Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (2,104)

Search Parameters:
Keywords = amplitude distribution

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
59 pages, 2566 KB  
Review
Non-Perturbative Approaches to Linear and Nonlinear Responses of Atoms, Molecules, and Molecular Aggregates: A Theoretical Approach to Molecular Quantum Information and Quantum Biology
by Satoru Yamada, Takao Kobayashi, Masahiro Takahata, Hiroya Nitta, Hiroshi Isobe, Takashi Kawakami, Shusuke Yamanaka, Mitsutaka Okumura and Kizashi Yamaguchi
Chemistry 2025, 7(5), 164; https://doi.org/10.3390/chemistry7050164 - 7 Oct 2025
Abstract
Non-perturbative approaches to linear and nonlinear responses (NLR) of atoms, molecules, and molecular aggregates are reviewed in relation to low and high harmonic generations (HG) by laser fields. These response properties are effective for the generation of entangled light pairs for quantum information [...] Read more.
Non-perturbative approaches to linear and nonlinear responses (NLR) of atoms, molecules, and molecular aggregates are reviewed in relation to low and high harmonic generations (HG) by laser fields. These response properties are effective for the generation of entangled light pairs for quantum information processing by spontaneous parametric downconversion (SPDC) and stimulated four-wave mixing (SFWM). Quasi-energy derivative (QED) methods, such as QED Møller–Plesset (MP) perturbation, are reviewed as time-dependent variational methods (TDVP), providing analytical expressions of time-dependent linear and nonlinear responses of open-shell atoms, molecules, and molecular aggregates. Numerical Liouville methods for the low HG (LHG) and high HG (HHG) regimes are reviewed to elucidate the NLR of molecules in both LHG and HHG regimes. Three-step models for the generation of HHG in the latter regime are reviewed in relation to developments of attosecond science and spectroscopy. Orbital tomography is also reviewed in relation to the theoretical and experimental studies of the amplitudes and phases of wave functions of open-shell atoms and molecules, such as molecular oxygen, providing the Dyson orbital explanation. Interactions between quantum lights and molecules are theoretically examined in relation to derivations of several distribution functions for quantum information processing, quantum dynamics of molecular aggregates, and future developments of quantum molecular devices such as measurement-based quantum computation (MBQP). Quantum dynamics for energy transfer in dendrimer and related light-harvesting antenna systems are reviewed to examine the classical and quantum dynamics behaviors of photosynthesis. It is shown that quantum coherence plays an important role in the well-organized arrays of chromophores. Finally, applications of quantum optics to molecular quantum information and quantum biology are examined in relation to emerging interdisciplinary frontiers. Full article
17 pages, 3095 KB  
Article
Novel Experimental and Simulation Investigation of Transducer Coupling and Specimen Geometry Effects in Low-Frequency Ultrasonic Testing
by Piotr Wiciak, Edward Ginzel, Giovanni Cascante and Maria Anna Polak
Appl. Sci. 2025, 15(19), 10772; https://doi.org/10.3390/app151910772 - 7 Oct 2025
Abstract
Conventional characterization of ultrasonic testing (UT) transducers primarily focuses on determining centre frequency and usable bandwidth. However, the relative amplitude distribution across different frequency components—particularly in low-frequency transducers used for civil engineering applications—remains largely overlooked. This paper introduces a comprehensive methodology to assess [...] Read more.
