designed to mimic the boundary and mixed lubrication regimes commonly seen in the automobile industry. During the tests, the effect of nanoparticles on friction was measured. Microscopic wear analysis was performed on the worn specimens. The results demonstrate that adding 0.3 wt% CuO nanoparticles to Group III base oil achieves a 19% reduction in dynamic friction and a 47% decrease in disk wear volume compared to additive-free oil. Notably, a 2:1 CuO-to-ZnO mixture produced synergy, delivering up to a 27% friction reduction and a 54% decrease in disk wear. The results show the synergistic effect of CuO and ZnO in reducing friction and wear on specimens. This study highlights the potential of nanoparticles for lubricant development and automotive applications. Full article
(This article belongs to the Special Issue Sustainable Mobility and Transportation (SMTS 2025))
Show Figures

Figure 1

17 pages, 6623 KiB  
Article
Numerical Study on Flow Field Optimization and Wear Mitigation Strategies for 600 MW Pulverized Coal Boilers
by Lijun Sun, Miao Wang, Peian Chong, Yunhao Shao and Lei Deng
Energies 2025, 18(15), 3947; https://doi.org/10.3390/en18153947 - 24 Jul 2025
Viewed by 153
Abstract
To compensate for the instability of renewable energy sources during China’s energy transition, large thermal power plants must provide critical operational flexibility, primarily through deep peaking. To investigate the combustion performance and wear and tear of a 600 MW pulverized coal boiler under [...] Read more.
To compensate for the instability of renewable energy sources during China’s energy transition, large thermal power plants must provide critical operational flexibility, primarily through deep peaking. To investigate the combustion performance and wear and tear of a 600 MW pulverized coal boiler under deep peaking, the gas–solid flow characteristics and distributions of flue gas temperature, wall heat flux, and wall wear rate in a 600 MW tangentially fired pulverized coal boiler under variable loads (353 MW, 431 MW, 519 MW, and 600 MW) are investigated in this study employing computational fluid dynamics numerical simulation method. Results demonstrate that increasing the boiler load significantly amplifies gas velocity, wall heat flux, and wall wear rate. The maximum gas velocity in the furnace rises from 20.9 m·s−1 (353 MW) to 37.6 m·s−1 (600 MW), with tangential airflow forming a low-velocity central zone and high-velocity peripheral regions. Meanwhile, the tangential circle diameter expands by ~15% as the load increases. The flue gas temperature distribution exhibits a “low-high-low” profile along the furnace height. As the load increases from 353 MW to 600 MW, the primary combustion zone’s peak temperature rises from 1750 K to 1980 K, accompanied by a ~30% expansion in the coverage area of the high-temperature zone. Wall heat flux correlates strongly with temperature distribution, peaking at 2.29 × 105 W·m−2 (353 MW) and 2.75 × 105 W·m−2 (600 MW) in the primary combustion zone. Wear analysis highlights severe erosion in the economizer due to elevated flue gas velocities, with wall wear rates escalating from 3.29 × 10−7 kg·m−2·s−1 (353 MW) to 1.23 × 10−5 kg·m−2·s−1 (600 MW), representing a 40-fold increase under full-load conditions. Mitigation strategies, including ash removal optimization, anti-wear covers, and thermal spray coatings, are proposed to enhance operational safety. This work provides critical insights into flow field optimization and wear management for large-scale coal-fired boilers under flexible load operation. Full article
Show Figures

Figure 1

16 pages, 5442 KiB  
Communication
Analysis of the Impact of Frog Wear on the Wheel–Rail Dynamic Performance in Turnout Zones of Urban Rail Transit Lines
by Yanlei Li, Dongliang Zeng, Xiuqi Wei, Xiaoyu Hu and Kaiyun Wang
Lubricants 2025, 13(7), 317; https://doi.org/10.3390/lubricants13070317 - 20 Jul 2025
Viewed by 298
Abstract
To investigate how severe wear at No. 12 turnout frogs in an urban rail transit line operating at speeds over 120 km/h on the dynamic performance of the vehicle, a vehicle–frog coupled dynamic model was established by employing the 2021 version of SIMPACK [...] Read more.
To investigate how severe wear at No. 12 turnout frogs in an urban rail transit line operating at speeds over 120 km/h on the dynamic performance of the vehicle, a vehicle–frog coupled dynamic model was established by employing the 2021 version of SIMPACK software. Profiles of No. 12 alloy steel frogs and metro wheel rims were measured to simulate wheel–rail interactions as the vehicle traverses the turnout, using both brand-new and worn frog conditions. The experimental results indicate that increased service life deepens frog wear, raises equivalent conicity, and intensifies wheel–rail forces. When a vehicle passes through the frog serviced for over 17 months at the speed of 120 km/h, the maximum derailment coefficient, lateral acceleration of the car body, and lateral and vertical wheel–rail forces increased by 0.14, 0.17 m/s2, 9.52 kN, and 105.76 kN, respectively. The maximum contact patch area grew by 35.73%, while peak contact pressure rose by 236 MPa. To prevent dynamic indicators from exceeding safety thresholds and ensure train operational safety, it is recommended that the frog maintenance cycle be limited to 12 to 16 months. Full article
Show Figures

Figure 1

9 pages, 2291 KiB  
Proceeding Paper
A Comparative Study of Vibrations in Front Suspension Components Using Bushings Made from Different Materials
by Krasimir Ambarev and Stiliyana Taneva
Eng. Proc. 2025, 100(1), 42; https://doi.org/10.3390/engproc2025100042 - 15 Jul 2025
Viewed by 186
Abstract
The design of the suspension system affects handling and stability, vibrations of the steered wheels, vehicle ride comfort, and tyre tread wear. One of the most important vibration parameters is acceleration; high acceleration values can have an adverse effect on both the driver [...] Read more.
The design of the suspension system affects handling and stability, vibrations of the steered wheels, vehicle ride comfort, and tyre tread wear. One of the most important vibration parameters is acceleration; high acceleration values can have an adverse effect on both the driver and passengers, as well as on the components of the vehicle’s suspension and handling. This paper presents the results of the effects of acceleration on the components of a front-independent MacPherson suspension system. Data on the accelerations were obtained from theoretical and experimental studies. A simulation study was conducted, taking into account the elastic and damping characteristics of the elastic components. The experimental study was conducted under laboratory conditions by using a suspension tester, BEISSBARTH, and a measuring system developed with LabVIEW 2021 SP1 and MATLAB R2022b software. The experiments were conducted with different tyre pressures and by using bushings made from different materials. The experimental tests were conducted with two rubber bushings within the mounting of the arm, as well as a rubber bushing and a polyurethane bushing. The experimental results were compared and analyzed. Two theoretical models were considered: one is a mathematical model, and the other is a simulation model which uses the finite element method. Numerical dynamic analysis of the suspension was performed using the SolidWorks 2023. Full article
Show Figures