Conventional characterization of ultrasonic testing (UT) transducers primarily focuses on determining centre frequency and usable bandwidth. However, the relative amplitude distribution across different frequency components—particularly in low-frequency transducers used for civil engineering applications—remains largely overlooked. This paper introduces a comprehensive methodology to assess the influence of transducer coupling and specimen geometry on ultrasonic pulse velocity signals. The novel approach combines high-frequency laser Doppler vibrometry, real-time photoelastic imaging, and computer simulations using commercial semi-analytical wave-propagation software. The methodology is applied to the characterization of a 250 kHz UT transducer, with particular emphasis on how coupling with a solid test medium alters its frequency response. A glass specimen with an acoustic impedance comparable to that of concrete is used to simulate practical testing conditions. Vibration patterns recorded at the distal end of the specimen are analysed through computer simulations and validated experimentally using a novel photoelastic system capable of capturing wave–specimen interactions at ultrasonic frequencies in real time. The findings offer valuable insights into frequency-dependent signal behaviour and transducer–medium interactions, providing practical guidance for the design and optimization of UT inspections in concrete and other highly attenuative materials commonly encountered in civil engineering. Full article
10 pages, 1320 KB  
Communication
Chemical Constituents from the Vietnamese Mangrove Avicennia marina: Two New Iridoid Glycosides and Their Cytotoxicity Against Cancer Cell Lines
by Ngo Van Hieu, Le Ba Vinh, Pham Thi Mai, Le Ngoc Hung, Nguyen Tien Dat, Lai Ha Phuong, Tran Phương Anh, Do Thanh Tuan, Nguyen Viet Phong, Truong Thi Thu Hien and Hoang Le Tuan Anh
Int. J. Mol. Sci. 2025, 26(19), 9694; https://doi.org/10.3390/ijms26199694 - 5 Oct 2025
Abstract
Avicennia marina, commonly known as the grey mangrove, is a salt-tolerant species widely distributed in coastal and estuarine ecosystems. Traditionally, it has been used in folk medicine to treat skin diseases, rheumatism, and ulcers due to its anti-inflammatory and antimicrobial properties. However, [...] Read more.
Avicennia marina, commonly known as the grey mangrove, is a salt-tolerant species widely distributed in coastal and estuarine ecosystems. Traditionally, it has been used in folk medicine to treat skin diseases, rheumatism, and ulcers due to its anti-inflammatory and antimicrobial properties. However, comprehensive studies on the chemical constituents and their pharmacological effects remain limited. The dried powder of the aerial parts of A. marina (3.6 kg) was successfully extracted three times with methanol (20 L × 3, each for 2 h) using a multifunctional ultrasonic cleaner operated at 25 °C with a 50% amplitude setting. In this study, the methanolic extract of the aerial parts of A. marina led to the isolation of eight compounds, including two previously unreported iridoid glycosides—avicenosides A and B (1 and 2)—and six known compounds: techtochrysin (3), 7,4′-di-O-methyl-apigenin (4), luteolin (5), kaempferol (6), trans-caffeic acid (7), and 3,4-dihydroxybenzoic acid (8). Their chemical structures were elucidated using nuclear magnetic resonance (NMR) spectroscopy and high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) and compared with previously published data. Moreover, the absolute configuration of the sugar moieties in the new compounds was also identified. All isolated compounds were evaluated for their cytotoxicity against HepG2 and A549 cancer cell lines. The results indicate potential cytotoxicity of the secondary metabolites from A. marina and provide evidence of their promising role as lead compounds for the development of novel anticancer agents. Full article
Show Figures

Figure 1

13 pages, 2827 KB  
Article
The Mechanism of Casing Perforation Erosion Under Fracturing-Fluid Flow: An FSI and Strength Criteria Study
by Hui Zhang and Chengwen Wang
Modelling 2025, 6(4), 121; https://doi.org/10.3390/modelling6040121 - 4 Oct 2025
Abstract
High-pressure, high-volume fracturing in unconventional reservoirs often induces perforation erosion damage, endangering operational safety. This paper employs fluid–solid coupling theory to analyze the flow characteristics of fracturing fluid inside the casing during fracturing. Combined with strength theory, the stress distribution and variation law [...] Read more.
High-pressure, high-volume fracturing in unconventional reservoirs often induces perforation erosion damage, endangering operational safety. This paper employs fluid–solid coupling theory to analyze the flow characteristics of fracturing fluid inside the casing during fracturing. Combined with strength theory, the stress distribution and variation law are investigated, revealing the mechanical mechanism of casing perforation erosion damage. The results indicate that the structural discontinuity at the entrance of the perforation tunnel causes an increase in fracturing-fluid velocity, and this is where the most severe erosion happens. The stress around the perforation is symmetrically distributed along the perforation axis. The casing inner wall experiences a combined tensile–compressive stress state, while non-perforated regions are under pure tensile stress, with the maximum amplitudes occurring in the 90° and 270° directions. Although the tensile and compressive stress do not exceed the material’s allowable stress, the shear stress exceeds the allowable shear stress, indicating that shear stress failure is likely to initiate at the perforation, inducing erosion. Moreover, under the impact of fracturing fluid, the contact forces at the first and second interfaces of the casing are unevenly distributed, reducing cement bonding capability and compromising casing integrity. The findings provide a theoretical basis for optimizing casing selection. Full article
11 pages, 823 KB  
Article
Closed-Form Solution Lagrange Multipliers in Worst-Case Performance Optimization Beamforming
by Tengda Pei and Bingnan Pei
Signals 2025, 6(4), 55; https://doi.org/10.3390/signals6040055 - 4 Oct 2025
Abstract
This study presents a method for deriving closed-form solutions for Lagrange multipliers in worst-case performance optimization (WCPO) beamforming. By approximating the array-received signal autocorrelation matrix as a rank-1 Hermitian matrix using the low-rank approximation theory, analytical expressions for the Lagrange multipliers are derived. [...] Read more.
This study presents a method for deriving closed-form solutions for Lagrange multipliers in worst-case performance optimization (WCPO) beamforming. By approximating the array-received signal autocorrelation matrix as a rank-1 Hermitian matrix using the low-rank approximation theory, analytical expressions for the Lagrange multipliers are derived. The method was first developed for a single plane wave scenario and then generalized to multiplane wave cases with an autocorrelation matrix rank of N. Simulations demonstrate that the proposed Lagrange multiplier formula exhibits a performance comparable to that of the second-order cone programming (SOCP) method in terms of signal-to-interference-plus-noise ratio (SINR) and direction-of-arrival (DOA) estimation accuracy, while offering a significant reduction in computational complexity. The proposed method requires three orders of magnitude less computation time than the SOCP and has a computational efficiency similar to that of the diagonal loading (DL) technique, outperforming DL in SINR and DOA estimations. Fourier amplitude spectrum analysis revealed that the beamforming filters obtained using the proposed method and the SOCP shared frequency distribution structures similar to the ideal optimal beamformer (MVDR), whereas the DL method exhibited distinct characteristics. The proposed analytical expressions for the Lagrange multipliers provide a valuable tool for implementing robust and real-time adaptive beamforming for practical applications. Full article
Show Figures

Figure 1

21 pages, 5676 KB  
Article
Surface Deformation Monitoring and Spatiotemporal Evolution Analysis of Open-Pit Mines Using Small-Baseline Subset and Distributed-Scatterer InSAR to Support Sustainable Mine Operations
by Zhouai Zhang, Yongfeng Li and Sihua Gao
Sustainability 2025, 17(19), 8834; https://doi.org/10.3390/su17198834 - 2 Oct 2025
Abstract
Open-pit mining often induces geological hazards such as slope instability, surface subsidence, and ground fissures. To support sustainable mine operations and safety, high-resolution monitoring and mechanism-based interpretation are essential tools for early warning, risk management, and compliant reclamation. This study focuses on the [...] Read more.
Open-pit mining often induces geological hazards such as slope instability, surface subsidence, and ground fissures. To support sustainable mine operations and safety, high-resolution monitoring and mechanism-based interpretation are essential tools for early warning, risk management, and compliant reclamation. This study focuses on the Baorixile open-pit coal mine in Inner Mongolia, China, where 48 Sentinel-1 images acquired between 3 March 2017 and 23 April 2021 were processed using the Small-Baseline Subset and Distributed-Scatterer Interferometric Synthetic Aperture Radar (SBAS-DS-InSAR) technique to obtain dense and reliable time-series deformation. Furthermore, a Trend–Periodic–Residual Subspace-Constrained Regression (TPRSCR) method was developed to decompose the deformation signals into long-term trends, seasonal and annual components, and residual anomalies. By introducing Distributed-Scatterer (DS) phase optimization, the monitoring density in low-coherence regions increased from 1055 to 338,555 points (approximately 321-fold increase). Deformation measurements at common points showed high consistency (R2 = 0.97, regression slope = 0.88; mean rate difference = −0.093 mm/yr, standard deviation = 3.28 mm/yr), confirming the reliability of the results. Two major deformation zones were identified: one linked to ground compaction caused by transportation activities, and the other associated with minor subsidence from pre-mining site preparation. In addition, the deformation field exhibits a superimposed pattern of persistent subsidence and pronounced seasonality. TPRSCR results indicate that long-term trend rates range from −14.03 to 14.22 mm/yr, with a maximum periodic amplitude of 40 mm. Compared with the Seasonal-Trend decomposition using LOESS (STL), TPRSCR effectively suppressed “periodic leakage into trend” and reduced RMSEs of total, trend, and periodic components by 48.96%, 93.33%, and 89.71%, respectively. Correlation analysis with meteorological data revealed that periodic deformation is strongly controlled by precipitation and temperature, with an approximately 34-day lag relative to the temperature cycle. The proposed “monitoring–decomposition–interpretation” framework turns InSAR-derived deformation into sustainability indicators that enhance deformation characterization and guide early warning, targeted upkeep, climate-aware drainage, and reclamation. These metrics reduce downtime and resource-intensive repairs and inform integrated risk management in open-pit mining. Full article
(This article belongs to the Special Issue Application of Remote Sensing and GIS in Environmental Monitoring)
Show Figures