Figure 1

22 pages, 9751 KiB  
Article
Investigation on the Coupling Effect of Bionic Micro-Texture Shape and Distribution on the Tribological Performance of Water-Lubricated Sliding Bearings
by Xiansheng Tang, Yunfei Lan, Sergei Bosiakov, Michael Zhuravkov, Tao He, Yang Xia and Yongtao Lyu
Lubricants 2025, 13(7), 305; https://doi.org/10.3390/lubricants13070305 - 14 Jul 2025
Viewed by 315
Abstract
Water-lubricated bearings (WLB), due to their pollution-free nature and low noise, are increasingly becoming critical components in aerospace, marine applications, high-speed railway transportation, precision machine tools, etc. However, in practice, water-lubricated bearings suffer severe friction and wear due to low-viscosity water, harsh conditions, [...] Read more.
Water-lubricated bearings (WLB), due to their pollution-free nature and low noise, are increasingly becoming critical components in aerospace, marine applications, high-speed railway transportation, precision machine tools, etc. However, in practice, water-lubricated bearings suffer severe friction and wear due to low-viscosity water, harsh conditions, and contaminants like sediment, which can compromise the lubricating film and shorten their lifespan. The implementation of micro-textures has been demonstrated to improve the tribological performance of water-lubricated bearings to a certain extent, leading to their widespread adoption for enhancing the frictional dynamics of sliding bearings. The shape, dimensions (including length, width, and depth), and distribution of these micro-textures have a significant influence on the frictional performance. Therefore, this study aims to explore the coupling effect of different micro-texture shapes and distributions on the frictional performance of water-lubricated sliding, using the computational fluid dynamics (CFD) analysis. The results indicate that strategically arranging textures across multiple regions can enhance the performance of the bearing. Specifically, placing linear groove textures in the outlet of the divergent zone and triangular textures in the divergent zone body maximize improvements in the load-carrying capacity and frictional performance. This specific configuration increases the load-carrying capacity by 7.3% and reduces the friction coefficient by 8.6%. Overall, this study provided critical theoretical and technical insights for the optimization of WLB, contributing to the advancement of clean energy technologies and the extension of critical bearing service life. Full article
(This article belongs to the Special Issue Water Lubricated Bearings)
Show Figures

Figure 1

15 pages, 4334 KiB  
Article
Research on Wheel Polygonal Wear Based on the Vehicle–Track Coupling Vibration of Metro
by Yixuan Shi, Qingzhou Mao, Qunsheng Wang, Huanyun Dai, Xinyu Peng and Cuijun Dong
Machines 2025, 13(7), 587; https://doi.org/10.3390/machines13070587 - 7 Jul 2025
Viewed by 248
Abstract
Wheel polygonal wear of metro deteriorates the vibration environment of the vehicle system, potentially leading to resonance-induced fatigue failure of components. This poses serious risks to operational safety and increases maintenance costs. To address the adverse effects of wheel polygonal wear, dynamic tracking [...] Read more.
Wheel polygonal wear of metro deteriorates the vibration environment of the vehicle system, potentially leading to resonance-induced fatigue failure of components. This poses serious risks to operational safety and increases maintenance costs. To address the adverse effects of wheel polygonal wear, dynamic tracking tests and numerical simulations were conducted. The modal analysis focused on the vehicle–track coupling system, incorporating various track structures to explore the formation mechanisms and key influencing factors of polygonization. Test results revealed dominant polygonal wear patterns of the seventh to ninth order, inducing forced vibrations in the 50–70 Hz frequency range. These frequencies closely match the P2 resonance frequency generated by wheel–rail interaction. When vehicle–track coupling is considered, the track’s frequency response shows multiple peaks within this range, indicating susceptibility to resonance excitation. Additionally, rail joint irregularities act as geometric excitation sources that trigger polygonal development, while the P2 force resonance mode plays a critical role in its amplification. Full article
(This article belongs to the Section Vehicle Engineering)
Show Figures

Figure 1

16 pages, 2504 KiB  
Article
Thermal Field and High-Temperature Performance of Epoxy Resin System Steel Bridge Deck Pavement
by Rui Mao, Xingyu Gu, Jiwang Jiang, Zhu Zhang and Kaiwen Lei
Materials 2025, 18(13), 3109; https://doi.org/10.3390/ma18133109 - 1 Jul 2025
Viewed by 324
Abstract
Epoxy Resin System (ERS) steel bridge pavement, which comprises a resin asphalt (RA) base layer and a modified asphalt wearing course, offers cost efficiency and rapid installation. However, the combined effects of traffic loads and environmental conditions pose significant challenges, requiring greater high-temperature [...] Read more.
Epoxy Resin System (ERS) steel bridge pavement, which comprises a resin asphalt (RA) base layer and a modified asphalt wearing course, offers cost efficiency and rapid installation. However, the combined effects of traffic loads and environmental conditions pose significant challenges, requiring greater high-temperature stability than conventional pavements. The thermal sensitivity of resin materials and the use of conventional asphalt mixtures may weaken deformation resistance under elevated temperature conditions. This study investigates the thermal field distribution and high-temperature performance of ERS pavements under extreme conditions and explores temperature reduction strategies. A three-dimensional thermal field model developed using finite element analysis software analyzes interactions between the steel box girder and pavement layers. Based on simulation results, wheel tracking and dynamic creep tests confirm the superior performance of the RA05 mixture, with dynamic stability reaching 23,318 cycles/mm at 70 °C and a 2.1-fold improvement in rutting resistance in Stone Mastic Asphalt (SMA)-13 + RA05 composites. Model-driven optimization identifies that enhancing internal airflow within the steel box girder is possible without compromising its structural integrity. The cooling effect is particularly significant when the internal airflow aligns with ambient wind speeds (open-girder configuration). Surface peak temperatures can be reduced by up to 20 °C and high-temperature durations can be shortened by 3–7 h. Full article
Show Figures

Figure 1

21 pages, 5651 KiB  
Article
Design and Experimental Setup of an Innovative Tribometer Aiming to Evaluate Small Quantities of Lubricants
by Lenine Marques de Castro Silva, Adilson José de Oliveira, Aylla Maria Alencar Rocha, José Josemar de Oliveira Junior and Salete Martins Alves
Lubricants 2025, 13(7), 292; https://doi.org/10.3390/lubricants13070292 - 29 Jun 2025
Viewed by 404
Abstract
The proposed tribometer design evaluates lubricants’ lubricating and wear protection properties at the interface of a loaded set of gears. However, this tribometer configuration and testing procedure described in standard ISO 14645-1 does not limit the tribological studies of gear test rigs. This [...] Read more.
The proposed tribometer design evaluates lubricants’ lubricating and wear protection properties at the interface of a loaded set of gears. However, this tribometer configuration and testing procedure described in standard ISO 14645-1 does not limit the tribological studies of gear test rigs. This study aimed to design and manufacture a mechanical transmission test rig capable of investigating the tribological condition of a lubricated enclosed gears transmission. The methodology consisted of (i) a definition of the test rig’s requirements; (ii) downsizing the main subassemblies present in the ISO 14635-1 test rig; (iii) designing innovative subassemblies; (iv) an instrumentation and data acquisition system, and (v) setup testing. The proposed system is suitable for evaluating small quantities of lubricants, allowing the analysis of special lubricants such as nanolubricants and ionic liquids in development for gearbox applications. Also, the dynamic loading avoids interruption in the test, providing results closer to working conditions. The experimental test evaluated the lubrication ability of two different base oils simultaneously under various loading conditions. Also, monitoring vibration signals helped identify the appearance of damage on the gear surface. Full article
Show Figures

Figure 1

19 pages, 11417 KiB  
Article
Microstructure and Mechanical Properties of Functionally Graded Materials on a Ti-6Al-4V Titanium Alloy by Laser Cladding
by Lanyi Liu, Xiaoyang Huang, Guocheng Wang, Xiaoyong Zhang, Kechao Zhou and Bingfeng Wang
Materials 2025, 18(13), 3032; https://doi.org/10.3390/ma18133032 - 26 Jun 2025
Viewed by 633
Abstract
Functionally graded materials (FGMs) are fabricated on Ti-6Al-4V alloy surfaces to improve insufficient surface hardness and wear resistance. Microstructure and mechanical properties and strengthening–toughening mechanisms of FGMs were investigated. The FGM cladding layer exhibits distinct gradient differentiation, demonstrating gradient variations in the nanoindentation [...] Read more.
Functionally graded materials (FGMs) are fabricated on Ti-6Al-4V alloy surfaces to improve insufficient surface hardness and wear resistance. Microstructure and mechanical properties and strengthening–toughening mechanisms of FGMs were investigated. The FGM cladding layer exhibits distinct gradient differentiation, demonstrating gradient variations in the nanoindentation hardness, wear resistance, and Al/V elemental composition. Molten pool dynamics analysis reveals that Marangoni convection drives Al/V elements toward the molten pool surface, forming compositional gradients. TiN-AlN eutectic structures generated on the FGM surface enhance wear resistance. Rapid solidification enables heterogeneous nucleation for grain refinement. The irregular wavy interface morphology strengthens interfacial bonding through mechanical interlocking, dispersing impact loads and suppressing crack propagation. FGMs exhibit excellent wear resistance and impact toughness compared with Ti-6Al-4V titanium alloy. The specific wear rate is 1.17 × 10−2 mm3/(N·m), dynamic compressive strength reaches 1701.6 MPa, and impact absorption energy achieves 189.6 MJ/m3. This work provides theoretical guidance for the design of FGM strengthening of Ti-6Al-4V surfaces. Full article
(This article belongs to the Section Metals and Alloys)
Show Figures