Figure 1

22 pages, 6779 KB  
Article
Unveiling the Responses’ Feature of Composites Subjected to Fatigue Loadings—Part 1: Theoretical and Experimental Fatigue Response Under the Strength-Residual Strength-Life Equal Rank Assumption (SRSLERA) and the Equivalent Residual Strength Assumption (ERSA)
by Alberto D’Amore and Luigi Grassia
J. Compos. Sci. 2025, 9(10), 528; https://doi.org/10.3390/jcs9100528 - 1 Oct 2025
Abstract
This paper discusses whether the principal response features of composites subjected to fatigue loadings, including residual strength and lifetime statistics under variable amplitude (VA) loadings, can be resolved based on constant amplitude (CA) fatigue life data. The approach is based on the strength-residual [...] Read more.
This paper discusses whether the principal response features of composites subjected to fatigue loadings, including residual strength and lifetime statistics under variable amplitude (VA) loadings, can be resolved based on constant amplitude (CA) fatigue life data. The approach is based on the strength-residual strength-life equal-rank assumption (SRSLERA), providing a statistical correspondence between the static strength, residual strength, and fatigue life distribution functions under CA loadings. Under VA loadings, the strength degradation progression and then the fatigue lifetime are calculated by dividing the loading spectrum into a sequence of CA block loadings of given extents (including one cycle), and assuming that the strength at the end of a generic block loading equals the strength at the start of the consecutive one, namely the equivalent residual strength assumption (ERSA). The consequences of SRSLERA and ERSA are first discussed by re-elaborating a series of uniaxial, statistically sound CA residual strength and fatigue life data obtained under different loading ratios, R, ranging from pure tension to mixed tension–compression to pure compression. It is shown that the static strength Weibull’s shape and scale parameters, as well as the fatigue formulation parameters recovered under pure compression or tension loadings, represent the fingerprint of composite materials subjected to fatigue and characterize their uniqueness. The residual strength statistics, fatigue probability density functions (PDFs), and constant life diagram (CLD) construction are theoretically reported. Then, based on ERSA, the statistical lifetimes under VA loadings and the cycle-by-cycle damage progressions of block repeated loadings are analyzed, and a residual strength-based damage rule is compared to Miner’s rule. Full article
(This article belongs to the Special Issue Characterization and Modelling of Composites, Volume III)
Show Figures