Graphical abstract

28 pages, 5020 KiB  
Article
Methods for Constructing Soil Dynamic Models Under Intelligent Cultivation: Dynamic Interaction Mechanisms Between Farming Tools with Complex Structures and Soil
by Wei Song, Lili Ren, Jingli Wang, Yunhai Ma, Yingjie Guo, Minglei Han and Huaixiang Zhao
Agriculture 2025, 15(13), 1355; https://doi.org/10.3390/agriculture15131355 - 25 Jun 2025
Viewed by 288
Abstract
A new method for finite element simulation analysis of the interaction between complex structured tillage implements and soil was established in this study. This method accurately analyzes soil fragmentation during subsoiling using tillage tools with complex structures. It also accurately reflects the force [...] Read more.
A new method for finite element simulation analysis of the interaction between complex structured tillage implements and soil was established in this study. This method accurately analyzes soil fragmentation during subsoiling using tillage tools with complex structures. It also accurately reflects the force on bionic subsoilers during cultivation, the interaction law between the subsoiler and the soil, and the impact of subsoiling operations on the soil properties. Bionic subsoilers were introduced to establish a dynamic analysis model for subsoiling cultivation. The novelty lies in introducing bionic subsoilers inspired by mole claws to reduce draft force and optimize soil failure patterns. Experiments have shown that compared with standard subsoilers, the stress distribution of the bionic subsoiler-H is significantly reduced, with a maximum stress reduction of 52.96%. The stress distribution of the subsoilers after subsoiling cultivation was directly proportional to the wear of the subsoiler, and the draft force of the subsoiler was inversely proportional to the size of the soil block at the front of the subsoiler. Compared with the soil model with a plough layer, the average stress values of the standard subsoiler, bionic subsoiler-H, and bionic subsoiler-C in the models without a plough pan layer were reduced by 13.97%, 6.67%, and 7.1% lower, respectively. Abaqus finite element analysis could not only effectively reflect the actual situation of soil in the field, but also accurately simulate and analyze the effect of soil fragmentation in the subsoiling process via tillage tools with complex structures, providing a digital analysis foundation for the collection of intelligent tillage information. Full article
(This article belongs to the Section Agricultural Technology)
Show Figures