Figure 1

86 pages, 1368 KB  
Article
Nonlinear Quasi-Classical Model of Isothermal Relaxation Polarization Currents in Functional Elements of Microelectronics, Optoelectronics, and Fiber Optics Based on Crystals with Ionic-Molecular Chemical Bonds with Complex Crystalline Structure
by Valeriy Kalytka, Ali Mekhtiyev, Yelena Neshina, Aleksey Yurchenko, Aliya Аlkina, Felix Bulatbayev, Valeriy Issayev, Kanat Makhanov, Dmitriy Lukin, Damir Kayumov and Alexandr Zaplakhov
Crystals 2025, 15(10), 863; https://doi.org/10.3390/cryst15100863 - 30 Sep 2025
Abstract
In this article, the mechanism of relaxation polarization currents occurring at a constant temperature (isothermal process) in crystals with ionic-molecular chemical bonds (CIMBs) in an alternating electric field was investigated. Methods of the quasi-classical kinetic theory of dielectric relaxation, based on solutions of [...] Read more.
In this article, the mechanism of relaxation polarization currents occurring at a constant temperature (isothermal process) in crystals with ionic-molecular chemical bonds (CIMBs) in an alternating electric field was investigated. Methods of the quasi-classical kinetic theory of dielectric relaxation, based on solutions of the nonlinear system of Fokker–Planck and Poisson equations (for the blocking electrode model) and perturbation theory (by expanding into an infinite series in powers of a dimensionless small parameter) were used. Generalized nonlinear mathematical expressions for calculating the complex amplitudes of relaxation modes of the volume-charge distribution of the main charge carriers (ions, protons, water molecules, etc.) were obtained. On this basis, formulas for the current density of relaxation polarization (for transient processes in a dielectric) in the k-th approximation of perturbation theory were constructed. The isothermal polarization currents are investigated in detail in the first four approximations (k = 1, 2, 3, 4) of perturbation theory. These expressions will be applied in the future to compare the results of theory and experiment, in analytical studies of the kinetics of isothermal ion-relaxation (in crystals with hydrogen bonds (HBC), proton-relaxation) polarization and in calculating the parameters of relaxers (molecular characteristics of charge carriers and crystal lattice parameters) in a wide range of field parameters (0.1–1000 MV/m) and temperatures (1–1550 K). Asymptotic (far from transient processes) recurrent formulas are constructed for complex amplitudes of relaxation modes and for the polarization current density in an arbitrary approximation k of perturbation theory with a multiplicity r by the polarizing field (a multiple of the fundamental frequency of the field). The high degree of reliability of the theoretical results obtained is justified by the complete agreement of the equations of the mathematical model for transient and stationary processes in the system with a harmonic external disturbance. This work is of a theoretical nature and is focused on the construction and analysis of nonlinear properties of a physical and mathematical model of isothermal ion-relaxation polarization in CIMB crystals under various parameters of electrical and temperature effects. The theoretical foundations for research (construction of equations and working formulas, algorithms, and computer programs for numerical calculations) of nonlinear kinetic phenomena during thermally stimulated relaxation polarization have been laid. This allows, with a higher degree of resolution of measuring instruments, to reveal the physical mechanisms of dielectric relaxation and conductivity and to calculate the parameters of a wide class of relaxators in dielectrics in a wide experimental temperature range (25–550 K). Full article
(This article belongs to the Section Inorganic Crystalline Materials)
28 pages, 7010 KB  
Article
Trailing-Edge Noise and Amplitude Modulation Under Yaw-Induced Partial Wake: A Curl–UVLM Analysis with Atmospheric Stability Effects
by Homin Kim, Taeseok Yuk, Kukhwan Yu and Soogab Lee
Energies 2025, 18(19), 5205; https://doi.org/10.3390/en18195205 - 30 Sep 2025
Abstract
This study examines the effects of partial wakes caused by upstream turbine yaw control on the trailing-edge noise of a downstream turbine under stable and neutral atmospheric conditions. Using a combined model coupling the unsteady vortex lattice method (UVLM) with the Curl wake [...] Read more.
This study examines the effects of partial wakes caused by upstream turbine yaw control on the trailing-edge noise of a downstream turbine under stable and neutral atmospheric conditions. Using a combined model coupling the unsteady vortex lattice method (UVLM) with the Curl wake model, calibrated with large eddy simulation data, wake behavior and noise characteristics were analyzed for yaw angles from −30° to +30°. Results show that partial wakes slightly raise overall noise levels and lateral asymmetry of trailing-edge noise, while amplitude modulation (AM) strength is more strongly influenced by yaw control. AM varies linearly with wake deflection at moderate yaw angles but behaves nonlinearly beyond a threshold due to large wake deflection and deformation. Findings reveal that yaw control can significantly increase the lateral asymmetry in the AM strength directivity pattern of the downstream turbine, and that AM characteristics depend on the complex interplay between inflow distribution and convective amplification effects, highlighting the importance of accurate wake prediction, along with appropriate consideration of observer point location and blade rotation, for evaluating AM characteristics of a wind turbine influenced by a partial wake. Full article
(This article belongs to the Special Issue Progress and Challenges in Wind Farm Optimization)
Show Figures

Figure 1

16 pages, 2919 KB  
Article
Design and Preparation of Compact 3-Bit Reconfigurable RF MEMS Attenuators for Millimeter-Wave Bands
by Shilong Miao, Rui Chai, Yuheng Si, Yulong Zhang, Qiannan Wu and Mengwei Li
Micromachines 2025, 16(10), 1117; https://doi.org/10.3390/mi16101117 - 29 Sep 2025
Abstract
As a core functional device in microwave systems, attenuators play a crucial role in key aspects such as signal power regulation, amplitude attenuation, and impedance matching. Addressing the pressing technical issues currently exposed by attenuators in practical applications, such as excessive insertion loss, [...] Read more.
As a core functional device in microwave systems, attenuators play a crucial role in key aspects such as signal power regulation, amplitude attenuation, and impedance matching. Addressing the pressing technical issues currently exposed by attenuators in practical applications, such as excessive insertion loss, low attenuation accuracy, large physical dimensions, and insufficient process reliability, this paper proposes a design scheme for an RF three-bit reconfigurable stepped attenuator based on radio frequency micro-electromechanical systems (RF MEMS) switches. The attenuator employs planar integration of the T-type attenuation network, Coplanar Waveguide (CPW), Y-shaped power divider, and RF MEMS switches. While ensuring rational power distribution and stable attenuation performance over the full bandwidth, it reduces the number of switches to suppress parasitic parameters, thereby enhancing process feasibility. Test results confirm that this device demonstrates significant advancements in attenuation accuracy, achieving a precision of 1.18 dB across the 0–25 dB operational range from DC to 20 GHz, with insertion loss kept below 1.65 dB and return loss exceeding 12.15 dB. Additionally, the device boasts a compact size of merely 0.66 mm × 1.38 mm × 0.32 mm, significantly smaller than analogous products documented in existing literature. Meanwhile, its service life approaches 5 × 107 cycles. Together, these two attributes validate the device’s performance reliability and miniaturization advantages. Full article
25 pages, 8867 KB  
Article
DEM Simulation and Experimental Investigation of Draft-Reducing Performance of Up-Cutting Subsoiling Method Inspired by Animal Digging
by Peng Gao, Xuanting Liu, Zihe Xu, Shuo Wang, Mingzi Qu and Yunhai Ma
Agriculture 2025, 15(19), 2046; https://doi.org/10.3390/agriculture15192046 - 29 Sep 2025
Abstract
Overcoming high draft forces has long been a primary challenge in conventional subsoiling. To better utilize this agronomically advantageous technique, it is necessary to substantially reduce the draft. Inspired by the digging behaviors of fossorial animals, a low-draft up-cutting subsoiling method was proposed [...] Read more.
Overcoming high draft forces has long been a primary challenge in conventional subsoiling. To better utilize this agronomically advantageous technique, it is necessary to substantially reduce the draft. Inspired by the digging behaviors of fossorial animals, a low-draft up-cutting subsoiling method was proposed in this study. Discrete element method (DEM) simulations were employed to study the draft-reducing performance of up-cutting tools compared with regular tools. The results showed that the up-cutting motion reduced the draft by 63.07%, 63.84%, and 58.92%, respectively, at rake angles of 45°, 60°, and 75%, and by 79.73%, 63.84%, and 45.22%, respectively, at advancement velocities of 0.5 m·s−1, 1 m·s−1, and 1.5 m·s−1. An increase in up-cutting velocity reduces the draft. Soil disturbance, particle velocity distribution, and soil deformation and movement patterns change in ways that contribute to this reduction. The draft-reducing performance of a chain subsoiler developed based on the principle of soil-breaking by animal digging was verified using field tests, exhibiting a draft-reduction amplitude approaching or greater than 30%. This study shows the great application potential of the up-cutting method in reducing subsoiling drafts and provides a theoretical basis for future research. Full article
Show Figures