Figure 1

25 pages, 1281 KiB  
Article
Sustainable Railway Infrastructure: Modernization Strategies for Integrating 1520 mm and 1435 mm Gauge Systems
by Iryna Bondarenko
Sustainability 2025, 17(13), 5768; https://doi.org/10.3390/su17135768 - 23 Jun 2025
Viewed by 383
Abstract
This article examines the modernization of railway systems with a focus on sustainable infrastructure development, aligning with the European Commission’s strategy for integrating 1520 mm gauge railways into the European 1435 mm gauge network. A key challenge lies in addressing the technical aspects [...] Read more.
This article examines the modernization of railway systems with a focus on sustainable infrastructure development, aligning with the European Commission’s strategy for integrating 1520 mm gauge railways into the European 1435 mm gauge network. A key challenge lies in addressing the technical aspects of the railway infrastructure that are not explicitly detailed in the European strategy but have evolved through the parallel historical development of two distinct railway engineering systems. An analysis of calculation methodologies highlights that the primary difference in determining technical parameters for 1435 mm and 1520 mm tracks stems from the selection of the primary classifier based on functional purpose and strength requirements. Furthermore, the existing concept of mechanical system motion presents limitations in harmonizing the technical aspects of railway systems with different track gauges. To bridge this gap, two potential solutions are proposed. The first suggests expanding the conventional mechanical system motion framework by incorporating principles from the theory of relativity, while the second explores the application of elastic wave propagation theory as a novel conceptual model for railway system dynamics. The choice of modernization strategy will play a crucial role in ensuring long-term sustainability of the railway infrastructure, requiring a balanced approach that accounts for the operational intensity, infrastructure wear, and specific technical requirements of track elements in different railway gauge systems. Full article
(This article belongs to the Special Issue Transportation and Infrastructure for Sustainability)
Show Figures

Figure 1

35 pages, 4434 KiB  
Article
MDO of Robotic Landing Gear Systems: A Hybrid Belt-Driven Compliant Mechanism for VTOL Drones Application
by Masoud Kabganian and Seyed M. Hashemi
Drones 2025, 9(6), 434; https://doi.org/10.3390/drones9060434 - 14 Jun 2025
Viewed by 494
Abstract
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground [...] Read more.
This paper addresses inherent limitations in unmanned aerial vehicle (UAV) undercarriages hindering vertical takeoff and landing (VTOL) capabilities on uneven slopes and obstacles. Robotic landing gear (RLG) designs have been proposed to address these limitations; however, existing designs are typically limited to ground slopes of 6–15°, beyond which rollover would happen. Moreover, articulated RLG concepts come with added complexity and weight penalties due to multiple drivetrain components. Previous research has highlighted that even a minor 3-degree slope change can increase the dynamic rollover risks by 40%. Therefore, the design optimization of robotic landing gear for enhanced VTOL capabilities requires a multidisciplinary framework that integrates static analysis, dynamic simulation, and control strategies for operations on complex terrain. This paper presents a novel, hybrid, compliant, belt-driven, three-legged RLG system, supported by a multidisciplinary design optimization (MDO) methodology, aimed at achieving enhanced VTOL capabilities on uneven surfaces and moving platforms like ship decks. The proposed system design utilizes compliant mechanisms featuring a series of three-flexure hinges (3SFH), to reduce the number of articulated drivetrain components and actuators. This results in a lower system weight, improved energy efficiency, and enhanced durability, compared to earlier fully actuated, articulated, four-legged, two-jointed designs. Additionally, the compliant belt-driven actuation mitigates issues such as backlash, wear, and high maintenance, while enabling smoother torque transfer and improved vibration damping relative to earlier three-legged cable-driven four-bar link RLG systems. The use of lightweight yet strong materials—aluminum and titanium—enables the legs to bend 19 and 26.57°, respectively, without failure. An animated simulation of full-contact landing tests, performed using a proportional-derivative (PD) controller and ship deck motion input, validate the performance of the design. Simulations are performed for a VTOL UAV, with two flexible legs made of aluminum, incorporating circular flexure hinges, and a passive third one positioned at the tail. The simulation results confirm stable landings with a 2 s settling time and only 2.29° of overshoot, well within the FAA-recommended maximum roll angle of 2.9°. Compared to the single-revolute (1R) model, the implementation of the optimal 3R Pseudo-Rigid-Body Model (PRBM) further improves accuracy by achieving a maximum tip deflection error of only 1.2%. It is anticipated that the proposed hybrid design would also offer improved durability and ease of maintenance, thereby enhancing functionality and safety in comparison with existing robotic landing gear systems. Full article
Show Figures

Figure 1

Back to TopTop