Figure 1

23 pages, 35547 KB  
Article
Distributed Prescribed Performance Formation Tracking for Unknown Euler–Lagrange Systems Under Input Saturation
by Athanasios K. Gkesoulis, Andreani Christopoulou, Charalampos P. Bechlioulis and George C. Karras
Sensors 2025, 25(19), 6002; https://doi.org/10.3390/s25196002 - 29 Sep 2025
Abstract
In this paper, we propose a distributed prescribed performance formation tracking control method for unknown Euler–Lagrange systems subject to input amplitude constraints. We address the challenge of maintaining formation tracking within predefined performance bounds when the agents’ inputs are subject to saturation. This [...] Read more.
In this paper, we propose a distributed prescribed performance formation tracking control method for unknown Euler–Lagrange systems subject to input amplitude constraints. We address the challenge of maintaining formation tracking within predefined performance bounds when the agents’ inputs are subject to saturation. This is achieved by designing a distributed virtual velocity reference modification mechanism, which modifies the desired velocity reference of each agent whenever saturation occurs. We establish sufficient feasibility conditions for the input constraints that ensure prescribed performance formation tracking of the desired trajectory and guarantee the boundedness of all closed-loop signals. Simulations on a team of underwater vehicles validate the method’s effectiveness. Full article
(This article belongs to the Special Issue Cooperative Perception and Planning for Swarm Robot Systems)
Show Figures

Figure 1

17 pages, 17502 KB  
Article
Multiscale Compressive Failure Analysis of Wrinkled Laminates Based on Multiaxial Damage Model
by Jian Shi, Guang Yang, Nan Sun, Jie Zheng, Jingjing Qian, Wenjia Wang and Kun Song
Materials 2025, 18(19), 4503; https://doi.org/10.3390/ma18194503 - 27 Sep 2025
Abstract
The waviness defect, a common manufacturing flaw in composite structures, can significantly impact the mechanical performance. This study investigates the effects of wrinkles on the ultimate load and failure modes of two Carbon Fiber Reinforced Composite (CFRC) laminates through compressive experiments and simulation [...] Read more.
The waviness defect, a common manufacturing flaw in composite structures, can significantly impact the mechanical performance. This study investigates the effects of wrinkles on the ultimate load and failure modes of two Carbon Fiber Reinforced Composite (CFRC) laminates through compressive experiments and simulation analyses. The laminates have stacking sequences of [0]10S and [45/0/−45/90/45/0/−45/0/45/0]S. Each laminate includes four different waviness ratios (the ratio of wrinkle amplitude to laminate thickness) of 0%, 10%, 20% and 30%. In the simulation, a novel multiaxial progressive damage model is implemented via the user material (UMAT) subroutine to predict the compressive failure behavior of wrinkled composite laminates. This multiscale analysis framework innovatively features a 7 × 7 generalized method of cells coupled with stress-based multiaxial Hashin failure criteria to accurately analyze the impact of wrinkle defects on structural performance and efficiently transfer macro-microscopic damage variables. When any microscopic subcell within the representative unit cell (RUC) satisfies a failure criterion, its stiffness matrix is reduced to a nominal value, and the corresponding failure modes are tracked through state variables. When more than 50% fiber subcells fail in the fiber direction or more than 50% matrix subcells fail in the transverse or thickness direction, it indicates that the RUC has experienced the corresponding failure modes, which are the tensile or compressive failure of fibers, matrix, or delamination in the three axial directions. This multiscale model accurately predicted the load–displacement curves and failure modes of wrinkled composites under compressive load, showing good agreement with experimental results. The analysis results indicate that wrinkle defects can reduce the ultimate load-carrying capacity and promote local buckling deformation at the wrinkled region, leading to changes in damage distribution and failure modes. Full article
Show Figures

Figure 1

22 pages, 4882 KB  
Article
82.5 GHz Photonic W-Band IM/DD PS-PAM4 Wireless Transmission over 300 m Based on Balanced and Lightweight DNN Equalizer Cascaded with Clustering Algorithm
by Jingtao Ge, Jie Zhang, Sicong Xu, Qihang Wang, Jingwen Lin, Sheng Hu, Xin Lu, Zhihang Ou, Siqi Wang, Tong Wang, Yichen Li, Yuan Ma, Jiali Chen, Tensheng Zhang and Wen Zhou
Sensors 2025, 25(19), 5986; https://doi.org/10.3390/s25195986 - 27 Sep 2025
Abstract
With the rise of 6G, the exponential growth of data traffic, the proliferation of emerging applications, and the ubiquity of smart devices, the demand for spectral resources is unprecedented. Terahertz communication (100 GHz–3 THz) plays a key role in alleviating spectrum scarcity through [...] Read more.
With the rise of 6G, the exponential growth of data traffic, the proliferation of emerging applications, and the ubiquity of smart devices, the demand for spectral resources is unprecedented. Terahertz communication (100 GHz–3 THz) plays a key role in alleviating spectrum scarcity through ultra-broadband transmission. In this study, terahertz optical carrier-based systems are employed, where fiber-optic components are used to generate the optical signals, and the signal is transmitted via direct detection in the receiver side, without relying on fiber-optic transmission. In these systems, deep learning-based equalization effectively compensates for nonlinear distortions, while probability shaping (PS) enhances system capacity under modulation constraints. However, the probability distribution of signals processed by PS varies with amplitude, making it challenging to extract useful information from the minority class, which in turn limits the effectiveness of nonlinear equalization. Furthermore, in IM-DD systems, optical multipath interference (MPI) noise introduces signal-dependent amplitude jitter after direct detection, degrading system performance. To address these challenges, we propose a lightweight neural network equalizer assisted by the Synthetic Minority Oversampling Technique (SMOTE) and a clustering method. Applying SMOTE prior to the equalizer mitigates training difficulties arising from class imbalance, while the low-complexity clustering algorithm after the equalizer identifies edge jitter levels for decision-making. This joint approach compensates for both nonlinear distortion and jitter-related decision errors. Based on this algorithm, we conducted a 3.75 Gbaud W-band PAM4 wireless transmission experiment over 300 m at Fudan University’s Handan campus, achieving a bit error rate of 1.32 × 10−3, which corresponds to a 70.7% improvement over conventional schemes. Compared to traditional equalizers, the proposed new equalizer reduces algorithm complexity by 70.6% and training sequence length by 33%, while achieving the same performance. These advantages highlight its significant potential for future optical carrier-based wireless communication systems. Full article
(This article belongs to the Special Issue Recent Advances in Optical Wireless Communications)
Show Figures

Figure 1

17 pages, 6335 KB  
Article
Impedance Resonant Channel Shaping for Current Ringing Suppression in Dual-Active Bridge Converters
by Yaoqiang Wang, Zhaolong Sun, Peiyuan Li, Jian Ai, Chan Wu, Zhan Shen and Fujin Deng
Electronics 2025, 14(19), 3823; https://doi.org/10.3390/electronics14193823 - 26 Sep 2025
Abstract
Current ringing in dual-active bridge (DAB) converters significantly degrades efficiency and reliability, particularly due to resonant interactions in the magnetic tank impedance network. We propose a novel impedance resonant channel shaping technique to suppress the ringing by systematically modifying the converter’s equivalent impedance [...] Read more.
Current ringing in dual-active bridge (DAB) converters significantly degrades efficiency and reliability, particularly due to resonant interactions in the magnetic tank impedance network. We propose a novel impedance resonant channel shaping technique to suppress the ringing by systematically modifying the converter’s equivalent impedance model. The method begins with establishing a high-fidelity network representation of the magnetic tank, incorporating transformer parasitics, external inductors, and distributed capacitances, where secondary-side components are referred to the primary via the turns ratio squared. Critical damping is achieved through a rank-one modification of the coupling denominator, which is analytically normalized to a second-order form with explicit expressions for resonant frequency and damping ratio. The optimal series–RC damping network parameters are derived as functions of leakage inductance and winding capacitance, enabling precise control over the effective damping factor while accounting for core loss effects. Furthermore, the integrated network with the damping network dynamically shapes the impedance response, thereby attenuating ringing currents without compromising converter dynamics. Experimental validation confirms that the proposed approach reduces peak ringing amplitude by over 60% compared to the conventional snubber-based methods, while maintaining full soft-switching capability. Full article
Show Figures

Figure 1

Back to TopTop